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Motivation
qCancer is driven by a combination of genes

qGene combinations can vary across patients 

qTumor stratification for different tumor types is an active field 

of research where a population of tumors is divided into 

biologically meaningful subtypes.

qMost of these studies were carried out on tumors originating 

from the same organ 
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Motivation
qTwo important observations-

qtumors originating from the same organ can 

significantly vary across subjects1

qsimilar genomic alteration patterns can be observed 

across tumors originating from different tissues 2  
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[1] Can.Gen.Atl.Net., Nature 2012; 490(7418):61-70. 
[2] Can.Gen.Atl.Net., Nature 2011; 474(7353):609-615.



Motivation

qTo develop a data-driven technique for the cancer 

stratification problem by classifying cancers 

independent of their origins using the community 

detection approach
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Community Detection Across 
Human Cancers

qTissue-independent tumor 

stratification is formulated as a 

weighted-graph clustering 

problem

qNetwork generated from subjects

qCommunity detection method 

applied for tumor clustering
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Genomic Dataset
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qGenomic features from around 
3200 subjects, 12 cancer types 

from TGCA3

q479 features4- 151 copy number 

losses, 116 copy number gains, 
199 mutation and 13 

methylation features

qTask is to find “biologically 
meaningful” clusters

[3] http://cancergenome.nih.gov/
[4] Ciriello et al.,Nature genetics 2013; 45(10):1127–1133.

http://cancergenome.nih.gov/
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qSubjects are considered as nodes 
qEdge is drawn if two subjects have at 

least one common alteration.

q 𝑊!" = ∑#𝐶!,# ∗ 𝐶",#
𝑊!" = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 𝑖 𝑎𝑛𝑑 𝑗
𝐶!,$ ∈ 0,1 ;
𝐶!,$ = 1 𝑤ℎ𝑒𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 − 𝑝 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 − 𝑖

qResulting graph has 3200 nodes and 

1,851,740 edges.
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qLouvain Method5 based on modularity 

maximization

qDoes not require number of 

communities 

qsuitable for large graphs

qshown to outperform other 

modularity-based methods

qcomputationally less expensive
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[5] Blondel et al., Jour. Stat. Mech.: Theory & Experiment 2008; 10:P10008



Louvain Community Detection
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Louvain Community Detection
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Louvain Community Detection
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Louvain Community Detection
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Louvain Community Detection
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Louvain Community Detection

16

S4

S5

S6

S1

S2

S3 C3

C2
C1

Phase-1

Phase-2



Louvain Community Detection
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Community Detection Across Human Cancers
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Conclusion
qWe tackled the cancer stratification problem from a data-

driven clustering perspective 

qCancers samples are classified independent of their 
origins using the community detection approach

qWe further investigated whether such data-driven 
clusters reveal different survival rate patterns
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Future Works
qHierarchical community detection 

qAnalyze characteristic features associated with each 
tumor community

qAssociate the characteristic features to their biological 
pathways and drug responses

qRelating biological pathways to tumor communities can 
provide important information for the design of  
personalized medicine
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