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a b s t r a c t

New results are added to a recent critique of the high-frequency performance of carbon nanotube field-
effect transistors (CNFETs). On the practical side, reduction of the number of metallic tubes in CNFETs
fashioned from multiple nanotubes has allowed the measured fT to be increased to 30 GHz. On the the-
oretical side, the opinion that the band-structure-determined velocity limits the high-frequency perfor-
mance has been reinforced by corrections to recent simulation results for doped-contact CNFETs, and by
the ruling out of the possibility of favourable image-charge effects. Inclusion in the simulations of the fea-
tures of finite gate-metal thickness and source/drain contact resistance has given an indication of likely
practical values for fT. A meaningful comparison between CNFETs with doped-contacts and metallic con-
tacts has been made.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

This invited paper provides an opportunity to update a critique
of the high-frequency performance of CNFETs presented at ESSD-
ERC-07 [1]. The focus is on the short-circuit, common-source,
unity-current-gain frequency, fT. The existing measured data is col-
lected, and a new record value is reported [2]. The existing simula-
tion results for Schottky-barrier (SB) CNFETs are collected, and
grouped such that the effects on fT of the following factors can be
clearly seen: oxide permittivity, tube chirality, extrinsic capaci-
tance, contact size and resistance, phonon scattering. New simula-
tion results for doped-contact n–i–n CNFETs are added to the data
presented in Ref. [1]; they show the effect on fT of: tube chirality,
gate length, gate-metal thickness, and contact resistance. Impor-
tantly, correction of some earlier data, which suggested an extraor-
dinarily high fT capability [3,4], has been noted [5].

It is now observed that all the simulation results for both SB-
and doped-contact-CNFETs fall below the limit imposed by the
propagation velocity of electrons in the gated region of the nano-
tube [6]. This may seem like an obvious result; however, its appli-
cation to nanoscale FETs needs to be re-asserted for at least two
reasons: firstly, to dispel doubts caused by earlier simulation re-
sults [3,4]; secondly, to re-affirm that ‘‘image-charge” effects,
which can lead to signal delay times being shorter than propaga-
tion delay times in field regions of bipolar transistors, are not sig-
nificant in nanoscale FETs [7], even though a pronounced field can
exist in the gated region of doped-contact CNFETs [8].
ll rights reserved.
2. Experimental results

The low current-drive and high input/output impedance of
single CNFETs make it difficult to perform direct measurements
of high-frequency electrical properties, at least when using
instrumentation based on a reference impedance of 50 X. In order
to make a direct measurement of a recognized high-frequency
figure-of-merit, such as fT, it has been realized that CNFETs
assembled from multiple nanotubes must be employed [2,9–11].
Such measurements are in their infancy, and problems of non-
parallel nanotubes, the presence of some metallic nanotubes,
and excessive gate overlap capacitance need to be addressed.
However, progress is being made, and the highest fT recorded
thus far, after de-embedding, is 30 GHz [2]. The experimental
data is shown in Fig. 1; there is some dependence on gate length
LG, which is indicative of the success of the de-embedding proce-
dures employed to negate the effect of the pad parasitics. The fig-
ure also shows the gate-length dependence of fT, as predicted in
the ‘‘ultimate” limit of the signal delay being determined solely
by the propagation of electrons through the gated portion of
the nanotube [6]. Satisfaction of this condition is equivalent to
having no charge change (capacitance) associated either with
regions of the CNFET external to the gated-portion, or with para-
sitic structures. Clearly, such an ideal situation cannot be attained
in practice, but the comparison emphasizes that effort should be
put into making measurements on structures using shorter nano-
tubes. Certainly, as Fig. 1 also shows, shorter channel lengths
or basewidths have been employed to obtain record fT values
for other types of transistor: Si MOSFETs (330 GHz [12]) and
InP/InGaAs HBTs (710 GHz [13]).
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Fig. 1. Experimental data from high-frequency transistors. CNFETs – squares [2,9–
11]; SiCMOS – circle [12]; HBT – diamond [13]; and the ‘‘ultimate” curve is from Eq.
(1).
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Fig. 2. Coaxial Schottky-barrier CNFET with wrap-around gate, showing some of
the pertinent structural parameters [20].
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The ultimate limit, referred to above, proposes

2pfT;ultimate ¼
vb;high

LG
; ð1Þ

where vb,high is the maximum, band-structure-limited velocity that
can be attained. In the zig-zag nanotubes considered here, the value
of vb,high depends on the choice of the overlap parameter used in the
tight-binding approximation to get the band structure. Here we use
2.8 eV, which gives the maximum velocities listed in Table 1 for var-
ious tubes. Note that the maximum propagation velocity in the car-
bon nanotubes is attained around 1 eV above the edge of the first
conduction sub-band, and, consequently, is only likely to be reached
by electrons injected into a region of high electric field. The ‘‘ulti-
mate” line in Fig. 1 is drawn for vb,high = 8.8 � 105 m/s: this value
gives a convenient figure for fT,ultimate in THz of 140/LG, with LG in
nm. This number is indicative of a fundamental limit, as opposed
to a phenomenological limit, for which one proposed value is 80/
LG [16].

3. Simulation results

Detailed theoretical analyses involve the self-consistent solu-
tion of the equations of Schrödinger and Poisson, usually under
the quasi-static approximation [17], which is appropriate as fT is
a parameter attained by extrapolation from lower frequencies.
Table 1
Maximum band-structure-limited velocity, and the energy above the edge of the first
conduction sub-band at which it is attained

Material Chirality Bandgap
(eV)

Evb;high � EC

(eV)
Maximum velocity
(105 m/s)

C NT 10,0 0.98 1.22 9.1
C NT 11,0 0.95 1.06 7.5
C NT 13,0 0.76 1.11 9.1
C NT 14,0 0.74 1.00 7.9
C NT 16,0 0.62 1.03 9.1
C NT 17,0 0.61 0.96 8.1
C NT 19,0 0.52 0.96 9.1
C NT 20,0 0.51 0.89 8.2
C NT 22,0 0.45 0.90 9.1
Si NW 2.85 �0.6 �5.8
InAs NW 0.48 �0.18 �4.5

The Si data is for a [100] nanowire of diameter 1.36 nm, as inferred from data in
Ref. [14]. The InAs data is for a [100] nanoribbon of cross-section 13 � 13 nm2, as
inferred from data in [15].
Methods involving either an effective-mass wave equation, or a
Hamiltonian based on atomistic considerations, have been em-
ployed, and, under suitably low-bias conditions, should give simi-
lar results [18], provided the simulation space is properly bounded
[19].

The extrapolated fT is given by

2pfT ¼
oID

oQ G
� gm

CGi þ CGe
; ð2Þ

where oID and oQG are changes in output (drain) current and input
(gate) charge, respectively, due to a change in gate-source voltage,
for example; gm is the transconductance, and CGi and CGe are contri-
butions to the total gate capacitance CGG arising from the region un-
der the gate (intrinsic), and the gate-electrode regions (extrinsic),
respectively.

3.1. Schottky-barrier CNFETs

Fig. 2 is illustrative of the coaxial, all-around-gate structure that
is usually used in simulations of SB-CNFETs [20]. The results that
have been obtained for simulation of SB-CNFETs are collected to-
gether in Fig. 3. The data labeled CGe comes from two devices of dif-
ferent gate length and underlaps [20,21]: for the LG = 2 nm case
(solid diamonds), the effect is large because of the small gate-
source underlap LuS (14 nm); in the LG = 5 nm case (open dia-
monds), increasing the separation of source and drain electrodes
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Fig. 3. Summary of simulation results for SB-CNFETs. Effect of various parameters
on fT: CGe [20,21]; oxide permittivity and nanotube chirality [22]; contact resistance
[23]; contact size [24]; gate-drain underlap [25]; phonon scattering [26]. Arrows
indicate increasing parameter.
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(LuS and LuD) to 24 nm mitigates the effect. The results shown are
for contact radii varying from that of the nanotube itself, to that
of the nanotube plus oxide and gate thicknesses [21]. The benefi-
cial effect of increasing LuD (from 5 to 25 nm) is also shown by
the solid-circle data at LG = 50 nm [25]. The open-circle data at
LG = 50 nm comes from a planar structure [24]; the degradation
of fT is again related to an increase in CGe, and is due to changing
the contact from that of a needle of radius equal to that of the
nanotube, to that of a metallic strip of width 8 lm. The latter
was the actual electrode structure of a high-performance DC device
[27], and emphasizes the need to develop finer contact arrange-
ments for HF devices. It is clear that CGe has a large effect on the
performance of these nanoscale transistors, and it must be in-
cluded in simulations if predictions of fT are to be meaningful [28].

The square data points at LG = 2 nm show the effect of increas-
ing �ox from 3.9 to 25 while keeping the insulator thickness fixed at
2.5 nm [22]. The point of these two simulations was to assess the
trade-off between increased CGi (there were no underlaps) and in-
creased gm due to the stronger electrostatic coupling between gate
and nanotube. Evidently, the effect of the capacitance is greater, so
fT decreased. For Schottky-barrier contacts representing palladium,
the barrier height for hole injection decreases as the nanotube chi-
rality (and diameter) increases [29]. This enhances gm, leading to
the improved performance shown in Fig. 3 on changing the chiral-
ity from (11,0) (diameter = 0.8 nm) through (16,0) to (22,0) (diam-
eter = 1.7 nm) [22]. Fig. 3 also shows the effect of considering the
actual resistance of the source and drain contacts. Such resistances
can be expected to be high when employing nanoscale needle con-
tacts. The results shown are for Rcontact increasing from zero
through 10–100 kX [23]. Similar degradations also apply to fmax

[30]. Phonon scattering could be important, at least in tubes of
length greater than about 10–20 nm, which is the mean-free-path
for optical phonons [26]. The effect is illustrated by the downward
shift of the ‘‘ultimate” line to that of the dashed line shown in Fig. 3
[26]. Phonon scattering leads to a build-up of charge in the chan-
nel, i.e. to an increase in CGi.

3.2. Doped-contact CNFETs

In addition to coaxial structures akin to those in Fig. 2, double-
gate structures, of the form shown in Fig. 4 [3,4], have been used in
the simulation of doped-contact-CNFETs. The results that have
been obtained for simulation of doped-contact-CNFETs are col-
lected together in Fig. 5. Earlier, very high, fT results for double-gate
Fig. 4. Doped-contact CNFET
structures [3,4] have now been corrected [5], bringing them into
good agreement with results from other workers [31]. All data
shown are for (11,0) nanotubes. Results for a coaxial geometry
using the same tube are also shown in Fig. 5 [32]. The slightly infe-
rior performance of the coaxial devices is due principally to the
increased capacitance that results from this geometrical arrange-
ment. The beneficial effect of increasing the chirality (from (11,0)
through (16,0) to (22,0), see the diamond data points) is due to
the associated reduction in bandgap (see Table 1), which lowers
the potential barrier at the doped-source/intrinsic-gated-region
interface, thereby improving the transconductance.

Most simulations are performed with an essentially zero-thick-
ness gate electrode. This is convenient from a numerical analysis
point-of-view; it reduces the simulation space required to contain
source and drain contacts that are sufficiently long to ensure
charge neutrality at their ends [33]. However, it is an unrealistic
situation, which is also impractical from the point-of-view of
obtaining a high fmax [30]. Fig. 5 (square data points) shows the ef-
fect of increasing the gate-metal thickness from 0.1 nm through 1
to 10 nm. Even though the last value may still be low for a practical
device, it does indicate the deleterious effect of the associated in-
crease in CGe. If a finite contact resistance is added to this, fT is fur-
ther reduced: Fig. 5 (cross data points) shows the effect of 5 and
50 kX of resistance in the source and drain contacts. The latter
may not be unreasonable for nanoscale contacts, and it would
with double-gate [3,4].
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Fig. 6. Regional signal delay for doped-contact n–i–n CNFETs with gate-metal
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Table 2
Comparison of small-signal parameters of SB- and doped-contact-CNFETs having the
properties listed in the text

Contacts gm

(lS)
CGG

(aF)
fT

(THz)
gds

(lS)
CGD

(aF)
Rc

(kX)
‘‘Extrinsic” fT

(THz)

Pd 19.6 1.47 2.1 1.80 0.66 50 1.0
C (n-type) 59.5 1.37 6.9 0.97 0.54 50 2.0

CGG is the total gate capacitance, CGD is the gate capacitance due to a change in VDS,
gds is the drain conductance, Rc is the resistance of each of the source and drain
contacts. The extrinsic fT is computed from Ref. [30].
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bring the estimated value of fT down to levels that have actually
been realized in another type of transistor [13].

The importance of the gate-metal thickness is emphasized in
Fig. 6, which breaks down the overall source-drain signal delay
sSD into regional delays [8]

sSD ¼
XLCNQ

r

sr ¼
1
oI

XLCNQ

r

Z
r

oQðzÞdz; ð3Þ

where LCNQ is the length of the nanotube over which there is a
change in charge, oQ(z) is the change in local charge density inte-
grated over energy, and oI is the change in drain current. Fig. 6 indi-
cates how LCNQ is much enlarged by increasing the gate-metal
thickness.

3.3. Comparison of doped-contact- and SB-CNFETs

Figs. 3 and 5 display, to the best of our knowledge, all the sim-
ulation results that have been reported thus far for fT in CNFETs.
However, a comparison between SB- and doped-contact-devices
is not easily made from this collection because of the differing de-
vice properties that have been used, e.g. device chirality, oxide
thickness, voltage bias, and because of the different simulators that
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Fig. 7. Comparison of regional signal delays for SB- and doped-contact-CNFETs with
properties described in the text.
have been employed. To provide a meaningful comparison, we pro-
vide Fig. 7 and Table 2, which compare the salient high-frequency
parameters for the two types of CNFET with common parameters
of: chirality (19,0), LG = 7 nm, gate-metal thickness = 5 nm, oxide
thickness = 2 nm, source/drain underlap = 5 nm, contact lengths =
45 nm, jVGSj = 0.6 V, jVDSj = 0.7 V. The SB-CNFET used Pd contacts,
whereas the doping density in the doped-contact case was
5 � 108/m. The parameter values were chosen in accordance with
realizing good high-frequency performance. Note that different
parameter values would be needed for a CNFET more suited to
high-speed digital-logic applications [34,35], in particular: higher
bandgap to produce a reasonable ON/OFF-current ratio, and a
longer gate length to reduce source-drain tunneling.

The Table highlights the significant difference in transconduc-
tance between the two devices; this is due to the reduced quan-
tum-mechanical reflection of electrons at the injecting source/
intrinsic-nanotube interface. The capacitances are only slightly
higher in the SB case, but, when taken together with the lower cur-
rent, of which the lower gm is a manifestation, they result in signif-
icantly higher regional signal delays, as Fig. 7 shows.

4. Discussion

All of the data presented in this review now falls below the
‘‘ultimate” propagation limit [6]. This should now remove specula-
tion about how extraordinarily high values of fT might arise in
nanoscale FETs due to fortuitous variations in local charge densi-
ties [1,8]. The possibility of the propagation velocity in regions of
high field, such as can exist in the channel of short FETs, being ex-
ceeded by the signal velocity has also been ruled out [7]. Essen-
tially, this is because any local changes in charge in the nanotube
are imaged on the gate electrode, thereby contributing wholly to
the change in input charge. The near one-to-one correspondence
of nanotube charge and gate charge arises because of the two-
dimensional geometry and the close proximity of the gate elec-
trode to the nanotube. In a bipolar transistor, which is essentially
a one-dimensional device, the electrostatics is much simpler, and
it is easily shown that not all of the charge change within the semi-
conducting regions is imaged on the input electrode (the base)
[36]. This can lead to the signal delay in the base-collector space-
charge region being less than the propagation delay in that region.

Inevitably, when considering the performance of a new field-ef-
fect transistor, comparisons will be made with Si MOSFETs. This re-
view has suggested that the signal delay in the non-neutral regions
of FETs is unlikely to be less than the band-limited propagation de-
lay. Thus, a relevant question is: how does the band-limited prop-
agation velocity vband for carbon nanotubes compare with that in
nanoscale Si structures? The result quoted in Table 1 suggests that
carbon nanotubes have a slight advantage as regards the maximum
value of vband, at least when compared to the particular Si nanowire
cited. Guo et al. have suggested that vband for an ultra-thin body Si
MOSFET is about 50% of that in a CNFET [24]. Thus, the ultimate fT

in CNFETs would appear to be only slightly greater than might be
achievable with nanoscale Si FETs.
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These comparisons are for ballistic transport, and it may be ar-
gued that attainment of ballistic transport is more likely in a CNFET
than in a Si MOSFET, primarily because of the relatively long mean-
free-path associated with phonon scattering in carbon nanotubes,
but also because of the more one-dimensional form of a tube, as
opposed to that of a wire or a ribbon. However, it seems unreason-
able to ignore the effect of surface scattering, which greatly affects
the mobility in present Si MOSFETs. The nature of the oxide/semi-
conductor interface is different in the two devices, of course, but
some penetration of the electron wavefunctions into the oxide of
a CNFET is to be expected. There is presently no information on
this, to the authors’ knowledge.

We have shown that when the practical features of gate-metal
thickness and contact resistance are included in the simulations,
then fT for CNFETs can drop into the region of 700–800 GHz. This
is about a factor of 2 higher than values that have actually been
realized already in planar Si MOSFETs [12]. Add this fact to the
need to arrange CNFETs in parallel to improve the current drive,
and one wonders whether the small material superiority of vband

and the geometrical superiorities of a wrap-around gate and a
one-dimensional structure, will be enough to combat the match-
less technological superiority of silicon FET processing. Perhaps
further research and development in high-frequency CNFETs
should be directed towards biological applications, for which sili-
con-based electronics may be less compatible?

5. Conclusions

From this review of the high-frequency performance of CNFETs
it can be concluded that:

� experimental fT values should improve by employing multiple,
parallel nanotubes of shorter length than used hitherto;

� theoretically, the effects on fT of nanotube chirality (diameter),
oxide permittivity, gate-source and gate-drain underlap, source-
and drain-electrode diameter and resistance, gate-metal thick-
ness, and phonon scattering are well understood;

� doped-contact CNFETs offer better performance capability
than Schottky-barrier devices because of their superior trans-
conductance;

� the presently available simulation data indicates that the signal
delay time is not less than the propagation time. This suggests
that the band-structure-determined velocity is a key factor in
assessing the high-frequency prospects for a FET material. The
slight advantage that a carbon nanotube has over silicon in this
regard may not be sufficient to offset the technological superior-
ity of Si FETs when it comes to processing practical devices.
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