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ABSTRACT

Issues pertinent to the development of a compact model for predicting the drain current-voltage characteristics
of coaxial-geometry, Schottky-barrier, carbon-nanotube field-effect transistors are discussed. Information on
the non-equilibrium barrier shapes at the source-tube and drain-tube contacts is inferred from exact 2-D
solutions to Poisson’s equation at equilibrium and Laplace’s equation. This information is then used in a non-
equilibrium flux approach to create a model that accounts for tunneling through both barriers and computes
the drain current in the case of ballistic transport. For (16,0) tubes and a gate/tube-radius ratio of 10,
saturation drain currents of about 1 µA are predicted.

1. INTRODUCTION

Nanoscale transistors fashioned from carbon nanotubes are an exciting possibility [1, 2]. Transport is essentially
one-dimensional, and there is very little carrier-phonon interaction [3]. Thus, the drain current tends to
be controlled by modulation of the Schottky-barrier potential profiles at the source and drain ends of the
nanotube [4, 5, 6]. Present experimental devices are planar in nature [4], but coaxial structures offer better
opportunities for modulating the Schottky-barrier properties via capacitative coupling between the gate and
the contacts [7, 8]. In the present work we concentrate on coaxial, Schottky-barrier devices formed with
intrinsic nanotubes, and seek to develop a compact model for the prediction of the drain I-V characteristics.
The basic transistor structure is shown in Fig. 1.
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Figure 1: Schottky-barrier, carbon nanotube, FET model geometry (not to scale). The gate forms the curved surface
of the outer cylinder, and the source and drain form the two ends. The semiconducting nanotube is placed coaxially
with the outer cylinder.

Under equilibrium conditions, which in these devices means no drain current, i.e., the drain-source voltage
VDS = 0, but the gate-source voltage VGS is not necessarily zero, it is straightforward to compute the charge
and potential profile by solving Poisson’s equation consistently with the equilibrium charge density on the
nanotube [6]. For VGS > 0, as considered in this work, the charge on the tube is negative, and is due to a
surfeit of electrons over holes. Here we take the electronic charge to dominate and we neglect the contribution
of the holes. Away from equilibrium, when VDS > 0, the induced electron distribution on the tube will deviate
considerably from a Maxwellian or Fermi-Diracian form, on account of hot electron injection from the contacts
and, in the ballistic case considered here, the lack of opportunity for thermalizing collisions. This precludes
the calculation of the non-equilibrium charge using simple, quasi-Fermi-Dirac statistics.



In the present work, we obtain an estimate of the non-equilibrium charge QC in the mid-length region of the
tube, i.e., away from the source and drain potential barriers, by an extension of the method of Guo et al. [9, 10].
QC is related to the mid-length potential on the tube VCS , which connects, and affects, the potential profiles
of the Schottky barriers. These, in turn, affect the tunneling probabilities for electrons entering the tube from
the reservoirs of equilibrium charge at the source and drain metallizations. The energy-dependent tunneling
probabilities serve to distort the electron distribution in the tube from an equilibrium form. Here, we take the
potential profiles at the barriers to have an exponential form, and then solve for VCS by equating the values of
QC computed by the non-equilibrium-flux approach and an infinite-tube approach [9, 10]. This gives a solution
to the complete potential profile, and to the tunneling probabilities, which then allows computation of the
drain current from Landauer’s expression. Our inclusion of the Schottky-barrier nature of the contacts leads
to a significantly different saturation current than predicted by the earlier model [9], in which the tunneling
barriers were not considered.

2. THE MODEL

At equilibrium, i.e., when VDS = 0, simple electrostatics gives:

Q̃C = −C∞(VGS − ṼCS) , (1)

where ṼCS is the equilibrium potential, with respect to the source, of the carbon nanotube at its mid-length,
i.e., away from the influence of the source and drain contacts, and C∞ is the insulator capacitance for an
infinitely long coaxial system. Out of equilibrium, i.e., when VDS �= 0, VCS is influenced by VDS :

VCS = ṼCS + αVDS (2)
QC = −C∞(VGS − VCS) , (3)

where α is a parameter that needs to be determined in order to specify VCS . For VGS > 0, as considered in
this work, QC is a negative, electronic charge.

An alternative method for calculating QC follows from the flux approach, in which electrons in the forward-
and backward-directed fluxes are summed [9]. Here, we do not restrict the fluxes within the tube to be hemi-
Maxwellian or hemi-Fermi-Diracian in nature, but, instead, we allow the actions of tunneling and repeated
reflections between the potential barriers to modify the electron distributions from the equilibrium form that
they possess outside the tube, at the actual source and drain metallic contacts. In the following, f+

S denotes
the positive- or forward-directed part of the Fermi-Dirac distribution outside the tube at the source, whereas
f−

D represents the negative- or backward-directed part of the distribution outside the tube at the drain. Thus:
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where g(E) is the 1-D density of states computed from the tight-binding approximation [11], the conduction
band edge EC in the mid-length region of the tube is dependent on αVDS , and the tunneling probabilities
at the source and drain, TS and TD respectively, are computed using the JWKB approximation and are
dependent on E, VGS and αVDS . The overall transmission probability T ∗ = TSTD/(TS + TD −TSTD). In our
method, we equate (3) and (4) and solve for α, thereby determining VCS . An iterative procedure is necessary
because of the dependence on VCS of TS and TD, via the potential profile, which is represented by
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(5)

where z is the distance from the source and L is the tube length. This representation is based on observation of
the trends in barrier shape under those circumstances for which exact solutions are presently possible, namely:



Poisson’s equation at equilibrium, and Laplace’s equation out of equilibrium. The trends are: a barrier base-
width of a ≈ 2RG, where RG is the radius of the gate (see Fig. 1); a barrier height at the source of Vpk = VCS

(see Fig. 2); a barrier height at the drain that varies from Vpk = VCS −VDS when a “spike” is present, through
Vpk = 0, to a negative value when VDS > VCS (see Fig. 2); a barrier “concavity” that is captured by β ≈ 3.6
for the tube considered here. The barrier profiles given by (5) are correct inasmuch as they prescribe values
for the tunneling probabilities TS and TD that yield a mid-length charge that is consistent with that predicted
by (3).

To complete the calculation of the drain current, the Landauer expression is used:

ID =
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where the sum is over the i conduction bands, the edges ECi of which are functions of α, VGS and VDS .

3. RESULTS AND DISCUSSION

Results are presented for a (16,0) tube, which has a radius of 0.63 nm, and a gate/tube-radius ratio of 10; the
source and drain work functions are taken to be equal to that of the intrinsic nanotube. The tube is sufficiently
long that there is a “mid-length” region where the tube potential VCS is flat. In this region, we have found
that there is essentially perfect agreement between the values of VCS calculated by the “infinite-tube” method
(1), and by an exact 2-D solution [6], at least under the equilibrium conditions tested thus far. The energy
band diagram for a variety of bias conditions is shown in Fig. 2. Note the VDS-dependence of VCS and of the
barrier shapes.
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Figure 2: Conduction energy band diagram for var-
ious bias conditions.
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Figure 3: Electron distribution in the “mid-length” of the
tube as a function of VDS for VGS = 0.5 V.

Electrons from the source and drain reservoirs are drawn into the tube by tunneling through, and thermionic
emission over, the potential barriers at the contacts. This distorts the injected electron distributions from
their equilibrium forms. The total distribution within the tube is determined by the action of reflections
at the Schottky barriers on the injected distributions. When VDS = 0 this action produces an equilibrium,
Fermi-Dirac distribution, as can be seen in Fig. 3. As VDS increases, there is less injection from the drain, and
less reflection from the diminishing “spike” at the drain. Thus, the backward-directed part of the distribution
starts to disappear, and the forward part assumes a definitely non-equilibrium shape, with a bulge at the
kinetic energy corresponding to that of the maximum tunneling flux.

The drain I-V characteristics are shown in Fig. 4. The saturation current at VGS = 0.5 V is around 1 µA,
which is not inconsistent with values emerging from prototype devices [12]. A revealing comparison with
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Figure 4: Drain current-voltage characteristics.
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Figure 5: Comparison of drain current-voltage char-
acteristics at VGS = 0.5 V. The solid line is this work;
the dashed line is using the model of Ref. [9].

earlier predictions is shown in Fig. 5. Note how the present model indicates a considerably larger saturation
voltage VDS,sat. This is because the reflecting action of the potential “spike” at the tube-drain interface delays
the realization of the full saturation current. Also, note how the new model predicts an ID,sat that is about
one-order of magnitude less than that of the model of Guo et al. [9]. This is indicative of the importance of
accounting for the restrictive action that the Schottky barriers at the source and drain impose on the current.

4. CONCLUSIONS

From this work on the modeling of coaxial, carbon nanotube FETs, it can be concluded that the Schottky
barriers at the source and drain contacts play a dominant role in determining the I-V characteristics of the
transistors. The model presented here represents a significant step towards producing a compact model for
these promising new nano-devices.
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