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ABSTRACT

Community detection from networks is an emerging topic in modern network science. Communities are defined as clusters
of nodes or vertices that share higher concentration of edges among themselves than sharing with other nodes in the network.
Community structure is an important property of real systems and detecting communities enables us to better understand the
underlying structure of the system. The most widely used method for community detection is modularity maximization which
works by optimizing a quality function named modularity of the network partition. However, traditional modularity-based ap-
proaches generally have a resolution limit that prevents them from detecting communities that are sufficiently smaller compared
to the whole network. In this work, we target to overcome the resolution limit of the modularity function by incorporating a
weight term in the modularity formulation. We propose a community detection approach based on a community quality metric,
named as weighted modularity. We validate the performance of the proposed method in several benchmark networks and show
that the proposed method is promising in different settings.

1. Introduction

The study of networks has received much attention over the
past few years and many researches currently focus on develop-
ing and applying algorithms targeted to analyze network struc-
ture in the fields of natural, social and computer sciences. Net-
works consist of nodes or vertices and edges or links, where
typically an edge connects a pair of nodes. An important fea-
ture of the networks representing real systems is the inhomo-
geneity in their distribution of edges. The inhomogeneous dis-
tribution of the number of edges or the degree distribution of
real networks reveals the existence of communities, where ver-
tices are organized into groups and the edges are organized in
high concentration within groups and in low concentration be-
tween these groups. This feature of real networks is known
as community structure (Girvan and Newman, 2002). Many
systems show community structures such as scientific collab-
oration network (Newman, 2001), online friendship network
(Traud et al., 2011), citation network (Rosvall and Bergstrom,
2008), metabolic network (Holme et al., 2003) etc.
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Community detection aims to identify the sub-groups, and
in some cases their hierarchical organizations, within a net-
work based on the information encoded in the graph topol-
ogy. Current approaches for detecting communities can be
divided into a few major categories (Fortunato, 2010; Fortu-
nato and Hric, 2016): divisive algorithms that target to remove
inter-community edges (Girvan and Newman, 2002; Radic-
chi et al., 2004); spectral clustering methods based on eigen-
vectors of graph representative matrices (Donetti and Munoz,
2004; Jin, 2015); methods based on statistical inference that fits
a generative network model to the data (Guimerà and Sales-
Pardo, 2009; Karrer and Newman, 2011; Peixoto, 2014); meth-
ods based on optimization of a quality functions (Newman,
2004; Huang et al., 2011; Lancichinetti et al., 2011); and meth-
ods based on dynamics (Rosvall and Bergstrom, 2008; Pons
and Latapy, 2005). Among these methods, the modularity
maximization-based approach proposed by Newman (2004) is
by far the most popular method for community structure de-
tection. This method works by maximizing a partition quality
measure named modularity which is defined as the difference
between the internal link density of a community from what
one expects to find within the same group of vertices in a ran-
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dom graph. The reason for the popularity and wide-acceptance
of this method lies partly in its ability to automatically detect
the number of communities. In addition, modularity is the best-
known quality function and it embeds the fundamental ingre-
dients of network community structure in its compact form -
from the definition of community as a sub-graph with high in-
ternal density, to its comparison with a similar random network.
Hence it generates an expression of the ’distance’ of the com-
munity structure present in the network from a random network
without any community structure. Therefore there has been ex-
tensive research on modularity-based techniques. Variants of
the method are emerged from other choices of the null model
to generate the random graph (Barber, 2007; MacMahon and
Garlaschelli, 2013; Traag and Bruggeman, 2009) and different
choices of the optimization techniques (Blondel et al., 2008;
Guimera et al., 2004; Clauset et al., 2004; Newman, 2006;
Danon et al., 2006; Pujol et al., 2006; Wakita and Tsurumi,
2007; Arenas et al., 2008).

Despite its popularity, modularity-maximization based ap-
proaches suffer from a resolution limitation that prevents them
from detecting communities which are comparatively small
with respect to the network as a whole, even when they are
well-defined complete subgraphs like cliques (Fortunato and
Barthelemy, 2007). However, real networks usually contain
communities which are very diverse in sizes (Clauset et al.,
2004; Danon et al., 2005; Palla et al., 2005; Guimera et al.,
2003). Hence many small communities remain undetected with
modularity-based approaches. Moreover, modularity-based ap-
proaches are extremely sensitive to individual connections- if
two complete subgraphs are connected to each other with a few
edges, the modularity-based approaches tend to cluster them
together (Fortunato and Barthelemy, 2007). To overcome these
limitations of modularity maximization methods, several multi-
resolution approaches are proposed in the literature. One ap-
proach considers a hierarchical subdivision of detected commu-
nities by repeated application of the modularity maximization
algorithm (Fortunato and Barthelemy, 2007; Ruan and Zhang,
2008). However, the communities detected using this approach
is not consistent with each other since different null models are
used to sub-divide each of the communities. Moreover, we need
to define the stopping criteria to determine when to stop the al-
gorithm. Another approach is to incorporate a tunable resolu-
tion parameter in the definition of modularity (Reichardt and
Bornholdt, 2006; Arenas et al., 2008). By tuning the parameter
one can detect communities of different sizes - going from very
large to very small communities. However, for real networks,
one usually has no information about the underlying commu-
nity sizes, and hence tuning the parameter to the actual scale
of the communities may not be feasible. Another approach is
to include external degrees of communities in the definition of
modularity (Li et al., 2008; Chen et al., 2015). Besides being
NP-hard, the method proposed in (Li et al., 2008) was shown
to be affected by a resolution limit and a tunable parameter was
proposed, and methods proposed in (Chen et al., 2015, 2014)
were shown to cluster unlinked nodes together (Chen et al.,
2017). Therefore there is still a need to develop new approaches
to overcome the limitations of modularity maximization meth-

ods.
In this work, to solve the aforementioned limitations of mod-

ularity maximization based community detection methods, we
propose a community detection approach based on a modifica-
tion of the traditional modularity metric. The proposed com-
munity quality metric is named as weighted modularity, and
it does not contain any tunable parameters. Hence it is appli-
cable for real networks where communities of different sizes
co-exist and the number and size of communities are unknown.
We show that by maximizing the weighted-modularity we can
detect communities of different sizes. We propose a commu-
nity detection approach by optimizing the weighted modularity
metric and show that the proposed approach outperforms other
modularity-based approaches on benchmark graphs.

2. Method

In this section, we describe the traditional modularity formu-
lation and the motivation for proposing the weighted modular-
ity. We then propose the weighted modularity formulation and
prove that the metric does not suffer from resolution limitation.
We then finally present a community detection approach based
on the maximization of the weighted modularity metric.

2.1. Traditional Modularity
The idea of modularity was originally proposed by Newman

and Girvan (2004) as a quality function for communities and is
defined as the difference between the fraction of edges that ex-
ist within the members of a community and the expected such
fraction if the edges were distributed at random. Modularity is
positive if the number of edges within a community exceeds the
expected such fraction in a random network. If an unweighted
network with N nodes and L edges are divided into c commu-
nities, then mathematically the network modularity for this par-
tition, Q, can be expressed as:

Q =
1

2L

∑
x,y

(Axy − Pxy) δ(Cx,Cy) (1)

where A is the adjacency matrix and Axy = {0, 1} where 1 de-
notes the existence of an edge between nodes x and y. Pxy is
the expected number of edges between x and y if the edges are
distributed at random, Cx and Cy are the communities of x and
y respectively and the δ function is defined as:

δ(Cx,Cy) =

1, if Cx = Cy

0, otherwise
The expected number of edges in a random network is gener-

ally computed by using the configuration model and is defined
as Pxy = kxky/2L where kx and ky are the total degrees of ver-
tices x and y. Hence Eq. 1 can be written as:

Q =
1

2L

∑
x,y

(
Axy −

kxky

2L

)
δ(Cx,Cy). (2)

Since the only contribution to the modularity term comes
from the pair of vertices that belong to the same community,
the total modularity of the network at this particular partition
is expressed as a summation of the modularity term for each
community as follows:
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Fig. 1. Illustration of a representative network where the modularity max-
imization method fails to detect underlying communities. (a) Ring of z-
cliques, where each clique represents a community. The dotted line shows
the communities detected by traditional modularity-based methods. (b) A
realization of ring of cliques network with 32 vertices divided into eight
communities. Each community is a clique of four vertices where each ver-
tex is connected to all other vertices of its community. Each 4-clique is
connected with its neighbouring cliques with a single edge.

Q =

c∑
i=1

[ li
L
−

( di

2L

)2 ]
=

c∑
i=1

(eii − a2
i ) =

c∑
i=1

qi (3)

where li is total number of edges within community-i and di is
the sum of degrees of vertices in community-i. Hence eii = li/L
is the fraction of edges within community i, and ai = di/2L
is the fraction of edges with at least one end in community-i.
Modularity maximization based methods target to find such a
partition of the network for which the modularity in Eq. 3 is
maximum.

2.2. Weighted Modularity
The modularity maximization methods suffer from a reso-

lution limit. A well-known example where modularity-based
methods fail to detect true communities is shown in Fig. 1
(Fortunato and Barthelemy, 2007). The network consists of
identical z-cliques where the cliques are connected only by sin-
gle edges. Although the z-clique communities are well-defined
complete subgraphs where each of the z nodes are connected
with all other nodes inside its community, the traditional mod-
ularity maximization based methods fail to detect such com-
munities. Instead, the methods prefer to partition the network
where a group of cliques are put together to form a community,
as shown by the dotted line in Fig. 1.

The classical modularity of a network at a particular parti-
tion is defined as the summation of the modularity term of all
of its communities, qi, as seen from Eq. 3. The total modu-
larity formula treats contributions of all communities equally.
Hence a modularity contribution of qi gets the same weight ir-
respective of whether it comes from a strongly connected well-
separated community as in Fig. 1, or from a weakly connected
community. This aspect of Eq. 3 favours joining two small
communities together to achieve a higher Q, especially when
the size of the true community is small compared to the whole
network. When the community sizes falls below a resolution
limit with respect to the whole network, even a single edge trig-
gers an increase in modularity and the traditional modularity
maximization method combines communities together to form
a bigger community, even when the true communities are well-
separated and fully connected sub-graphs.

To avoid this resolution limitation, we propose a community
quality metric by incorporating a weight term in the modularity
formula that measures how strong a community is. We name
the proposed metric Weighted Modularity and define the metric
as:

Qw =

c∑
i=1

λiqi =

c∑
i=1

λi(eii − a2
i ) (4)

where λi = 1 +
2li

ni(ni − 1)
(5)

Here Qw is the weighted modularity of the network and ni is
the total number of nodes within community-i. The weight term
λi represents how strong a community is in terms of its conduc-
tance, i.e. the ratio of the edges within a community to the
maximum number of possible edges. The term λiqi represents
how community-like each cluster is. Incorporating λ in the
modularity formula ensures the modularity contribution from
densely connected communities are given more weight whereas
the same modularity contribution coming from a loosely con-
nected community is weighted less. λ denotes the strength of
the community with respect to the ideal community structure,
where every vertex is connected to every other vertex in its com-
munity. Note that the traditional modularity term qi does not
consider the number of nodes of a community, hence if two
communities with n1 and n2 nodes have the same modularity
where n1 < n2, the traditional modularity treats them equally,
q1 = q2. Since larger communities are more likely to have
higher modularity values, the traditional modularity formula
favours larger communities over smaller communities. How-
ever in the weighted modularity formula the number of nodes
ni is incorporated into the weight term, hence using weighted
modularity ensures λ1q1 > λ2q2, which eliminates merging two
strongly connected smaller communities. If we set λi = 1, Eq.
4 becomes the traditional modularity equation.

2.3. Proof of Solving Resolution Limitation

In this section, we mathematically prove that the proposed
weighted modularity metric, Qw solves the resolution limita-
tion on the examples from (Fortunato and Barthelemy, 2007).
Here we prove that maximizing Qw neither divides a complete
subgraph into two or more parts, nor it merges two or more
adjacent complete subgraphs.

2.3.1. Proof : Weighted Modularity Does Not Divide Cliques
Given a clique with m nodes where m ≥ 3 let us consider a

partition P that divides the clique into two communities c1 and
c2 with nodes m1 and m2. Let Qs

w be the weighted modularity
when the whole clique is considered a single community, and
Qp

w be the weighted modularity of the partition P. We have to
show that higher value of Qw is achieved when the clique is
considered a single community, or Qs

w > Qp
w. Here the total

number of edges in the network is, L = m(m − 1)/2 and the
number of edges between c1 and c2 is m1m2. By definitions,

Qs
w = 0 and Qp

w =
∑2

i=1 λi

[
li
L −

(
di
2L

)2 ]
, where λi, li and di

denote the λ, l and d terms of community-i as defined in Table.
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1. For community i = 1 generated by dividing a clique, λ1 = 2,
l1 = m1(m1 − 1)/2, d1 = 2l1 + m1m2. Similar equations can be
derived for community i = 2. By replacing this values in Qp

w
we get (see appendix for details) :

Qp
w =

−4m1m2

m2(m − 1)
< 0 f or m ≥ 3 (6)

So, Qp
w < Qs

w. Hence for any clique, the maximum weighted
modularity will reach its maximum value when the whole
clique is one single community, and maximizing weighted
modularity will not divide the cliques.

2.3.2. Proof : Weighted Modularity Does Not Merge Cliques
In this section we prove that maximizing weighted modular-

ity does not merge adjacent complete subgraphs as shown in
Fig. 1. Given a ring of n ≥ 3 cliques where each clique has
m ≥ 3 nodes and m(m − 1)/2 edges, the total number of nodes
and edges in the network is N = nm and L = nm(m − 1)/2 + n,
where cliques are connected with adjacent cliques with a sin-
gle edge. Let Qs

w be the weighted modularity of the partition
Ps with n-communities when one single clique forms a single
community, and Qp

w be the weighted modularity of the parti-
tion Pp with n/2-communities when two adjacent cliques are
merged into one community as depicted in Fig. 1. We have to
show that, Qs

w > Qp
w, or

Qs
w − Qp

w > 0 (7)

Let λs, qs and λp, qp be the λ and q terms of the communities
of the partitions Ps and Pp respectively. By definition, Qs

w =

nλsqs and Qp
w = (n/2)λpqp. It can be written as:

λs = 2; nqs = 1 − 2
m(m−1)+2 −

1
n

λp = 3
2 −

m−2
2m(2m−1) ;

n
2 qp = 1 − 1

m(m−1)+2 −
2
n

By using these values the left side of Eq. 7 can be written as
(see appendix for details):

Qs
w − Qp

w = 0.5 +
m3 − 13m2 + 8m − 2

2m(2m − 1)[m(m − 1) + 2]
+

2[(m − 1)2 + m]
nm(2m − 1)

(8)

The first and third terms of Eqn. 8 are always positive for
m ≥ 3. The second term reaches its lowest value at m = 3
and the lowest value is −0.2833, which when combined with
the first term of the equation, generates a positive value. Hence
overall, Qs

w − Qp
w > 0, for all m ≥ 3, n ≥ 3. Since inequality

7 holds, maximizing weighted modularity will not merge adja-
cent cliques, and it will always detect the smallest clique as a
single community.

2.4. Community Detection by the Maximization of Weighted
Modularity

In this section, we describe a community detection method
by maximizing the weighted modularity. We propose an ag-
glomerative clustering approach based on greedy optimization
to maximize weighted modularity. The process starts by putting
each node of the network into their own separate communities.
So at the first step we start from N number of communities,
where N is the total number of nodes in the network. Then the

Table 1. Definition of variables.
N Total number of nodes in the network
L Total number of edges in the network
c Total number of communities
ni Total number of vertices in community-i
di Sum of degrees of vertices in community-i
li Total number of edges within community-i

lext
i j Total number of edges between communities i and j
qi Modularity term of community-i. qi = [(li/m) −

(di/2m)2]
λi Weight term for community-i as defined in Eq.5
Qw Weighted modularity as defined in Eq.4
nc×1 Community size vector with elements [n1, n2, .., nc]T

dc×1 Internal degree vector with elements [d1, d2, .., dc]T

lc×1 Internal edge vector with elements [l1, l2, ..., lc]T

lc×c
ext External edge matrix with elements {lext

i j
Qc×1 Modularity vector with elements [q1, q2, ..., qc]T

Λc×1 Weight vector with elements [λ1, λ2, ..., λc]T

CN×1 Community label vector

increase in weighted modularity is calculated if any two com-
munities are merged. Finally, a new community is formed by
merging those two communities for which the increase in terms
of weighted modularity is maximum. At each iteration step,
this process is repeated and communities are merged repeatedly.
The process terminates when no increase in weighted modu-
larity is possible, i.e. no increment in weighted modularity is
observed by merging any two of the remaining communities.

We maintain a few variables and matrices to compute the
changes in weighted modularity efficiently. The variables and
matrices are defined in Tab. 1. If community-i is merged with
community- j then the gain in weighted modularity can be ex-
pressed as:

∆Qw(i, j) = λcom × qcom − [λi × qi + λ j × q j] (9)

where qcom and λcom are the modularity and the weight term
for the new community generated by merging i and j. At each
iteration step, the maximum increase in terms of weighted mod-
ularity is calculated. Other variables for the new community are
calculated as follows:

ncom = ni + n j; dcom = di + d j; lcom = li + l j + lext
i j ;

λcom = 1 +
2lcom

ncom(ncom − 1)
; qcom =

lcom

m
−

(dcom

2m

)2 (10)

At each iteration step, we solve for the communities i and j
where merging the communities i and j generates the maximum
increase of weighted modularity: u, v = arg maxi, j ∆Qw(i, j).

We then update the matrices by removing the jth entries and
replacing the ith entries with the updated values, i.e., ni =

ncom, li = lcom, di = dcom, qi = qcom, λi = λcom. The pro-
cess terminates when no further increase in weighted modular-
ity is observed and the partition with the maximum weighted
modularity represents the detected communities. The greedy
optimization approach for community detection by maximizing
weighted modularity is outlined in Algorithm 1.

The community structure detected by the greedy optimiza-
tion can further be refined by applying a complete refinement
step at the end of the algorithm. The refinement approach is out-
lined in Algorithm 2. At the refinement step, weighted modu-
larity change is calculated if a node is moved to its neighbouring
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Algorithm 1 Community detection by maximization of
weighted modularity : greedy optimization
1: Input : Network, G
2: function Weighted Modularity Maximization(G)
3: Initialize : C = [1, 2, ..,N]T , c = N
4: Calculate : Λ, n, d, l, lext, Q and Qw
5: Set Qbest

w = Qw and Cbest = C
6: while c > 1 do
7: for i, j ∈ {1, · · · , c} ; i < j; lext

i j > 0 do
8:

u, v = arg max
i, j

∆Qw(i, j)

9: end for
10: ∆Qmax

w = ∆Qw(u, v)
11: Update : C,Λ,n,d, l, lext,Q
12: Qw = ΛT Q
13: if Qw > Qbest

w then
14: Qbest

w = Qw
15: Cbest = C
16: end if
17: end while
18: end function
19: Output : Cbest

vertices’ communities. If a vertex, u from community i = C[u]
is moved to the community j = C[v] of its neighbouring ver-
tex, v, the change in weighted modularity due to this movement
can be calculated from the changes in ni, n j and li, l j terms as-
sociated with communities-i and j. The change in weighted
modularity can be written as:

Qmove
u−>v = [λmove

i ×qmove
i +λmove

j ×qmove
j ]− [λi×qi +λ j×q j] (11)

where, Qmove
u−>v is the change in weighted modularity if node,

u is moved from its community-i to the community- j of node,
v. λmove and qmove denote the changed values of λ and q due to
this movement. This process is repeated for all pair of nodes,
and finally a node is moved to a new community for which the
maximum Qmove

u−>v is reached. This process is repeated until there
is no further increase in weighted modularity.

Algorithm 2 Community detection by maximization of
weighted modularity : refinement

Input : G, Cbest =Weighted Modularity Maximization(G)
2: function Complete Greedy Refinement(G, Cbest)

Calculate : Λ, n, d, l, lext, Q and Qw
4: Set Qbest

w = Qw , Qmove
w = 0

while 1 do
6: for u, v ∈ {1, · · · ,N} ; lext

uv > 0 do

ubest , vbest = arg max
u,v

Qmove
u−>v

8: end for
if Qmove

ubest−>vbest > 0 then . move u to the community of v

10: Cbest[ubest] = Cbest[vbest]
Update : Λ, n, d, l, lext, Q, Qbest

w
12: continue

else break
14: end if

end while
16: end function

Output : Cbest

3. Experimental Results

In this section, we report the performances of the proposed
community detection method for several benchmark networks
with known community structures. We compared the proposed
method with a widely used modularity maximization based ap-
proach by Clauset et al. (2004), which is a faster implementa-
tion of the traditional method (Newman, 2004) that has been
used to compare the performances of other modularity-based
algorithms in literature (Chen et al., 2014; Li et al., 2008; Chen
et al., 2015; Xiang et al., 2016). We also compared the pro-
posed method with a multi-resolution based modularity maxi-
mization approach proposed in Reichardt and Bornholdt (2006)
and a more recent method proposed in Chen et al. (2015) when-
ever the results are available. The generated partitions are com-
pared with the true communities using two widely used mea-
sures for comparing the performances of community detection
methods, namely normalized mutual information and varia-
tion of information. For two partitions of a network X with
nX communities and Y with nY communities, the normalized
mutual information (NMI) is defined as (Danon et al., 2005):
NMIX,Y = 2IX,Y/(HX + HY ), where X and Y denote the commu-
nity labels of the nodes in partitions X and Y respectively. IX,Y

is the mutual information between X and Y and HX and HY are
their entropy. The variation of information (VI) between parti-
tionsX andY is defined as (Meila, 2003): VIX,Y = HX|Y +HY |X ,
where HX|Y is the conditional entropy of X given Y and HY |X is
the conditional entropy of Y given X.

3.1. Planted `-Partition Networks

We evaluated the performance of the proposed method on
the benchmark networks generated with the planted `-partition
model (Condon and Karp, 2001). The model partitions a net-
work with N vertices into c equal-size groups with nc nodes
each. Edges are placed at random with a probability pin be-
tween vertices of the same community and with a probability
pout between vertices in different communities, where pin >
pout. The probabilities are calculated from the average de-
gree of the nodes k. We generated several networks by chang-
ing the average external degree of vertices, kout. In this work
we used a network with N = 128 nodes and divided them
into c = {8, 16, 32} communities. Tab. 2 reports the perfor-
mance of the weighted modularity method in terms of NMI
and VI for different settings. We report the average perfor-
mance over 20 realizations of each settings. As can be seen
from the table, for benchmark networks generated with planted
`-partition model, the proposed method performs better than
(Clauset et al., 2004) and generates comparable performance
with the other method. Note that the multi-resolution method
by Reichardt et al. (Reichardt and Bornholdt, 2006) has a tun-
able parameter that needs to be tuned to the resolution of the un-
derlying communities, and it cannot detect disconnected com-
munities (kout = 0). On the other hand, the proposed weighted
modularity method does not need to tune any parameter and still
generates comparable results with the other literature-based ap-
proaches. Moreover, as we increased the number of communi-
ties (for c = 16, 32), many communities became unconnected
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Table 2. Performances of the proposed method on networks generated with the planted `-partition model. The networks are generated with N = 128
number of nodes which are divided into different number of communities. The table reports the average normalized mutual information (NMI) and
variation of information (VI) over 20 realizations of the network.

c∗ k# k+
out

NMI VI
Weighted

Modularity
Clauset

et al. (2004)
Reichardt and

Bornholdt (2006)
Weighted

Modularity
Clauset

et al. (2004)
Reichardt and

Bornholdt (2006)

8 8

0 1.00 1.00 - 0.00 0.00 0.00
1 1.00 0.97 0.99 0.01 0.10 0.03
2 0.98 0.89 0.98 0.09 0.45 0.07
3 0.86 0.68 0.91 0.59 1.22 0.38
4 0.59 0.48 0.65 1.94 1.97 1.43
5 0.40 0.25 0.34 2.91 2.89 2.75
6 0.29 0.13 0.16 3.46 3.38 3.24
7 0.22 0.09 0.12 3.76 3.51 3.61
8 0.18 0.07 0.07 3.98 3.65 3.61

16 4

0 0.99 1.00 - 0.08 0.01 -
1 0.88 0.80 - 0.67 1.02 -
2 0.66 0.51 - 2.03 2.47 -
3 0.50 0.31 - 2.97 3.42 -
4 0.40 0.21 - 3.54 3.90 -

32 2
0 0.96 0.96 - 0.29 0.29 -
1 0.78 0.68 - 1.65 2.09 -
2 0.63 0.50 - 2.60 3.17 -

∗c–Number of Communities #k–Average Degree +kout– Average External Degree

and the multi-resolution method could not work in these set-
tings.

3.2. LFR Benchmark

The planted `-partition model divides the network into equal
size communities and the vertices also have approximately the
same degree. These two features are at odds with real networks.
A more realistic benchmark is the LFR benchmark networks
(Lancichinetti et al., 2008) where the heterogeneity of both the
degrees and the community sizes are taken into account that
is observed in networks of real systems. In LFR benchmark
networks the community sizes and the degrees are distributed
according to power law and hence the generated networks have
a combination of small and big communities which is observed
in real networks. We applied the proposed weighted modularity
method on LFR benchmark networks and compared its perfor-
mance with existing methods. Tab. 3 shows the performance
of the methods in terms of NMI and VI over different values of
the mixing parameter, µ. The LFR benchmark network reported
here has 1000 nodes with an average degree of 15 and a max-
imum degree of 50. The minimum and maximum community
sizes are 10 and 50 respectively. The degree sequence exponent
is 2 and community size distribution exponent is 1. The mixing
parameter, µ is varied from 0 to 0.5. The low values of the mix-
ing parameter denote strong community structure and higher
values denote the existence of weak communities. For each µ,
20 realizations of the LFR networks are generated and the aver-
age NMI and VI are reported. From the table, it is clear that the
proposed method gives consistent performance in practical net-
works, where communities of different sizes are present and the
degrees of nodes varies. The proposed method performs better
than (Clauset et al., 2004) and (Chen et al., 2015) and generates
comparable performance with (Reichardt and Bornholdt, 2006).
For the multi-resolution method in (Reichardt and Bornholdt,
2006) the parameter was tuned to the underlying resolution of
the communities.
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(a)
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(b)

number of cliques
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M
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(c)

Weighted Modularity
Clauset et al.
Reichardt et al.

Fig. 2. Performance of the proposed method on the ring of cliques net-
work. The plots show the performance of different algorithms in terms of
normalized mutual information over the total number of cliques, nc in the
network. (a) Performance for networks with 3-cliques. (b) Performance
for networks with 4-cliques. (c) Performance for networks with 5-cliques.

3.3. Ring of Cliques

One of the challenging networks where most modularity-
maximization based methods fail to detect the underlying
communities is the ring of cliques network (Fortunato and
Barthelemy, 2007). The ring of cliques network consists of
identical z − cliques where z-nodes of a community are con-
nected with each other, and each clique is connected with its
neighbours with only one edge, forming a ring-like structure as
shown in Fig. 1. We generated several ring of cliques networks
using cliques of three, four and five nodes and compared the
performances of the modularity-based algorithms in these net-
works. Fig. 2 report the performances of the proposed method
along with other literature-based methods against the total num-
ber of cliques in the network. Each point on these plots is
an average over 20 realizations of the networks. Although
cliques form the strongest possible community, the literature-
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Table 3. Performance comparisons between the proposed method and other literature-based algorithms on LFR benchmark networks. The table reports
the normalized mutual information (NMI) and variation of information (VI) for different values of the mixing parameter, µ.

µ∗
NMI VI

Weighted
Modularity

Clauset
et al. (2004)

Reichardt and
Bornholdt (2006)

Chen et al.
(2015, 2014)

Weighted
Modularity

Clauset
et al. (2004)

Reichardt and
Bornholdt (2006)

Chen et al.
(2015, 2014)

0.05 1.00 0.98 0.79 0.91 0.00 0.10 0.03 0.81
0.10 1.00 0.95 0.99 0.94 0.00 0.32 0.04 0.58
0.15 1.00 0.91 0.99 0.94 0.00 0.59 0.05 0.68
0.20 1.00 0.87 0.98 0.93 0.00 0.82 0.08 0.78
0.25 1.00 0.81 0.98 0.90 0.00 1.21 0.10 1.02
0.30 1.00 0.77 0.98 0.89 0.00 1.36 0.07 1.13
0.35 1.00 0.73 0.99 0.91 0.01 1.61 0.06 0.94
0.40 1.00 0.67 0.97 0.91 0.01 1.82 0.15 0.95
0.45 1.00 0.63 0.98 0.89 0.01 2.06 0.13 1.15
0.50 0.98 0.59 0.98 0.80 0.11 2.23 0.08 1.97

∗µ–Mixing Parameter

based methods fail to detect them when the total number of
cliques in the network increases, i.e. the network size increases,
as can be seen from Fig. 2. On the other hand, the proposed
method correctly identifies the true communities from the ring
of clique networks, even for the large graphs, hence NMI=1 for
all cases.

3.4. Real Networks

We applied the proposed method on real networks to ex-
tract community structures. The first network considered here
is the American college football network (Girvan and New-
man, 2002) that represents the network of United States football
games between Division IA colleges during the season of Fall
2000. The vertices represent teams and edges represent games
between the teams. The network consists of 115 nodes and 613
edges and it incorporates a known community structure. The
teams (i.e. nodes of the network) are divided into twelve con-
ferences where games are more frequent between teams that be-
long to the same conference. For this network we see the teams
played on average seven intra-conference games as opposed to
four inter-conference games, hence generating a higher number
of edges between nodes within the conferences. These confer-
ences are treated as ground truth communities for the network.
We applied our proposed method on this network to find com-
munities, and the proposed method achieved a normalized mu-
tual information of 0.91 when compared with the true commu-
nities. We applied literature-based approaches on the same net-
work and the NMI between the true communities and the com-
munities detected by (Clauset et al., 2004) and (Reichardt and
Bornholdt, 2006) was 0.70 and 0.88 respectively. The proposed
method detected twelve communities, which matches with the
number of underlying true communities, whereas the number
communities detected by (Clauset et al., 2004) and (Reichardt
and Bornholdt, 2006) was six and ten respectively.

Another network that we considered here is a network of 105
books about the United States politics (Krebs). The nodes rep-
resent books published around the time of the 2004 presidential
election and sold by the online bookseller Amazon. Edges rep-
resent frequent co-purchasing of books by the same buyers, as
indicated by the customers who bought this book also bought
these other books feature on the Amazon website. The books
were later labeled by Mark Newman into three categories as
liberal, conservative and neutral based on a reading of the de-
scriptions and reviews of the books posted on Amazon. The

application of the proposed method on this network revealed
seven communities as shown in Fig. 3. If we consider the three
categories as the true community structure of the network, the
NMI between the these communities and the communities de-
tected by the proposed method is 0.50. However we observed
better modular structure with the detected communities in terms
of average clustering coefficient and modularity. The modular-
ity value with the three categories is 0.42, whereas with the pro-
posed method it is 0.52, and average clustering coefficient with
the proposed method is 0.69, whereas with the three groups it
was 0.33. Hence with the seven communities, a higher mod-
ularity and clustering coefficient value is achieved, which de-
notes that the seven communities better represent the modular
structure of the network. We observed that the neutral books
are mainly divided into three communities. Careful observa-
tion of the network reveals that a few neutral-labeled nodes do
not share edges with other neutral nodes, and after applying the
proposed method these nodes are separated from other neutral-
labeled nodes and forms their own communities with a few lib-
eral and conservative nodes. We also observed existence of two
small communities inside the liberal and conservative groups.

4. Conclusion

In this paper we present a community detection method
based on the maximization of a community quality metric
named as weighted modularity. We demonstrated that exploring
weighted modularity can overcome the resolution limitation of
the traditional modularity based approaches for community de-
tection. We proposed a greedy optimization based approach to
detect communities from networks by maximizing the weighted
modularity. We applied the proposed method on several stan-
dard benchmark networks and compared the performance of the
method with other literature-based algorithms. We also applied
the method to real-world networks and reported the detected
communities.

The strength of the proposed weighted-modularity based ap-
proach to community detection is that it needs no prior knowl-
edge on the number and sizes of the underlying communities,
and hence it is applicable for real networks where prior infor-
mation about the communities may not always be available.
The method can successfully detect complete subgraphs from
any network, irrespective of the network size. One limitation of
the proposed method is that, in its current implementation, the
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Fig. 3. Community structure of the political books network. (a) Network
of books on US politics labeled as conservative (blue), neutral (orange) and
liberal (green). (b) Detected community structure. Existence of small com-
munities are observed inside conservative and liberal groups. The neutral-
labeled group is divided into two communities, and one group is formed
with few neutral, conservative and liberal nodes.

community detection approach is not able to assess the signif-
icance of the detected communities. Moreover, the proposed
method, in its current implementation, can detect communi-
ties from unweighted and undirected networks. The proposed
method can be further modified to detect communities from
other types of networks such as weighted, directed and/or bi-
nary networks. We plan to extend the method for these types of
networks in the near future.
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Appendix

A1. Proof : Weighted Modularity Does Not Divide Cliques
Given a clique with m nodes where m ≥ 3 let us consider a

partition P that divides the clique into two communities c1 and
c2 with nodes m1 and m2. Let Qs

w be the weighted modularity
when the whole clique is considered a single community, and
Qp

w be the weighted modularity of the partition P. We have to
show that higher value of Qw is achieved when the clique is con-
sidered a single community, or Qs

w > Qp
w. Here the total number

of edges in the network is, L = m(m − 1)/2 and the number of
edges between c1 and c2 is m1m2. Then by definitions,

Qs
w = 0 (1)

Qp
w =

2∑
i=1

λi

[ li
L
−

( di

2L

)2 ]
(2)

where λ1 and λ2 are the weight terms, l1 and l2 are the total
number of edges within community, d1 and d2 denote the sum
of degrees of vertices for community-1 and 2 respectively. For
community-1 and 2 generated by dividing a clique,

l1 = m1(m1 − 1)/2 (3)
l2 = m2(m2 − 1)/2 (4)

d1 = 2l1 + m1m2 (5)
d2 = 2l2 + m1m2 (6)

λ1 = 1 +
2l1

m1(m1 − 1)
= 1 +

2m1(m1 − 1)/2
m1(m1 − 1)

= 2 (7)

λ2 = 1 +
2l2

m2(m2 − 1)
= 1 +

2m2(m2 − 1)/2
m2(m2 − 1)

= 2 (8)

By replacing the values from Eqn. 3-8 in Eqn. 2 we get :

Qp
w = 2

[ m1(m1 − 1)
m(m − 1)

+
m2(m2 − 1)
m(m − 1)

−

(m1(m1 − 1) + m1m2

m(m − 1)

)2
−

(m2(m2 − 1) + m1m2

m(m − 1)

)2 ]
= 2

[ m1(m1 − 1) + m2(m2 − 1)
m(m − 1)

−

(m1(m − 1)
m(m − 1)

)2
−

(m2(m − 1)
m(m − 1)

)2 ]
= 2

[ m1(m1 − 1) + m2(m2 − 1)
m(m − 1)

−
m2

1 + m2
2

m2

]
=
−4m1m2

m2(m − 1)

For m ≥ 3, Qp
w = −4m1m2

m2(m−1) < 0.
So, Qp

w < Qs
w. Hence for any clique, the maximum weighted

modularity will reach its maximum value when the whole
clique is one single community, and maximizing weighted
modularity will not divide the cliques.

A2. Proof : Weighted Modularity Does Not Merge Cliques
In this section we prove that maximizing weighted modular-

ity does not merge adjacent complete subgraphs as shown in
Fig. 1. Given a ring of n ≥ 3 cliques where each clique has
m ≥ 3 nodes and m(m − 1)/2 edges and cliques are connected
with adjacent cliques with a single edge. Then the total number
of nodes and edges in the network is,

N = nm (1)
L = nm(m − 1)/2 + n (2)

Let Qs
w be the weighted modularity of the partitionPs with n-

communities when one single clique forms a single community,
and Qp

w be the weighted modularity of the partition Pp with
n/2-communities when two adjacent cliques are merged into
one community. We have to show that,

Qs
w > Qp

w (3)
or, Qs

w − Qp
w > 0 (4)

Let λs and λp be the weight terms, qs and qp be the modu-
larity term, ls and lp be the total number of edges within com-
munity, ds and dp denote the sum of degrees of vertices for the
communities of the partitions Ps and Pp respectively, where,

ls = m(m − 1)/2 (5)
lp = 2ls + 1 = m(m − 1) + 1 (6)
ds = 2ls + 2 = m(m − 1) + 2 (7)
dp = 2ds = 2[m(m − 1) + 2] (8)

By definition,

Qs
w = nλsqs (9)

and Qp
w = (n/2)λpqp (10)

Using Eqn. 1-2 and 5- 8, for partition Ps we can write:

λs = 1 +
2ls

m(m − 1)
= 1 +

m(m − 1)
m(m − 1)

= 2 (11)

nqs = n
[ ls

L
−

( ds

2L

)2]
=

m(m − 1)
m(m − 1) + 2

−
1
n

[m(m − 1) + 2
m(m − 1) + 2

]2

= 1 −
2

m(m − 1) + 2
−

1
n

(12)

And for partition Pp we can write:

λp = 1 +
2lp

2m(2m − 1)

= 1 +
m(m − 1) + 1

m(2m − 1)

=
3m2 − 2m + 1

m(2m − 1)

=
3
2
−

m − 2
2m(2m − 1)

(13)
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n
2

qp =
n
2

[ lp

L
−

( dp

2L

)2]
=

m(m − 1) + 1
m(m − 1) + 2

−
2
n

[m(m − 1) + 2
m(m − 1) + 2

]2

= 1 −
1

m(m − 1) + 2
−

2
n

(14)

Replacing values from Eqn. 11-12 in Eqn. 9:

Qs
w = 2 −

4
m(m − 1) + 2

−
2
n

(15)

Replacing values from Eqn. 13-14 in Eqn. 10:

Qp
w =

3
2
−

m − 2
2m(2m − 1)

−
1

m(m − 1) + 2

[3
2
−

m − 2
2m(2m − 1)

]
(16)

−
2
n

[3
2
−

m − 2
2m(2m − 1)

]

Hence the left side of Eqn. 4 can be written as:

Qs
w − Qp

w

= 0.5 −
1

m(m − 1) + 2

[5
2

+
m − 2

2m(2m − 1)

]
+

m − 2
2m(2m − 1)

+
2
n

[1
2
−

m − 2
2m(2m − 1)

]
= 0.5 +

m3 − 13m2 + 8m − 2
2m(2m − 1)[m(m − 1) + 2]

+
2
n

m2 − m + 1
m(2m − 1)

= 0.5 +
m3 − 13m2 + 8m − 2

2m(2m − 1)[m(m − 1) + 2]
+

2[(m − 1)2 + m]
nm(2m − 1)

(17)

The first and third terms of Eqn. 17 are always positive for
m ≥ 3. The second term reaches its lowest value at m = 3
and the lowest value is −0.2833, which when combined with
the first term of the equation, is still positive. Hence overall,
Qs

w − Qp
w > 0, for all m ≥ 3, n ≥ 3. Since inequality 4

holds, maximizing weighted modularity will not merge adja-
cent cliques, and it will always detect the smallest clique as a
single community.


