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ABSTRACT

The combination of Dynamic Contrast Enhanced (DCE) images with diffusion MRI has shown great potential
in prostate cancer detection. The parameterization of DCE images to generate cancer markers is traditionally
performed based on pharmacokinetic modeling. However, pharmacokinetic models make simplistic assumptions
about the tissue perfusion process, require the knowledge of contrast agent concentration in a major artery, and
the modeling process is sensitive to noise and fitting instabilities. We address this issue by extracting features
directly from the DCE T1-weighted time course without modeling. In this work, we employed a set of data-driven
features generated by mapping the DCE T1 time course to its principal component space, along with diffusion
MRI features to detect prostate cancer. The optimal set of DCE features is extracted with sparse regularized
regression through a Least Absolute Shrinkage and Selection Operator (LASSO) model. We show that when our
proposed features are used within the multiparametric MRI protocol to replace the pharmacokinetic parameters,
the area under ROC curve is 0.91 for peripheral zone classification and 0.87 for whole gland classification. We
were able to correctly classify 32 out of 35 peripheral tumor areas identified in the data when the proposed
features were used with support vector machine classification. The proposed feature set was used to generate
cancer likelihood maps for the prostate gland.
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1. INTRODUCTION

Multiparametric magnetic resonance imaging (mpMRI), where parameters from different MRI modalities are
used in combination, is now considered part of the standard of care for image-based evaluation of prostate to
determine the need for a biopsy in many parts of the world.1 Improved accuracy of prostate cancer detection
and localization is reported when different MR modalities are used together. Among other modalities, diffusion
weighted imaging (DWI) has the ability to characterize the de-phasing of MR signal caused by molecular diffusion.
In cancerous regions, the regular tissue distribution pattern in prostate is disturbed and replaced by masses of
malignant epithelial cells and glands. This pathological change alters the tissue diffusion pattern in prostate that
results in changing parameter values extracted from diffusion MRI.

Diffusion Tensor Imaging (DTI) is an advanced form of DWI that enables the measurement of directionality
along with the magnitude of water diffusion. While DWI generates one diffusion parameter, namely Apparent
Diffusion Coefficient (ADC), most of the studies on quantitative DTI use two diffusion parameters, namely
average diffusivity (〈D〉) and Fractional Anisotropy (FA). Average diffusivity is the trace of the diffusion tensor.
FA is an indication of how anisotropic the diffusion process is and it can only be extracted from DTI. Decreased
ADC and 〈D〉 values are reported frequently as a strong indicator of tumors.2–4 Gibbs et al.5 and Wang
et al.6 reported an inverse relationship between diffusivity values and tumor proliferation using histological
measurements of cellular density. Hambrock et al.7 and Tamada et al.8 reported a negative correlation between
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diffusivity values and Gleason grades. However, the association of FA with tumor is indecisive and different
studies reported increased,4 decreased9 and even unchanged values of FA in prostate carcinoma.10

Several studies reported that when quantitative parameters extracted from diffusion MRI and DCE MRI
are used together, it results in a better cancer detection accuracy than when used separately.11,12 Oto et al.13

reported significant increase in sensitivity when Ktrans is used with average diffusivity values with multivariate
logistic regression. Delongchamps et al.14 reported significantly better cancer detection performance in peripheral
zone of prostate when DCE and diffusion MRI are used together with T2 compared to when DCE and diffusion
MRI are used separately with T2. Langer et al. investigated different combinations of parameters from DCE, DTI
and T2 and the highest performance in terms of area under Receiver Operating Characteristics curve (ROC)
was achieved when 〈D〉 and Ktrans were used with T2.15 In,16 these three parameters were reported to be
significantly correlated with specific histologic components that differ between normal and cancerous peripheral
zone of prostate, and hence can be used in combination as an image-based prognostic parameter.

To separate cancer and normal tissues, some studies focused on applying machine learning approaches by
classifying multiparametric MRI parameters.17 Most of these studies reported their performances in terms of
area under ROC, sensitivity, specificity and accuracy. In Kozlowski et al.,18 it is reported that the combination
of DTI and DCE parameters at 3 Tesla results in improved cancer diagnostic capability in terms of area under
ROC. Moradi et al.19 also reported improved performance with DCE and DTI features and generated a single
parameter map of cancer likelihood using support vector machine classification .

In this work, we investigated the performance of data-driven DCE features in a multiparametric framework.
In Haq et al.,20 we proposed a set of data-driven features generated by principal component analysis of the
kinetic curves of DCE T1 time course and reduced its dimensionality by a Least Absolute Shrinkage and Se-
lection Operator (LASSO). In this work, this set of DCE features is used with DTI features extracted from
the registered diffusion images for tumour detection using Support Vector Machine (SVM) classification. The
method was validated in 16 clinical cases based on wholemount histopathology slides as the reference. Using this
computational framework, we show that the proposed approach to parameterization of DCE data can improve
the detection of cancer from DCE data within the mpMRI protocol.

2. MATERIALS AND METHODS

2.1 Data Collection Protocols

The data used in this work was obtained in 2010-2011 for a multiparametric MRI study (PI: P. Kozlowski).
The study was approved by the Clinical Research Ethics Board of the University of British Columbia and the
patients had given their written consent before entering the study. These patients were scheduled for radical
prostatectomy and they went through an MRI imaging session before their surgery. The MRI examination was
scheduled 3-48 days prior to their surgery date and the mean time between the MRI session and the radical
prostatectomy was 14 days for these patients. The patients recruited for this study had not received any form of
therapy before their radical prostatectomy. 21 patients underwent the MRI session out of which 5 patient were
excluded from DCE MR imaging due to their allergic reaction to the contrast agent. In this work we used MRI
data from 16 patients who underwent both DTI and DCE MRI sessions.

2.1.1 MRI Imaging Protocol

MRI examinations were performed on a 3 Tesla MRI scanner (Achieva, Philips Healthcare, Best, The Nether-
lands) and the signals were acquired with a combination of an endorectal coil (Medrad, Pittsburgh, PA) and a
cardiac phased-array coil (Philips Healthcare, Best, The Netherlands). Fast spin-echo T2-weighted images were
acquired in the axial and coronal planes using repetition time (TR) of 1851 ms and an effective echo time (TE)
of 80 ms with 14 cm field of view (FOV) (284×225 matrix, 3 averages). Each slice was 4 mm thick and there
were no gaps between the slices. 12 axial slices were selected from this sequence and used for DCE MRI scans.
T2-weighted images were used to identify the anatomical details of the prostate gland to match MR-slices with
histology. The majority of the glands were smaller than 48 mm along the slice selection direction.

DCE T1-weighted images were acquired using a three-dimensional T1-weighted spoiled gradient echo-sequence
with a field of view of 24 cm (TR/TE = 3.4/1.06 ms, flip angle = 15◦, 256×163 matrix, 2 averages). The contrast
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Figure 1. (a) Peripheral zone tumor of Gleason Grade (3+4+5) from pathology slide is mapped to the corresponding (b)
T2-weighted, (c) DTI and (d) DCE-MRI slice. The green contour represents the boundary of the prostate gland and the
red contour is the mapped tumor.

agent used here was Gd-DTPA (Magnevist, Berlex Canada) and 0.1 mmol/kg of Gd-DTPA was injected with
a motorized power injector within 10 s at the rate of 2 mL/s, followed by a 20 mL flush of saline. To calculate
the contrast agent concentration in the prostate, at first proton density (PD) images were acquired (TR/TE =
50/0.95 ms, flip angle = 5◦). Subsequently a series of 75 T1-weighted dynamics were acquired, where 3 dynamics
were acquired before the injection of the contrast agent, and the remaining 72 dynamics were acquired during
and after the injection of the contrast agent. The time resolution was 10.6 s per dynamic and the slice thickness
was 4 mm. T1 values were calculated based on PD-weighted and T1-weighted images according to the procedure
described by Parker et al.21 DCE MRI data were processed off-line using Matlab (Mathworks, Natick, MA) and
Igor Pro (WaveMetrics, Portland, OR).

DTI data were acquired using a diffusion weighted single shot echo planar imaging (EPI) sequence with a field
of view of 24 cm (TR/TE = 2100/74 ms, slice thickness = 4 mm with no gap, 128 × 115 matrix, 6 noncollinear
gradient directions, 18 averages, total acquisition time of 8 min, b-value = 0 and 600 s/mm2). DTI data were
processed off-line to calculate fractional anisotropy (FA) and average diffusivity (〈D〉) values. Diffusion weighted
images were registered to the non-weighted b=0 image with a mutual information algorithm and eigenvalues of
the diffusion tensor were calculated. Average diffusivity and fractional anisotropy maps were generated with the
proprietary DTI processing toolbox PRIDE (Philips Healthcare, Best, The Netherlands).

2.1.2 Pathology Data

After imaging, patients went through the surgery and radical prostatectomy specimens were acquired. The
prostatectomy specimens were dissected and histopathologically examined in a uniform manner to acquire the
whole-mount sections. The external surfaces were inked, seminal vesicles were amputated, the apical and bladder
neck tissue slices were removed and the specimens were dissected following a minimum of 24-h fixation in 10%
buffered formalin. A device described in Drew et al22 was used to cut the prostate gland from inferior to superior
in serial transverse cuts perpendicular to the posterior capsule, at 4 mm intervals, which allowed reasonably good
correspondence between the pathology slides and the MR slices.

2.2 Registration

The whole-mount pathology slides are registered with the corresponding T2-weighted, DTI and DCE-MRI im-
ages by affine registration followed by B-spline registration. To register the images, prostate region is manually
segmented in both pathology images and DCE-MRI slices and registration is applied on the segmented prostate
region only. The average Dice similarity coefficient (DSC) value between the pathology and T2-weighted im-
ages after registration was 0.93±0.02. The average DSC between T2-weighted and registered DCE image was
0.95±0.03. The same DSC was recorded for T2-weighted to DTI registration. Figure 1 shows one case where the
tumor region from the pathology slide is mapped to the corresponding T2-weighted, DTI and DCE MRI slices.



2.3 Feature Extraction and Classification

In this work, we extracted model-free PCA features from DCE-MRI and diffusivity, 〈D〉 from DTI. To extract the
features, the normal and cancer regions were mapped from the wholemount pathology slides to the corresponding
DCE and DTI slides and the mapped regions were then used to extract features. Each tumor was taken as a
Region Of Interest (ROI) and tumors larger than 100 mm2 were divided into two or more smaller ROIs.

From the dynamic T1-weighted MR images, the intensity values within each ROI were averaged and an
average time course signal was formed. Our approach to data-driven characterization of the DCE time course is
to use a dimensionality reduction method to convert the time series of normalized contrast enhanced T1-weighted
intensities to an optimally sized vector of features. We used the method described in20 for this purpose, and
extracted the most significant principal components with sparse regularized regression through a Least Absolute
Shrinkage and Selection Operator (LASSO) model.

Soft margin Support Vector Machine (SVM) classifier was used to classify cancer and normal tissues with
mpMRI feature combination. The margin violation penalty weight, c, and the Radial Basis Function (RBF)
kernel parameter, γ, were the two parameters to tune. The classifier was tuned by cross-validation on a
leave-one-patient-out basis. We investigated the possible combinations of c and γ by a grid search on c ∈
{2−10, 2−9.5, ..., 210} and γ ∈ {2−10, 2−9.5, ..., 210}, and the cross-validation was targeted at maximizing the
AUC.

3. RESULTS

Correlation of the proposed DCE features with traditional pharmacokinetic features: Our PCA-LASSO approach
to feature extraction from DCE data provides for model-free parameterization. In this work we investigated the
association of these PCA parameters with the pharmacokinetic parameters in the peripheral zone to understand
the potential physical meaning of the PCA features. Figure 2 shows the correlation coefficients of PC param-
eters with pharmacokinetic parameters. For each pharmacokinetic parameter, we have plotted the values and
reported the correlation with the top five PCA features in terms of correlation with that specific pharmacokinetic
parameter. The second principal component showed maximum correlation with Ktrans and the calculated linear
correlation coefficient (ρ) was −0.70. The first principal component showed the maximum correlation with ve
(ρ = 0.53) and the second principal component showed maximum correlation with vp (ρ = −0.57). It is interest-
ing that the first and the second PCA features show maximum correlation with Ktrans which has consistently
performed as the most effective pharmacokinetic parameter in our previous work. This shows that the PCA
features effectively capture the disease-related information of the T1 time series.

Cancer detection in the peripheral zone: At first, we investigated the performance of the data-driven mpMRI
features in the peripheral zone only. We used 191 regions of interest from the peripheral zone of 16 patients
to train and test the classifier. Out of these samples, 92 were from cancer regions and the remaining 99 were
from normal areas. The classifier trained on traditional multiparamteric features, i.e. 〈D〉 and FA from DTI and
Ktrans, ve and vp from DCE MRI, generated an AUC of 0.80. At the optimal threshold of 0.24, the sensitivity
and specificity was 73.9% and 73.7% respectively. When the classifier was trained on the LASSO-isolated PCA
features along with 〈D〉 from diffusion MRI, the area under ROC was 0.91. The number of LASSO-isolated PCA
features to be used in the analysis was determined by forward search algorithm targeted to maximize the AUC.
The sensitivity, specificity and accuracy was 85.9%, 80.8% and 83.2% respectively. The slice-level sensitivity was
defined as the percent of cases where the classifier can detect more than 50% of the total tumor area. In 32
out of 35 slides, the classifier detected more that 50% area of the tumor, resulting in a slice-level sensitivity of
91.4%. Despite the large increase in AUC from traditional mpMRI to our diffusion plus PCA-LASSO features
(from 0.8 to 0.91), the increase was not statistically significant due to small sample size.

Cancer detection in the whole gland: We also investigated the performance of the proposed data-driven
mpMRI feature combination in detecting cancer from the entire prostate gland. We extracted 111 regions of
interest (43 tumor, 68 normal) from the central gland, and combined these samples with the peripheral zone
samples. With traditional multiparametric features, the AUC over 16 patients was 0.68. When the proposed
LASSO-isolated PCA features were used with 〈D〉, the AUC was 0.87. At the optimal threshold of 0.5, the
sensitivity, specificity and accuracy were 80.7%, 82.0% and 81.5% respectively. In 34 out of 40 slides, the
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Figure 2. Correlation of principal components (PC) with pharmacokinetic parameters. Red dots are the tumor samples
and blue dots are the normal samples. ρ denotes the linear (Pearson) correlation coefficient. For each pharmacokinetic
parameters, the five most correlated PCAs are plotted.

Table 1. Area under receiver operating characteristic curve (AUC), sensitivity, specificity and slice-level sensitivity with
different feature combinations.

Features AUC Sensitivity Specificity Slice-level sensitivity

Peripheral Zone Classifier

Traditional mpMRI Features 0.80 (0.12) 73.9% 73.7% 74.3%

〈D〉 and LASSO-PCA Features 0.91 (0.14) 85.9% 80.8% 91.4%

Whole Gland Classifier

Traditional mpMRI Features 0.68 (0.2) 62.2% 63.5% 60.0%

〈D〉 and LASSO-PCA Features 0.87 (0.15) 80.7% 82.0% 85.0%



Table 2. Generated average cancer likelihood values in the format of mean (standard deviation) with different Gleason
scores. The likelihood scores were calculated using the peripheral-zone classifier trained on the proposed mpMRI features.

Normal samples (3+3) and (3+4) tumors (3+4+5) and (4+3) tumors

Number of samples 99 77 15

Average cancer likelihood 0.146 (0.19) 0.651 (0.34) 0.780 (0.27)

3+3

(a) (b) (c)

Figure 3. (a) Peripheral zone tumor marked in pathology slide for one patient. (b) Pathology slide registered to the
corresponding T2-weighted image. (c) The generated cancer likelihood map superimposed on the T2-weighted image.
Note that the classifier is only trained on the peripheral zone. The classifier is trained on all other cases.

classifier detected more than 50% area of the tumor, and hence the slice-level sensitivity was 85.0%. The
statistical significance test between the AUC values with the proposed features and traditional mpMRI features
generated a p-value of 0.4. Table 1 summarizes the classifiers’ performances.

Correlation of the SVM-based cancer likelihood with Gleason score: We analyzed the cancer likelihood values
generated by the peripheral-zone classifier trained on our proposed multiparametric features to find associations
with the Gleason score. Table. 2 shows the mean cancer likelihood values with their corresponding Gleason
scores. The current dataset does not have any case with a primary or secondary score of 5, but a number of
tumors have been marked as 3+4+5, meaning that the pathologist saw a considerable presence of Gleason 5
disease. We grouped the 3+3 and 3+4 tumors together as relatively low risk, and 4+3 with tumors that showed
any Gleason score of 5 as high risks. The mean value of cancer likelihood for tumors with Gleason score (3+3)
and (3+4) was 0.651, calculated over 77 samples. For more aggressive tumors the average cancer likelihood
value was higher than that calculated for less aggressive tumors. We had 15 samples for aggressive tumors with
Gleason score (3+4+5) and (4+3), and the mean likelihood value for these samples was 0.78. For normal samples
the mean likelihood value was 0.146.

Cancer likelihood maps: We used the classifier trained on the proposed mpMRI features (〈D〉 and LASSO-
isolated PCA features) to generate cancer likelihood maps for the prostate gland. To generate cancer likelihood
maps, the classifier was trained on all other patients and each pixel from the image of interest was used as a test
sample for the classifier. To extract the features, each pixel from the T2-weighted MR image was mapped to the
corresponding DTI and DCE MR image, and features were extracted from the mapped pixels. The predicted
cancer likelihood of the classifier was mapped onto the T2-weighted MRI as a single parameter map of cancer
likelihood. Figure 3 shows the cancer likelihood map generated for the peripheral zone of one patient. As can
be seen from the image, the finding of the likelihood map is consistent with the pathology image.

We also generated cancer likelihood maps for the entire prostate using the whole gland classifier trained on
〈D〉 and LASSO-isolated features. Figure 4 shows the cancer likelihood maps for one patient generated for the
entire prostate gland. We generated two cancer likelihood maps: one from the mpMRI features and one from
the DCE features alone, to observe the effect of registration inaccuracy. As can be seen, the generated cancer
likelihood maps detected high likelihood of tumor in the same area where tumor was outlined in the pathology
image. However, the tumor region is deformed in the likelihood map generated from mpMRI features. This
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Figure 4. (a) Peripheral zone tumor marked in pathology slide for one patient. (b) Corresponding DCE image. (c) Cancer
likelihood map generated using the classifier trained on data-driven DCE features only. (d) Corresponding T2-weighted
image. (e) Cancer likelihood map generated using the classifier trained on the proposed mpMRI features, registered to
T2-weighted image.

might be due to the fact that our registration algorithm does not have pixel-level accuracy whereas we used
each pixel as an observation to generate the likelihood map. Hence discrepancy is observed between tumor area
in cancer likelihood maps generated from mpMRI features and DCE features alone, where no registration was
necessary to generate the map. Furthermore, the regions near urethra are erroneously detected as tumor in the
whole gland likelihood map. This might be due to the fact that the tissue pattern is different in these regions,
and one single classifier for the whole gland might not be the best tool to generate cancer likelihood maps. It
might be helpful to train zone-specific classifiers and combine their outcomes to generate whole gland cancer
likelihood maps.

4. CONCLUSION

We have developed an image processing pipeline to detect peripheral prostate cancer from mpMRI using data-
driven DCE features. We combined diffusion feature with data-driven DCE features and reported and AUC of
0.91 for peripheral-zone classifier, and 0.87 for whole gland classifier. We showed correlation of the generated
cancer likelihood scores with their corresponding Gleason scores. Cancer likelihood maps were also generated
for the whole prostate gland that showed higher cancer likelihood in cancerous regions. This shows the potential
of combining the diffusion MR parameter with the data-driven DCE parameters as an imaging biomarker in
prostate cancer diagnosis. The challenge of registration, between DCE and diffusion maps and also to the
pathology reference, remains an obstacle in producing pixel-level likelihood maps.
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