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ABSTRACT

In this paper, we propose a connectivity-based framework to
extract functional sub-regions (subROIs) in the putamen from
fMRI signals. The proposed framework aims to generate a
network that represents the connectivity patterns of the puta-
men voxels among themselves, and with the other brain re-
gions. A spatial constraint is introduced into the network
generation framework to ensure the spatial continuity of the
final subROIs. A eigenvalue-based community detection ap-
proach is then incorporated to sub-divide the network into two
functionally connected and spatially continuous sub-regions.
The framework is applied to synthetic datasets to evaluate its
performance wih respect to other literature-based approaches.
The proposed framework is finally applied to resting state
fMRI data from five healthy subjects to parcellate the puta-
men region into two functional subROIs. Although the frame-
work is developed for putamen, it can generally be applied to
other brain region subROI parcellation tasks.

Index Terms— functional MRI, brain connectivity, com-
munity detection, putamen

1. INTRODUCTION

The human brain consists of structurally and functionally
interconnected regions. Connectivity based parcellation tar-
gets to divide these regions-of-interest (ROI) into distinct
sub-regions-of-interest (subROIs) based on their differences
in the connectivity patterns extracted from brain fMRI sig-
nals. One important brain region that is repeatedly reported
in the literature to have several functional sub-regions is the
striatum of the basal ganglia [1, 2]. Striatum is functionally
sub-divided into two subROIs, namely- dorsolateral stria-
tum (DLS) which is associated with habitual control and
dorsomedial striatum (DMS) which is associated with goal-
oriented control [3]. Parcellation of putative basal ganglia
subROIs can play an essential role in developing more de-
tailed models of whole-brain connectivity network [4] and in
evaluating hypotheses about healthy aging and development
[5, 6]. Moreover, exploration of the connectivity patterns
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of the functional subROIs inside striatum, specifically puta-
men and caudate, is believed to be of great importance in
understanding degenerative basal ganglia disorders such as
Parkinson’s disease and Huntington’s disease [7, 8].

The functional subROI parcellation studies reported in
the literature can be divided into two categories- clustering-
based approaches [9, 10, 11, 12], and graph or network-based
approaches [7, 13]. Most of the clustering based approaches
require rigorous preprocessing and denoising steps to ob-
tain spatially continuous results since they are very sensitive
to outliers. On the other hand the graph-based parcellation
methods do not impose spatial continuity and therefore in
cases where there are outlier voxels owing to head move-
ment and other artifacts, these approaches may not generate
spatially continuous subROIs. Recently Zhang et al. [14]
proposed a parcellation technique that incorporates the spa-
tial information. However, this method does not consider
the voxel-connectivities within the ROI and the robustness of
the method highly depends on its optimization parameters.
Therefore there is still a need for a complete framework for
functional subROI parcellation that can incorporate both the
inter-ROI and intra-ROI connectivity patterns while imposing
spatial continuity for subROIs.

In this paper, we propose a framework to define spa-
tially continuous functional subROIs within a brain region by
exploring functional connectivities between themselves and
with a few other ROIs. We develop a putamen functional
connectivity network by taking into consideration the spatial
location and connectivities within putamen, and the connec-
tivities of other brain regions with putamen. A community
detection approach is then adapted to extract two functional
sub-regions from the connectivity network. The proposed
framework imposes spatial continuity on the subROIs which
is often ignored in the literature. Moreover while the most
literature-based approaches focus on either intra-region con-
nectivity or inter-region connectivity to parcellate the ROIs,
the proposed framework considers both and generates a com-
plete representation of the overall connectivity characteristics
inside the putamen. Although the framework is developed for
putamen parcellation, it is generally applicable to other brain
region parcellation problems with similar challenges.
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SMA: Sensorimotor cortex
CG: Cingulate gyrus
OF: Orbitofrontal gyrus

DLS: Dorsolateral striatum

DMS: Dorsomedial striatum

Fig. 1: Tllustration of the connectivity patterns of functional
subROIs in the putamen region with the reference brain ROIs.
The solid lines denote strong connectivity and the dotted lines
denote weak connectivity.

2. MATERIALS AND METHODS

In this section, we will describe the datasets used in this work
and the proposed framework for separating a given ROI into
two or more functionally connected and spatially consistent
subROIs. Throughout this paper, the term task ROI is used to
denote the ROI which we want to divide into subROIs, and
reference ROI is used to denote other brain ROIs which inter-
act with the task ROL.

2.1. Functional SubROI Parcellation

In this work, we formulated the parcellation of functionally
consistent and spatially confined subROIs in putamen as a
weighted-graph clustering problem in the voxel space. The
putamen region can be divided into two functional subROIs
namely DLS and DMS, and these two functional subROIs
demonstrates different connectivity patterns with three other
brain regions— sensorimotor area (SMA), orbitofrontal gyrus
(OF), and cingulate gyrus (CG). SMA has strong connectiv-
ity with DLS and weaker connectivity with DMS whereas OF
and CG show strong connectivity with DMS and weaker con-
nectivity with DLS [7]. Fig. 1 shows the connectivity pattern
of the subROIs with the reference ROIs.
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Fig. 2: Ilustration of the putamen connectivity network gen-
eration.
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Functional subROIs in putamen can be extracted from
their connectivity patterns among themselves and with three
other brain reference regions- SMA, CG and OF. In this
work we generated an undirected weighted graph from the
connectivity pattern of the putamen voxels, and then clus-
tered the voxels into two spatially continuous subROIs by
applying state-of-the-art community detection method. The
generation of the network, G is graphically shown in Fig.
2. To generate the network, each voxel within the putamen
region (z%,i = 1,2,.., N) is represented by a node and the
edge weights between the ith voxel, z* and jth voxel, xJ are
derived from the brain connectivity pattern as follows:

W4 =
{ fori £ j

Here W is set to zero when i = j to eliminate self-
loops in G. The first weight term Wy, is associated with
the the connectivity pattern among the putamen voxels, and is
defined as the average connectivity among putamen voxels as
a function of their spatial distances, d:

0
Wtaak X W ]
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Wtask(d) = 5T(d) X Ctask(d) (2)

where C*?*(d) denotes the fitted value of the correla-
tion coefficients inside putamen region at a distance d, and
6T (d) = 1if d < T and zero otherwise. This thresholding
ensures that spatially distant voxels do not share edges in the
generated network G and are well separated, ensuring that the
final clusters are spatially continuous.

The second weight term, WTe ¢ in Eqn. 1 is associated
with the connectivity pattern of the putamen voxels with the
reference brain regions. Ideally, two putamen voxels from
the same functional subROI will have similar connectivity to
each of the reference ROIs, and the difference between their
connectivities with the reference regions will be zero. Wre f
between voxels ¥ and z7 is defined as a measure of how close
their connectivities are to this ideal behaviour:

Z ‘ 7€f m’j|
M
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m

'] are the connectivities between refer-

Here C, f : and
ence ROI m and task ROI voxels x* and 27 respectively. M
is the total number of reference ROIs. The connectivity C.
is defined in terms of partial correlation coefficients between
the temporal signals of the task ROI voxels and the average
temporal signal of the reference ROI region, controlling for
the remaining reference ROIs. The partial correlation coef-
ficient is used here to remove the effect of other reference
ROIs while calculating connectivities. Defining the final edge
weight as in Eqn. 1 ensures that the three factors are incor-
porated in the final edge weight. First, W,..r ensures the vox-
els with similar connectivities with the reference ROIs share
stronger edges than others. Second, the formulation of Wy,
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ensures the edge weight between voxels are modulated based
on their connectivities inside the task ROI (putamen). And
finally, Wy, also ensures that the edge weight decreases ex-
ponentially with the distance and goes to zero beyond a cer-
tain threshold 7" so that distant voxels are well-separated or
disconnected, hence ensuring that the final clusters are not
only functionally connected, but also spatially continuous.

After generating the functional connectivity network, G,
we extracted the subROIs from the network’s adjacency ma-
trix following the procedure described in [15]. The ratio of
the first and second eigenvectors of the adjacency matrix was
calculated and k-means algorithm was applied on the ratios
to extract the functional subROIs. Detailed description of the
network generation and subROI extraction framework can be
found in [16].

2.2. Datasets
2.2.1. Synthetic Dataset

Two sets of synthetic dataset is generated in this work to eval-
uate the performance of the proposed method in different set-
tings. The datasets are generated such that it mimics the
real fMRI conditions in putamen. The first synthetic dataset
(Dataset-1) is a 10x10x 10 cubic volume that is functionally
divided into two sub-regions-of-interest (subROIs) - A and
B. To ensure the synthetic dataset is compliant with real fMRI
conditions in our problem, three reference regions, x, y and z,
are generated and the signals in two sub-ROlIs, i 4 and ip, are
generated such that A has strong connectivity with x, whereas
B has strong connectivity with y and z. The temporal sig-
nals for each of the regions are generated using the following
model:

iy = O0ems + (1 — 0,)ls + €

iy = Oyns + (1 —0,)ls + ¢,

i,=0.ns+(1—0.)l;+e.
ig=aldams+ (1 —0)l] + (1 —a)ks +eq
ip = BlOsns + (1 —0p)ls] + (1 — B)rs +es

ls,mg,ng, ks, 75 ~ N(0,1)

€z, €y, €2, €A EB ~ N(0,0%)

0,,0,,0.,0.4, 05, ., 3 ~ U[0.5,0.9].

“

Here i, i, and i, denote signals in the reference regions
x, y and z respectively. The temporal signals are 240-time
point long. The subROIs A and B consists of 440 and 560
voxels respectively. Fig. 3 shows the synthetic data genera-
tion process.

Dataset-I is generated by using a fixed SNR (here SNR =
6 dB) for all the voxels. For Dataset-II, we randomly chose
100 voxels in each of the sub-regions A and BB and used a
lower SNR (here SNR = -10 dB) to generate the signals for
those voxels. These 200 voxels serve as the outliers and the
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Fig. 3: Illustration of the synthetic data generation pro-
cess. Here the cubic volume is divided into two functional
subROIs— A and B. x, y and z are three interconnected ref-
erence ROIs, where A is strongly associated with x and B is
strongly associated with y and z.

rest of the voxels are generated using SNR = 6 dB as Dataset-
I. The procedure is repeated 50 times so that Dataset-I and
Dataset-II each contains 50 sets of data.

2.2.2. fMRI Dataset

The fMRI dataset consists of five healthy subjects recruited
from the Pacific Parkinson’s Research Centre Movement Dis-
orders Clinic at The University of British Columbia. MRI
examinations were performed on a Philips 3 T MRI scan-
ner (Achieva, Philips Healthcare, Best, The Netherlands)
equipped with a headcoil. The subjects lied on their back
with their eyes closed during the examination and whole
brain three-dimensional 7T'1-weighted images with 170 ax-
ial slices were acquired. Each functional run spanned eight
minutes during which blood oxygen level dependent (BOLD)
contrast echo-planar (EPI) 7'2*-weighted images were ac-
quired with a repetition time of 1985 ms, echo time of 37 ms
and flip angle of 90°. The field of view (FOV) was set to
240 mm which included the cerebellum ventrally as well as
the dorsal surface of the brain. In total 240 time-points were
acquired with 36 axial slices of 3 mm thickness and 1 mm gap
thickness. The matrix size was 128x 128 and pixel size was
1.9 mmx1.9 mm. The study was approved by the Clinical
Research Ethics Board of the University of British Columbia
and the patients had given their informed written consent
prior to the study.

The raw fMRI data was pre-processed using the pipeline
described in [17] and 54 regions-of-interest (ROI) were ex-
tracted using the Freesurfer software [18]. The extracted
ROIs were also visually checked by experienced neurolo-
gists if needed. All data analysis were done on the unwarped
images (in the native space) on a subject-by-subject basis
rather than warping images into a common template. In this
work, we used four ROIs from the left hemisphere of the
brain namely, sensorimotor area (SMA), orbitofrontal gyrus
(OF), cingulate gyrus (CG) and the putamen. To form the
orbitofrontal gyrus we merged both medial and lateral or-
bitofrontal cortices, the cingulate gyrus is formed by merging
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the anterior and posterior cingulate gyri and the sensorimotor
area consists of the primary motor and somatosensory cortex.

3. RESULTS

We applied the proposed framework on two sets of synthetic
datasets and compared the parcellation results generated by
our proposed framework with three other literature-based
functional ROI parcellation methods. To compare the out-
comes from different algorithms we calculated the misclas-
sification error defined as the total number of misclassified
voxels over the total number of voxels in the task region.
Table 1 reports the average misclassification error over 50
sets of data for each of the datasets. The k-means clustering
is implemented according to [10], the modularity detection
algorithm is implemented according to [7] and the spatially
regularized regression model is developed according to [14].
For Dataset-1, all methods except the spatially regularized
regression method correctly identified the underlying clus-
ters. However, at the presence of outliers in Dataset-II, our
proposed method outperformed the k-means and modular-
ity detection method and generated comparable performance
with the spatially regularized regression method. Note that
the spatially regularized regression method generates one
parcellation result for each of the three reference ROIs, and
out of these three results, in Table 1 we reported the result
that best matches with the ground truth. In other cases the
spatially regularized method generates a lot of misclassified
voxels (error 5-56%), and when the ground truth is not avail-
able, it is impossible to determine which parcellation result is
accurate out of these three different results .

Table 1: Percentage of errors for synthetic datasets. The
dataset generation procedure is repeated 50 times for each
of the datasets, and the errors are reported as average error
percentage over 50 datasets.

Dataset-1 Dataset-11
Proposed method 0.00% 2.50%
k-means clustering [10] 0.00% 9.99%
Modularity detection [7] 0.00% 5.97%
Spatially regularized regression [14] 0.86% 1.10%

We then applied the proposed framework in the puta-
men region to extract two functional subROIs- DLS and
DMS. Three reference regions - sensorimotor area, cingulate
gyrus, and orbitofrontal gyrus are considered to sub-divide
the putamen region into functional subROIs. After cluster-
ing the putamen voxels into two groups using the proposed
framework, we utilized prior anatomical knowledge about the
position of DLS and DMS to label the clusters. Anatomically
DLS resides at the lateral part of the striatum whereas DMS
lies in the medial portion. We calculated the spatial location
of the centroids of the generated clusters. The cluster with the
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Fig. 4: Putamen subROI parcellation for five healthy subjects.
The red dots denote the dorsomedial striatum (DMS) vox-
els and the green dots denote the dorsolateral striatum (DLS)
voxels as clustered by the proposed framework.

laterally positioned centroid is then labelled as DLS and the
other cluster is labelled as DMS. Fig. 4 shows the putamen
parcellation results in the left hemisphere of the brain for five
healthy subjects with the proposed framework. The red dots
denote the DMS voxels whereas the green dots represent the
DLS voxels. The generated functional subROIs are spatially
continuous and nicely separated.

4. CONCLUSION

In this paper, we propose a framework to define spatially
continuous functional subROIs within the putamen region
by exploring functional connectivities between themselves
and with a few other ROIs. We generated a network that
incorporates the connectivities between putamen voxels, the
connectivities of other brain regions with the putamen vox-
els, and the spatial positions of the voxels. By applying a
state of the art community detection approach on the network
we were able to to sub-divide the region into several func-
tionally connected and spatially continuous sub-regions. We
evaluated the performance of the framework on synthetically
generated datasets, and showed that the proposed framework
outperforms other literature-based parcellation methods in
terms of accuracy, specially at the presence of outliers. Al-
though the proposed framework is applied to sub-divide a
single ROI into two subROlIs in putamen, this framework can
be generally applied to other brain ROI for any number of
functional subROI extraction.
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