

DEEP LEARNING FEATURE BASED MEDICAL IMAGE RETRIEVAL FOR LARGE-SCALE DATASETS

Nandinee Fariah Haq^{*1}, Mehdi Moradi², Z. Jane Wang¹,

¹University of British Columbia, Vancouver, Canada, ²IBM Almaden Research Center, San Jose, USA * email : nandinee@ece.ubc.ca

Electrical and Computer Engineering

Lung Opacity

Motivation

 \succ With the hike in the number of radiology examinations ordered, there is a substantial surge in the radiologists' workloads, resulting in a longer radiology turnaround time ^[1].

A computer-assisted system to automatically extract previously diagnosed radiographs with similar image-content can be a helpful tool to guide the

 \succ Large-scale chest X-ray dataset^[4] ► 223,648 chest X-ray images ▶191,229 frontal and 32,419 lateral >64,740 subjects \succ Nine disease labels

Dataset

Atelectasis Cardiomegaly

diagnosis accelerating the radiologists' workflow and thereby improving the overall quality healthcare^[2].

 \blacktriangleright Medical images are more difficult to analyze compared to generic images, owing to the complex imaging parameters, interactions between different diseases, and subtle differences between images with different diagnosis^[3].

Framework

code generator to eliminate the need for manual feature selection and to benefit from a large dataset similar image subspace extract

Comparison

Method	AvG
Lan <i>et al.</i> ^[6]	0.31
Chen <i>et al.</i> ^[7]	0.42
Our Approach	0.57

AvG = $\frac{\sum_{n=1}^{K} s_n}{K}$; s_n = common labels shared between query and retrieved image at position-n

Future Works

- \succ Incorporating clinical information in the retrieval system
- Combined supervised image code generation and clustering

Atl/Eff	Opc/Atl/Eff/Enl(un)	Opc/Eff	Opc/Edm/Eff	Enl/Opc/Eff	Opc/Eff
			Order and	Dire (pino)	

Opc/Cons/Eff Query

Opc/Eff

Enl/Cm/Opc/

Cons/Eff/Cm/Edm Opc/Eff/Edm Opc/Eff **Retrieved Images**

Cons/Eff

Opc:Lung Opacity, Eff:Pleural Effusion, Enl:Enlarged Cardiomediastinum, Atl:Atelectasis, Edm:Edema, Cons:Consolidation, un:uncertain

References

[1] Bastawrous, S. et al. (2017), Jrnl. of Digtl. Img. 30:309–313. [2] Akgul, C.B. et al. (2011), Jrnl. of Digtl. Img. 24:208–222.

[3] Li, Z. et al. (2018), Med.Img.Analys.43:66-84. [4] Irvin J. et al. arXiv: 1901.07031, 2019. [5] Haq, N.F. et al. (2019), Patten

Recog., 122:14–22. [6] Lan R. et al. (2018), Mult.Tools.Appl. 77(9):10853:10866. [7] Chen Z. et al. (2018), MICCAI, 620-