Community Detection from Genomic Dataset Across Human Cancers

Nandinee Haq (nandinee@ece.ubc.ca), Z. Jane Wang (zjanew@ece.ubc.ca)

University of British Columbia, Vancouver, Canada

Outline

Motivation

Community Detection Across Human Cancers

Dataset

Network Generation & Community Detection

Results

Conclusion

Future Works

Motivation

- Cancer is driven by a combination of genes
- Gene combinations can vary across patients
- Tumor stratification for different tumor types is an active field of research where a population of tumors is divided into biologically meaningful subtypes.
- Most of these studies were carried out on tumors originating from the same organ

Motivation

□Two important observations-

tumors originating from the same organ can significantly vary across subjects¹

□ similar genomic alteration patterns can be observed across tumors originating from different tissues ²

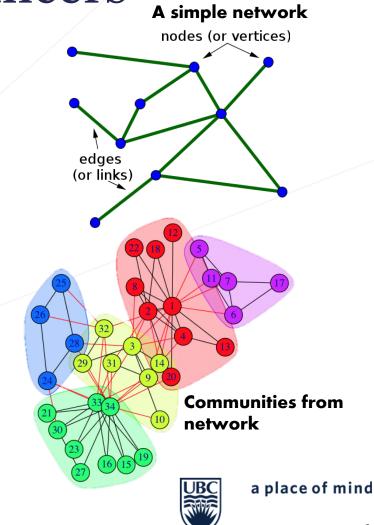
[1] Can.Gen.Atl.Net., Nature 2012; 490(7418):61-70.
[2] Can.Gen.Atl.Net., Nature 2011; 474(7353):609-615.

Motivation

To develop a data-driven technique for the cancer stratification problem by classifying cancers *independent of their origins* using the community detection approach

lectrical and computer ingineering

- Tissue-independent tumor stratification is formulated as a weighted-graph clustering problem
- Network generated from subjects
 Community detection method applied for tumor clustering



Genomic Dataset

Genomic features from around 3200 subjects, 12 cancer types from TGCA³

 479 features⁴- 151 copy number losses, 116 copy number gains, 199 mutation and 13 methylation features

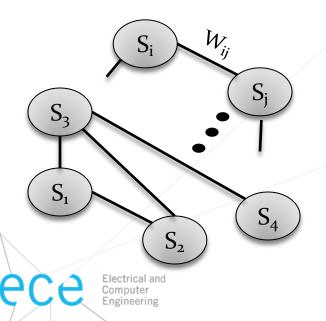
Task is to find "biologically meaningful" clusters

Ψ	Number
Tumor Type	of cases
Bladder urothelial carcinoma (BLCA)	95
Breast invasive carcinoma (BRCA)	466
Colon and rectum adenocarcinoma (COAREAD)	489
Glioblastoma multiformae (GBM)	216
Head and neck squamous cell carcinoma (HNSC)	299
Kidney renal clear-cell carcinoma (KIRC)	378
Acute myeloid leukemia (LAML)	164
Lung adenocarcinoma (LUAD)	224
Lung squamous cell carcinoma (LUSC)	182
Ovarian serous cystadenocarcinoma (OV)	445
Uterine corpus endometrioid carcinoma (UCEC)	241

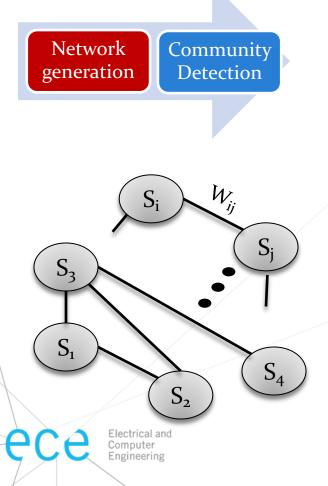
Electrical and Computer Engineering [3] <u>http://cancergenome.nih.gov/</u>
[4] Ciriello *et al.*, Nature genetics 2013; 45(10):1127–1133.

Network Generation

Network generation Community Detection



Network Generation



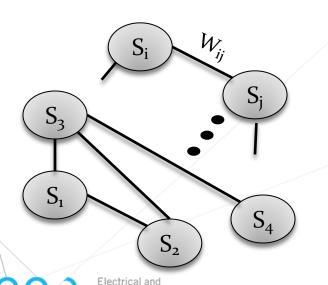
Subjects are considered as nodes
 Edge is drawn if two subjects have at least one common alteration.

 $W_{ij} = \sum_{p} C_{i,p} * C_{j,p}$ $W_{ij} = weight \ between \ subjects \ i \ and \ j$ $C_{i,p} \in [0,1];$

 $C_{i,p} = 1$ when feature -p is present in subject -i

Resulting graph has 3200 nodes and 1,851,740 edges.

Community Detection



Louvain Method⁵ based on modularity maximization

Does not require number of communities

□ suitable for large graphs

□ shown to outperform other

modularity-based methods

□ computationally less expensive

 S_6

 S_4

Modularity : (fraction of edges that fall within group) – (expected fraction if edges were distributed at random) S_5

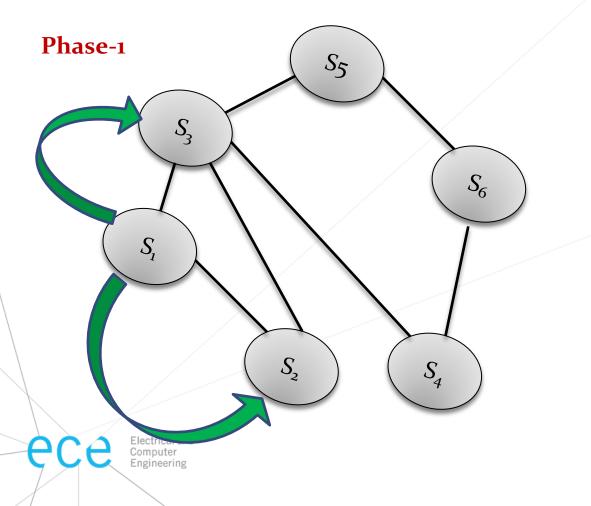
S

 S_{3}

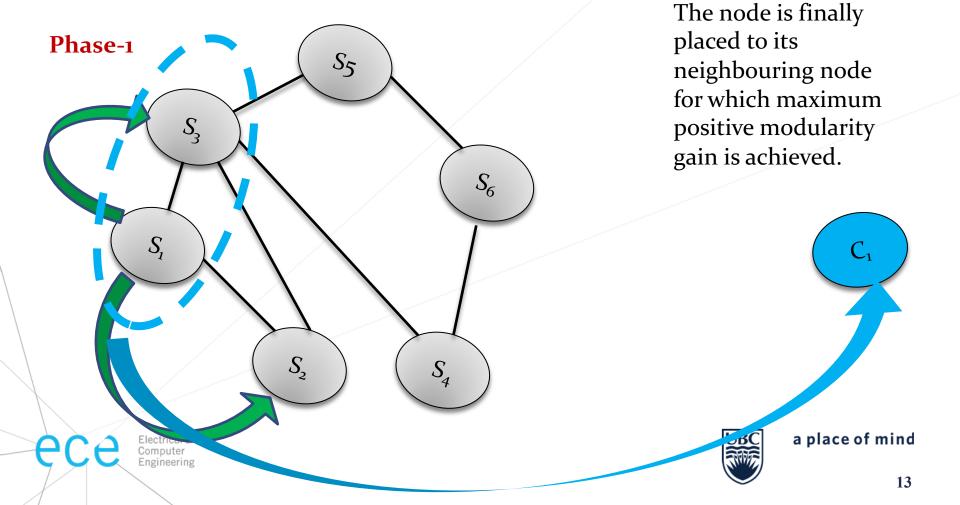
S,

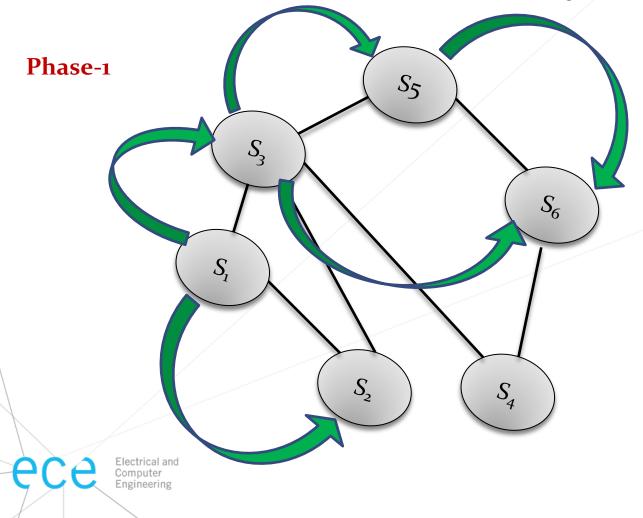
Phase-1

a different community is assigned to each node of the network.

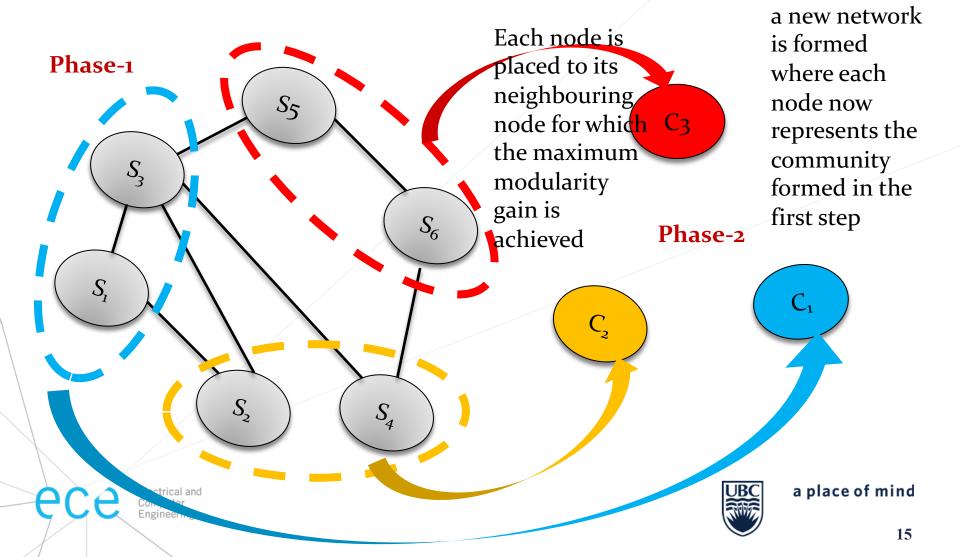


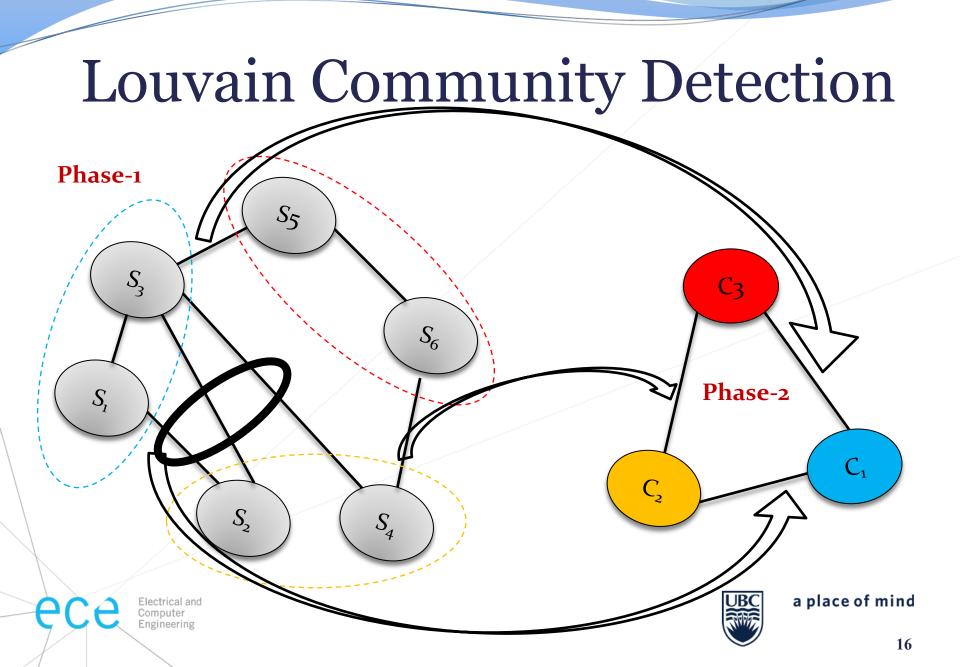
Calculate modularity gain if each node is placed in the community of each of its neighboring nodes

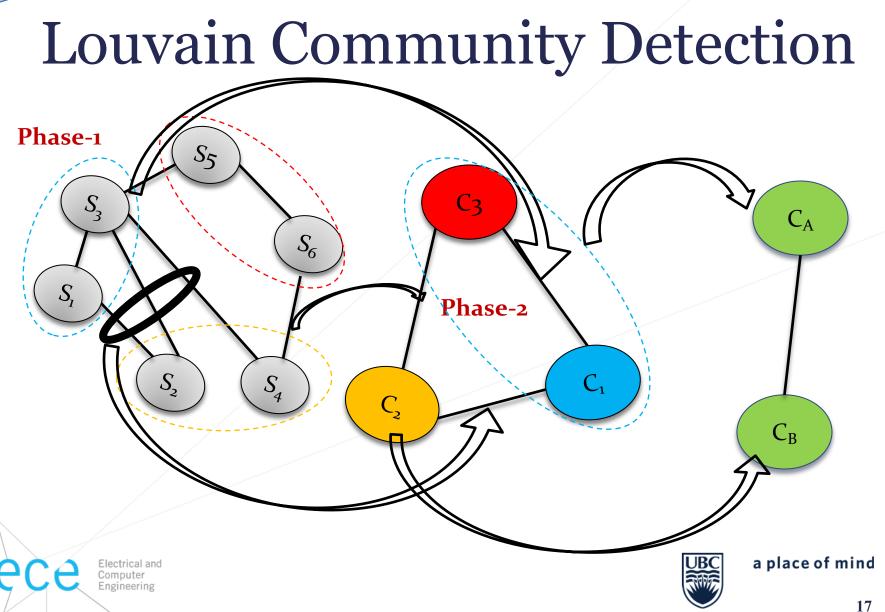


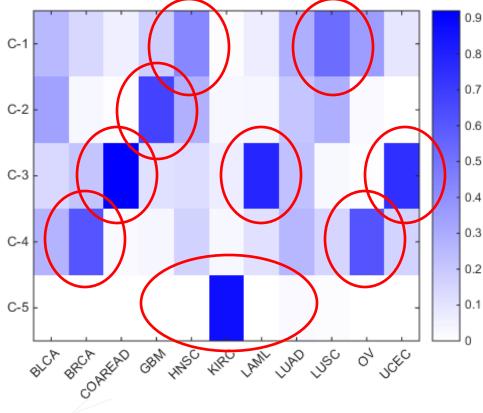


Calculate modularity gain if each node is placed in the community of each of its neighboring nodes



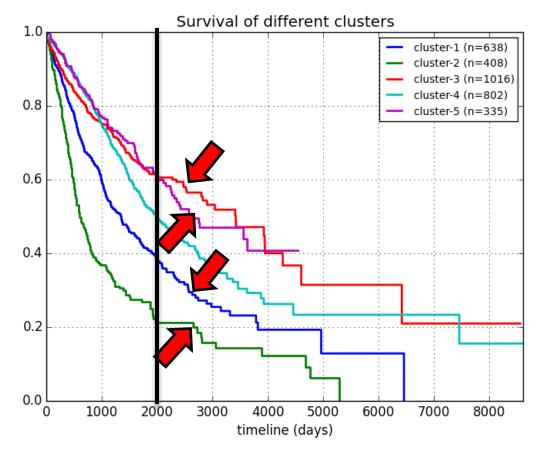




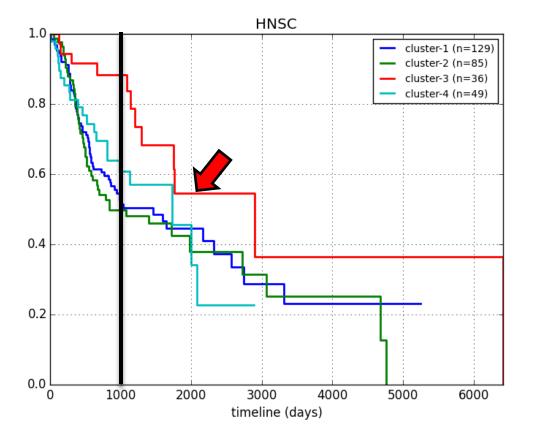


Electrical and Computer Engineering

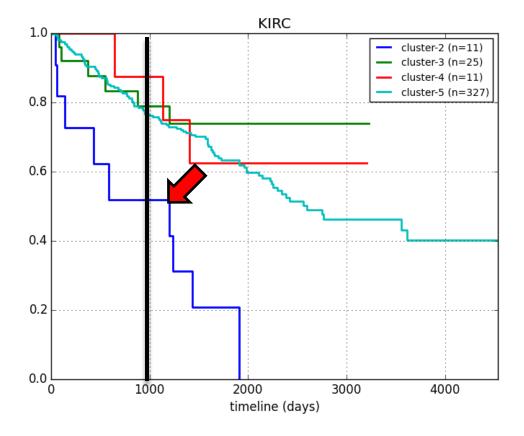
0.8			
	Community	Number of	Significant
0.7	Community	subjects (n)	cancers
	C-1	638	HNSC, LUSC
0.6	C-2	408	GBM
	C-3	1016	COAREAD, LAML, UCEC
0.5	C-4	802	BRCA, OV
	C-5	335	KIRC



Electrical and Computer Engineering



Electrical and Computer Engineering



Electrical and Computer Engineering

Conclusion

■We tackled the cancer stratification problem from a datadriven clustering perspective

Cancers samples are classified independent of their origins using the community detection approach

■ We further investigated whether such data-driven clusters reveal different survival rate patterns

Future Works

- □ Hierarchical community detection
- Analyze characteristic features associated with each tumor community
- Associate the characteristic features to their biological pathways and drug responses
- Relating biological pathways to tumor communities can provide important information for the design of personalized medicine

Thank You!

Electrical and Computer Engineering

