
COMPUTER ASSISTED READING OF CHEST RADIOGRAPHS

Nandinee Fariah Haq, Z. Jane Wang

The University of British Columbia
Vancouver, Canada.

ABSTRACT
Chest radiographs or X-ray images are a common diagnostic
tool to identify different thoracic diseases and other abnor-
mal cardiopulmonary conditions. The advancements of arti-
ficial intelligence paves the way to machine learning based
computer-assisted systems that can support the radiologists
in disease diagnosis and report generation from chest radio-
graphs. In this work we report an implementation of a deep-
learning based framework to interpret the disease signature
from chest X-rays. The model was trained on a large dataset
consisting of both frontal and lateral X-ray images of the chest
with multiple thoracic disease labels. We report a mean area
under ROC curve (AUC) of 0.86, with the AUC of individ-
ual diseases in the range of 0.76 to 0.93. We also generated
disease-level colormaps to visually present the X-ray image
region most indicative of the disease.

Index Terms— X-rays, convolutional neural networks,
densenet, activation maps

1. INTRODUCTION

Chest radiographs are the most frequently performed radio-
logical examinations in clinical routines [1]. Radiographs or
X-ray images are a common diagnostic tool to identify dif-
ferent thoracic diseases and other abnormal cardiopulmonary
conditions [2]. With the advances in medical imaging tech-
nology the amount of radiology examinations ordered is in-
creasing. However the number of radiologists to visually in-
spect and generate reports from the increasing amount of ra-
diographs is inadequate [3, 4]. As a result there is a dramatic
increase in radiologists’ workloads [5] resulting in an increase
in the total radiology turnaround time and reducing the overall
quality of patient care owing to the delays in medical imaging
interpretation [6, 7]. A computer-assisted system to analyse
radiographs for primary screening have the potential to accel-
erate the radiologists’ workflow and thereby improving the
overall quality of healthcare.

With the advancements of artificial intelligence, computer-
assisted systems were reported in literature to better aid the
radiologists in disease diagnosis and report generation. Tra-
ditional feature extraction and machine learning based ap-
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proaches were proposed for the diagnosis of thoracic diseases
from chest X-rays. These approaches include textural or
geometrical feature extraction and a statistical or machine
learning based approach to classify the samples with the tar-
geted disease from other samples [8, 9, 10]. However most
of the studies target one disease and the features used in
detection framework varies vastly across different diseases.

In recent years deep learning based frameworks have
shown to generate promising results in various natural im-
age recognition and detection tasks. The application of deep
learning eliminates the necessity of handcrafted feature ex-
traction thereby making it more applicable for scenarios
where the existence of multiple diseases need to be detected
simultaneously. However deep learning based automatic in-
terpretation of chest X-ray images remain a challenging job
due to the shortage of publicly available large scale med-
ical datasets [11]. Earlier works in this research direction
therefore mostly used networks pre-trained on other image
databases to extract features [12, 13]. However medical im-
ages can be very different from other images and hence pre-
trained networks might not be the proper feature extractor for
them.

A very basic requirement in applying advanced machine
learning frameworks to successfully interpret medical images
is access to sufficient data. Recently two large scale dataset
on chest X-ray images have been released publicly to facili-
tate further research on medical image interpretation [14, 15].
A few studies have been reported since the publication of
the dataset in [14] that tackle the detection and diagnosis
of thoracic diseases with a deep-learning based framework.
Most of these studies focussed on detecting one disease from
others [16], or implemented one deep learning based network
per disease class to detect each diseases separately [14, 17],
with a few taking into account the dependencies between dis-
ease labels [18, 19]. However the automatic labeller used for
this dataset to extract disease labels from radiology reports
later shown to perform weakly when applied to a more recent
dataset in [15], where a more reliable labeller was proposed
and the dataset and the labeller is since applied to more ac-
curate detection framework in [20], which only focussed on
detecting diseases from frontal chest X-rays and reported the
best result with a framework that converts the multi-label
detection problem using several single-label classifier. How-
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ever, using single-label detectors in a multi-label settings
assumes that the disease labels are independent, whereas in
medical settings there are significant dependencies between
the disease labels which should be taken into account when
classifying multiple diseases simultaneously [18].

In this work, we implemented a deep learning based
framework to facilitate the reading of chest radiographs. The
model was trained on large chest X-ray dataset and was de-
signed to simultaneously generate multi-label predictions of
common thoracic diseases from both frontal and lateral chest
radiographs. A visualization colormap is then generated
to highlight the image region that is most indicative of the
predicted diseases.

2. MATERIALS AND METHODS

2.1. Dataset

For this work we used the recently published CheXpert
dataset [15], which is a large publicly available dataset of
chest radiographs. The dataset contains 223,648 chest X-ray
images among which 191,229 images are frontal chest X-rays
and the rest 32,419 are lateral X-rays. The images are ob-
tained between 2002 and 2017 from 64,740 unique patients,
with 35,917 male and 28,822 female subjects. The disease
labels were generated using an automatic rule-based labeler
from their associated radiology reports. The labeler classified
the labels as positive, negative and uncertain values, where
uncertain label is assigned when it has no positive mentions
and atleast one uncertain mention in the associated radiologist
reports. For this work we used nine disease labels based on
their prevalence in the dataset. The disease labels and their
number of samples is reported in Table. 1. Table. 2 reports
the number of frontal and lateral images in the dataset for
each disease positive samples. Fig. 1 shows a few frontal
posterior-anterior (PA) images from the dataset with different
disease labels.

Table 1: Number of cases from different disease types with
positive, negative and uncertain labels.

Disease label Positive Negative Uncertain
Atelectasis 33,456 156,453 33,739
Cardiomegaly 27,068 188,493 8,087
Consolidation 14,816 181,090 27,742
Edema 52,291 158,373 12,984
Lung Opacity 105,707 112,343 5,598
Pneumonia 6,047 198,831 18,770
Pneumothorax 19,456 201,047 3,145
Pleural Effusion 86,254 125,766 11,628

Table 2: Number of frontal/lateral images per disease-
positive samples.

Disease label Frontal Lateral
Atelectasis 29,795 3,661
Cardiomegaly 23,451 3,617
Consolidation 13,015 1,801
Edema 49,717 2,574
Lung Opacity 94,328 11,379
Pneumonia 4,683 1,364
Pneumothorax 17,700 1,756
Pleural Effusion 76,963 9,291

Atelectasis Cardiomegaly Consolidation Edema

Lung Opacity Pneumonia Pneumothorax Pleural Effusion

Fig. 1: Example of frontal posterior-anterior (PA) images
from the dataset for different diseases.

2.2. Method

Our framework to classify the disease labels consists of three
parts: data preprocessing, disease likelihood generation and
disease localization. At first, the images were downsampled
to a manageable size of 320 × 320 pixels and normalized to
a range of [0,1]. The dataset was then passed through a data
augmentation block that horizontally flips the X-ray images
to generate more data. A deep convolutional neural network
is then trained on the augmented data to generate disease like-
lihood from the X-ray images.

In this work we considered a model proposed in [21]
which consists of densely connected convolutional layer
blocks, known as DenseNet. Within the dense blocks each
convolutional layer has a feed-forward connection to every
other layers. We have used a DenseNet model with four dense
blocks and four convolutional blocks. The structure of the
network is shown in Fig.2. The output layer consists of eight
fully-connected dense layer. To allow multi-label classifica-
tion sigmoid function is used as the activation function in the
output layer. The initial weights of the last fully connected
layer was generated by the scheme proposed in [22]. The
initial weights for other layers are assigned from a model
pretrained on ImageNet dataset [23].

The dataset is multi-label and has uncertain labels for one
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Fig. 2: Deep network architecture.

or more diseases to a lot of samples, and if all the samples
with one or more uncertain labels are removed, the dataset
size decreases as well which is not ideal for training a deep
network. Hence here we have included all the samples to
train the network and ignored the uncertain labels while up-
dating the gradient during training. It is also a highly im-
balanced dataset, with different number of samples for each
diseases, and almost 2 to 14 times more negative samples that
the positive ones, as can be seen from Table. 1. To handle the
class imbalance, we optimized the following weighted binary
cross-entropy function as a loss function during training:

LX|y =

i∑
y∈{0,1}

−wi+×yilog(ȳi)−wi−×(1−yi)log(1− ȳi)

(1)

where, wi+ =
|ni−|
N

; wi− =
|ni+|
N

where LX|y is the loss term for sample X with the label
y, yi is the ground truth label for disease class-i and ȳi is the
predicted likelihoo. |ni+| and |ni−| are the total number of
positive and negative samples respectively for class-i and N
is the total number of samples.

Finally, we generated disease-level colormaps to visualize
the location of the diseases predicted by the network. To gen-
erate the colormaps, we incorporated a technique proposed in
[24]. Let for a given image I(x, y), Xm(x, y) is them-th fea-
ture map of the last convolutional layer and ωm

i is the weight

Fig. 3: Receiver operating characteristic curve for the .

term corresponding to class-i for the m-th feature map at the
last classification layer. Then the i-th disease-level colormap
for image I(x, y) is generated as:

Ci|I(x,y) =
∑
m

ωm
i ×Xm(x, y) (2)

The generated disease-level colormap is then upsampled
to the dimension of the original image and overlayed on the
image for visualization.

3. RESULTS

We trained the deep network model with the with a batch size
of 32 for 20 epochs. The initial learning rate was 10−4 and the
learning rate was reduced by a factor of 10 each time a plateau
was reached in the training loss. The network was trained
with the Adam optimizer with β1 = 0.9 and β2 = 0.999. The
network was trained on a Titan X GPU.

The receiver operating characteristic (ROC) curves for the
different disease labels on the test dataset is shown in Fig. 3.
The trained model achieved a mean area under ROC (AUC)
curve of 0.86. The best performing labels were Consolida-
tion (AUC 0.93), Pleural Effusion (AUC 0.93), Edema (0.93)
and Opacity (AUC 0.91). The worst performing label was
Pneumonia, with an AUROC of 0.76. This is partly because
pneumonia is not entirely a radiologic diagnosis, rather it is
a clinical diagnosis where other clinical information are in-
corporated to make a decision. However in this work only
radiographs are used to generate the predictions.

We also compared the performance of the implemented
framework with results reported in [20]. Table. 3 shows the
comparison between the AUCs of the two approaches. As
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(a) (b)

Fig. 4: Disease level colormap for a patient with ground truth
label of Cardiomegaly. (a) The original X-ray image. (b)
Generated Cardiomegaly colormap showing area indicative of
the disease.

can be seen, our implementation outperforms the literature-
based approach for most of the diseases. The mean AUC for
the literature based approach on these eight diseases is 0.82,
whereas we report an AUC of 0.86 on detecting these eight
diseases.

Table 3: Comparison with the state-of-art method on CheX-
pert dataset.

Disease Allaouzi Our
label et al. [20] Implementation

Atelectasis 0.72 0.81
Cardiomegaly 0.88 0.84
Consolidation 0.77 0.93

Edema 0.87 0.93
Lung Opacity 0.76 0.91

Pneumonia 0.79 0.76
Pneumothorax 0.86 0.80

Pleural Effusion 0.90 0.93

We also generated disease-level colormaps to visualize
the areas of the image that generated the class predictions.
Fig. 4 shows an example of the disease-level colormaps
where the image sample has a single positive disease label-
cardiomegaly. The generated cardiomegaly-colormap shows
the image region that influenced the labelling decision of the
deep network. Fig. 5 shows another test image where the
ground truth positive labels were pleural effusion and lung
opacity. Visual inspection reveals opacities in the left lung.
The generated pleural effusion colromap and lung opacity
colormap both highlights the area around the left lung.

4. CONCLUSION

In this work we implemented a framework to extract disease-
level colormaps from chest radiographs. We trained a deep
convolutional neural network on a recently published dataset
that consists of lateral and frontal chest X-ray images from

(a)

(b) (c)

Fig. 5: Disease level colormap for a patient with ground truth
diagnosis of pleural effusion and lung opacity. (a) The orig-
inal X-ray image. (b) Generated Pleural Effusion colormap.
(c) Generated Lung Opecity colormap

a large number of subjects. The trained model utilizes a
multi-label classification setting thereby incorporating the de-
pendencies between disease labels. By training a DenseNet
model on eight most prevalent diseases on the dataset we
have achieved a mean AUC of 0.86, with individual disease
AUCs ranging from 0.76-0.93. We then generated disease-
level colormaps to visualize the area of the image that mostly
influenced the prediction of the diseases. The colormaps
highlight the area that should be paid more attention to while
generating radiology reports, thus it can help towards better
radiologic reading of chest X-rays. One possible limitation
of the work is the absence of radiologists’ input on the val-
idation of the colormaps. In future we plan to implement a
validation framework to include radiologists’ annotation to
verify the colormaps and improve the localization accuracy
of the model.
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