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ABSTRACT

Cancers originating from different organs can show similar
genomic alterations whereas cancers originating from the
same organ can vary across patients. Therefore cancer strat-
ification that does not depend on the tissue of origin can
play an important role to better understand cancers having
similar genomic patterns irrespective of their origins. In this
work, we formulated the problem as a weighted graph and
communities were found using a modularity maximization
based graph clustering method. We classified 3,199 subjects
from twelve different cancer types into five clusters. The five
communities show significantly different survival rate curves.
The distribution of tumor types against communities shows
that lung, colon and rectum adenocarcinoma cluster together,
whereas breast and ovarian cancers form another cluster.

Index Terms— Community detection, genomic features

1. INTRODUCTION

Cancer, a heterogeneous complex disease, is driven by a com-
bination of genes and these gene combinations can also vary
across patients [1]. Over the past decade, researchers have
been working on systematic exploration of genetic and epi-
genetic signatures for different cancer types [2, 3]. Tumor
stratification for different tumor types is an active field of re-
search where a population of tumors is divided into biolog-
ically meaningful subtypes. However, most of these studies
were carried out on tumors originating from the same organ
[4, 5].

Analysis of different cancer types has shown that tumors
originating from the same organ can significantly vary across
subjects [3], whereas similar genomic alteration patterns can
be observed across tumors originating from different tissues
[6]. The intra-cancer heterogeneity and inter-cancer homo-
geneity observed across human cancers motivates the de-
sign of cancer stratification techniques irrespective of cancer
types, which can be helpful for designing genomics-driven
personalized medicine [7]. In this work, we tackle the cancer
stratification problem from a data-driven clustering perspec-
tive by classifying cancers independent of their origins using
the community detection approach, and we further investigate

whether such data-driven clusters reveal different survival rate
patterns.

Community detection methods are graph-based clustering
methods that are particularly investigated in social network
stratification. Recently Ciriello et al. adopted a modularity-
maximization based community detection method to classify
twelve different tumor types into 31 tumor sub-classes [8].
Inspired by this recent interesting direction, in this work we
undertook a similar approach to cluster cancers into sub-
classes. We adopted a more advanced community detection
approach proposed by Blondel et al. that was shown to out-
perform other methods for graphs with well-known structures
[9]. This method is also computationally less expensive and
more applicable for large graphs. We generated five clusters
from a dataset of 3,199 subjects from twelve different cancer
types. Furthermore, we investigated the survival character-
istics of these clusters and observed significantly different
survival rates for different clusters. Unlike the work in [8],
where the problem was formulated as bipartite graph, we
formulated our problem as a weighted graph to better reflect
the commonality between samples. Moreover our adopted
method is more advanced and has shown better performance
in graphs with well-defind structures. This method is compu-
tationally more efficient and suitable for large graph like the
graph generated in this work. Furthermore, we studied the
survival characteristics of the generated clusters, which was
not investigated in [8].

2. MATERIALS AND METHODS

2.1. Dataset and graph generation

For this work we use the cancer genomic dataset for twelve
different cancer types from TGCA [3, 2, 10, 6, 11, 12, 13]. In
total 3,199 subjects across different tumor types are used and
the number of subjects used for each tumor type is shown in
Table.1. The genomic and epigenetic changes were reduced
to 479 functional alterations as described in [8]. These func-
tional events are comprised of copy number alterations, so-
matic mutations and gene DNA methylation events. Recur-
rent regions of copy number change and recurrently mutated
genes were determined using the algorithms GISTIC [14],
MuSiC [15] and MutSig [16] respectively. DNA hyperme-
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thylation was investigated for a selected group of genes as de-
scribed in [17]. The final set of features consists of 151 copy
number losses, 116 copy number gains, 199 recurrently mu-
tated genes and 13 epigenetically silenced genes. The feature
set is a binary feature set, where 1 represents that a particular
alteration is present in the associated subject.

We formulated the clustering problem as a weighted graph
in the subject space, where subjects are considered as nodes
and an edge is drawn between the nodes (the subjects) if two
subjects have at least one common alteration. The weight of
the edge is calculated using the following formulation:

Wij =
∑
p

Ci,p ∗ Cj,p (1)

where Wij means the weight between subject-i and subject-
j, Ci,pε[0, 1] where Ci,p = 1 when feature-p is present in
subject-i. Since Ci,p is binary, Wij is sum of the number of
common alterations between subject-i and j. This weight re-
flects the commonality between two subjects. If two subjects
have no common feature between themselves, that means
these two subjects are different in terms of genomic alter-
ations and therefore they do not share any edge. On the other
hand, if two subjects have some common genomic alterations,
that means they are similar. So they are connected by an edge
and Wij is then the number of common alterations they have.
The more genomic alterations they have in common, the more
similar they are, and therefore the more weight is given to the
edge that connects them.

Table 1: Number of cases from different tumor types.

Tumor Type
Number
of cases

Bladder urothelial carcinoma (BLCA) 95
Breast invasive carcinoma (BRCA) 466
Colon and rectum adenocarcinoma (COAREAD) 489
Glioblastoma multiformae (GBM) 216
Head and neck squamous cell carcinoma (HNSC) 299
Kidney renal clear-cell carcinoma (KIRC) 378
Acute myeloid leukemia (LAML) 164
Lung adenocarcinoma (LUAD) 224
Lung squamous cell carcinoma (LUSC) 182
Ovarian serous cystadenocarcinoma (OV) 445
Uterine corpus endometrioid carcinoma (UCEC) 241

2.2. Louvain community detection

The resulting graph generated using Eqn. (1) has 3,199 nodes
and 1,851,740 edges. In this work, we incorporated the Lou-
vain method [9] to find communities from the weighted graph
since this method is suitable for large graph like ours. This
method consists of two phases. In the first phase, a different
community is assigned to each node of the network. Then
for each node-i, the modularity gain is calculated if node-i is

placed in the community of each of its neighbouring nodes.
Then node-i is finally placed to its neighbouring node-j for
which maximum positive modularity gain is achieved. The
modularity gain is calculated by the following formula:

∆M =

[
Wj +Wi,j

2 ∗Wnet
−
(W tot

j +W tot
i

2 ∗Wnet

)2]
−[

Wj

2 ∗Wnet
−
( W tot

j

2 ∗Wnet

)2
−
( W tot

i

2 ∗Wnet

)2] (2)

where Wj is the edge-weights in the jth community, Wi,j is
the sum of the edge-weights from community-i to community-
j, Wnet means the sum of all edge-weights in the network,
W tot

i and W tot
j are the sums of the weights of the edges

incident to the communities i and j respectively.
This is applied repeatedly until no further improvement

can be achieved in terms of modularity. Then the second
phase starts where a new network is formed. In this new net-
work each node now represents the communities formed in
the first phase. These new nodes share weighted links calcu-
lated from the communities of the first phase that they corre-
spond to. The weight of the links between two nodes in the
second phase is calculated as the sum of the edge weights be-
tween the nodes of the two communities from the first phase
that they corresponds to. Then Eqn. 2 is again applied on this
new network. At the end of the second phase, new commu-
nities are formed by clustering nodes. Note that now each
node corresponds to a community from the first phase (hence
a group of nodes from the original graph), and therefore con-
necting two nodes in the second phase to form a community
essentially means connecting two groups of nodes from the
original graph, and hence a larger cluster is formed. This
two-phase process is applied iteratively and in successive it-
erations larger communities are generated.

3. RESULTS

Table 2: Specifications of the learned communities

Community
Number of Significant
subjects (n) cancers

C-1 638 HNSC, LUSC
C-2 408 GBM
C-3 1016 COAREAD, LAML, UCEC
C-4 802 BRCA, OV
C-5 335 KIRC

With applying the above Louvain algorithm into our
dataset, the cancer subjects are divided into five communities
automatically. The number of the subjects in each community
is reported in Table 2. Each community is comprised of dif-
ferent tumor types. Fig.1 shows the distribution of different
tumor types in the five clusters, where black corresponds to
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Fig. 1: The normalized distributions of tumor types associ-
ated with different clusters, where the white color means 1
and black means 0 in the color bar.

Fig. 2: Survival curves of different clusters.

0% subjects and white corresponds to 100% subjects of the
associated cancer type. As we can see, the dominant cancer
in cluster-3 is COAREAD and in cluster-5 is KIRC. Approx-
imately 70% subjects of LAML and UCEC tumor types go
to cluster-3. Cluster-5 is mainly constituted with subjects
of KIRC with a tiny percent of LUAD, LUSC and UCEC.
Almost 60% subjects of BRCA and OV go to cluster-4, indi-
cating that these two tumor types share a number of common
features. Cluster-2 contains around 60% of GBM subjects.
50% samples of LUSC are in cluster-1. BLCA and LUAD
tumors are distributed over the first 4 clusters.

We are particularly interested in studying whether such
generated tumor clusters are associated with different survival
rate patterns. We investigated the survival rates using the
Kaplan-Meier estimator [18] for the generated clusters. The
survival curves are shown in Fig. 2. As it can be seen, differ-
ent clusters have different survival rates. If we take 4000 days
as the reference point, the probability of survival is highest
in cluster-3 and 5, and is worst in cluster-2. To statistically
compare the survival curves, the log rank test is carried out
between the clusters. The p-value between cluster-3 and 5 is
0.85. All other combinations are found to be statistically sig-
nificant (p < 0.05) at the 5% significant level. This pattern
was also observed when we plotted the survival curves of each

Fig. 3: Survival curves of Colon and rectum adenocarci-
noma (COAREAD) and Uterine corpus endometrioid carci-
noma (UCEC) tumor types in different clusters.

tumor type distributed in different clusters. It is worth men-
tioning that different tumor types also have different survival
rates.

Some of the tumor types show interesting patterns in dif-
ferent clusters. Fig. 3 shows the survival plots for two tumor
types associated with different clusters. For each of these
cases, 〈tumor name〉 all denotes the survival curve when
all cases of that particular tumor type is taken into account.
Survival plots are generated only when the total number of
subjects of a particular tumor in a cluster is greater that 10.
For COAREAD, we note that the survival curves are signifi-
cantly different for cluster-1 and cluster-3. After 2100 days,
the survival probability of a COAREAD tumor patient is al-
most 50% if he is in cluster-3, whereas it it 0% if he is in
cluster-1. UCEC seems to have a good survival rate in gen-
eral, and the cases that fall into cluster-3 show even a better
rate of survival.

Similar patterns are observed across other tumor types as
well, though detail figures are omitted here due to space limit.
Cluster-3 also shows better chances of survival for LUAD and
HNSC as well. Even after 6000 days, the chance of survival
for a HNSC cluster-3 case is almost 38%, which is much
higher than that of all other HNSC tumor cases. KIRC tumor
cases show good survival probabilities in general, however
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the subjects of KIRC in cluster-2 show significantly lower
rate of survival. LAML tumors that fall into cluster-3 follow
a similar survival pattern as overall LAML tumors. A few
LAML cases fall into cluster-1 and these cases show lower
survival probabilities. Cluster-2 shows the worst survival rate
for OV tumor type as well. Overall, cluster 3 and 5 show
better survival probabilities within different tumor types,
whereas cluster-2 shows the worst survival rates across tumor
types.

4. CONCLUSION

To investigate similar patterns across human cancers, we
study a data-driven clustering approach by clustering subjects
from twelve cancer types using modularity maximization
based community detection technique. The community de-
tection method finds five separate communities, where differ-
ent communities are dominated by different groups of cancer
types. We further explore the survival rates of the generated
communities and note that the communities vary significantly
in terms of their survival characteristics. The difference of
survival rates across communities indicates the potential of
cancer stratification that does not depend on cancer origins.
In future we will further subdivide the communities and in-
vestigate the relation of these communities with biological
pathways to validate the learned communities.
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