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A B S T R A C T

A computer assisted system for automatic retrieval of annotated medical images with
similar image contents can serve as an e�cient management tool for handling and min-
ing large scale data, and can also be used as a tool in clinical decision support systems.
In this paper, we propose a deep community based automated medical image retrieval
framework for extracting similar images from a large scale X-ray database. The frame-
work integrates a deep learning-based image network generation approach and a net-
work community detection technique to extract similar images. When compared with
the state-of-the-art medical image retrieval techniques, the proposed approach demon-
strated improved performance. We evaluated the performance of the proposed method
on two large scale chest X-ray datasets, where given a query image, the proposed ap-
proach was able to extract images with similar disease labels with a precision of 85%.
To the best of our knowledge, this is the first deep community based image retrieval
application on large scale chest X-ray database.

c� 2020 Elsevier B. V. All rights reserved.

1. Introduction

Chest X-rays are the most frequently performed radiological
examinations in clinical routines to identify di↵erent abnormal
thoracic and cardiopulmonary conditions (Folio, 2012). With
the advances in medical imaging technology and the subse-
quent hike in the number of radiology examinations ordered,
there is a substantial surge in the workload of radiologists
(Hosny et al., 2018). This, in turn, results in a longer radiology
turnaround time hence reducing the overall quality of patient
care (Bastawrous and Carney, 2017; Rimmer, 2017). A com-
puter assisted system to automatically analyze and extract pre-
viously diagnosed X-rays with similar image content can be a
helpful tool to guide the diagnosis and the process of generating
a radiology report (Akgül et al., 2011). This in turn can accel-
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erate the radiology workflow and thereby improve the overall
quality of healthcare.

Content based image retrieval (CBIR) has been an active
area of research in the field of computer vision for the past 20
years. In content based retrieval systems, the database images
are first represented in terms of a set of associated features com-
puted directly on the image content. During retrieval, given a
query image, similar images are selected from a database of
images based on their feature similarity with the query im-
age. Traditionally, CBIR systems were developed by design-
ing discriminant handcrafted features. However, with hand-
crafted features, the challenge remains to reduce the “semantic
gap”, which is the information lost in the process of designing
low-dimensional features to represent all information an image
contains (Qayyum et al., 2017). This gap can be reduced with
the help of machine learning based techniques where an intelli-
gent system is trained to automatically generate a discriminant
feature space. Given su�cient data, deep learning networks
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automatically learn complex features at multiple levels of ab-
straction without using handcrafted features. With the recent
advancement of deep learning based techniques and with the
availability of large scale and ever-increasing number of digi-
tal image databases, the research community has now moved
towards the implementation of deep learning based CBIR sys-
tems (Torralba et al., 2008; Lai et al., 2015; Liu et al., 2016a).

Although image retrieval systems have been extensively
studied for natural image retrieval tasks, the application of the
retrieval framework in medical images, especially in radiology
images still remains a challenging task (Zhang and Metaxas,
2016; Akgül et al., 2011). This is partly because medical im-
ages are more di�cult to analyze when compared to natural
images, owing to the complex imaging parameters, interactions
between di↵erent diseases, and subtle di↵erences between im-
ages with di↵erent diagnosis decisions (Li et al., 2018). Nev-
ertheless, e↵orts have been made to develop medical image re-
trieval systems in recent years. Most of the literature reports
retrieval based on handcrafted or shallow learning based fea-
tures from di↵erent medical image modalities (Quellec et al.,
2011; Rahman et al., 2011; Zhang et al., 2014; Lan et al., 2018).
However, shallow learning based features are not applicable
when designing a retrieval system for a large scale database
(Li et al., 2018). Deep learning based systems have the po-
tential to become a suitable tool for large scale medical im-
age retrieval. However, content based image retrieval has not
seen many successful applications of deep learning yet (Litjens
et al., 2017), partly due to the unavailability of large scale ra-
diology datasets. The current deep learning based radiology
image retrieval approaches mostly use models pre-trained on
other image databases (Anavi et al., 2015; Shah et al., 2016),
or a model with fewer layers trained with a smaller dataset (Liu
et al., 2016b; Conjeti et al., 2017; Chen et al., 2018). However
medical images can be very di↵erent from natural images and
hence pre-trained models might not be the proper feature ex-
tractor for medical settings. The dominance of deep learning
is mainly a result of the availability of large training datasets.
Therefore, similarly, a domain specific model trained on a well-
annotated single modality large image dataset can be a mean-
ingful way to leverage the full potential of deep learning tech-
niques for medical image retrieval systems.

In this work, we present a deep-community based large scale
medical image retrieval framework for radiology images. The
framework utilizes a deep neural network model trained on
chest X-ray images to generate image representative codes. To
implement an e�cient search engine for the medical image re-
trieval task, the database is divided o✏ine into communities of
most similar images using a network community extraction ap-
proach. The extraction of similar images is formulated as a
novel region growing based sub-network extraction problem
from a graph network of database images. To extract simi-
lar images we maximize the community quality metric named
weighted modularity that takes into account the strength of
the formed image community and the di↵erence between the
edges within the image community from that of a randomly dis-
tributed network. The framework is evaluated on two recently
published large scale chest X-ray image datasets. To the best

of our knowledge, this is the first deep community based image
retrieval application on large scale chest X-ray datasets.

2. Materials and Methods

In this section, we describe the datasets used for this work
and the proposed framework for large scale medical image re-
trieval. We formulate the medical image retrieval from a large
scale dataset as a deep leaning based community extraction
problem. Our framework for large scale medical image re-
trieval consists of three parts: image code generation from a
deep neural network model, graph network formulation, and
similar image community formation. The framework is shown
in Fig. 1 which includes the major components described in
Sections 2.2-2.5.

2.1. Datasets
For this work, we used two publicly available large scale

datasets of chest X-rays. The first dataset is the ChestX-ray8
dataset from the National Institutes of Health (NIH) (Wang
et al., 2017) that contains 112,120 frontal-view X-ray images
from 30,805 unique patients, among which 16,630 are male and
14,175 are female. The images were collected from the year
1992 to 2015 and have associated text-mined disease labels.
The disease labels were mined from the associated radiological
reports using natural language processing algorithms. Thirteen
common thoracic disease labels are used in this work which are
reported in Table 1, along with the numbers of positive and neg-
ative samples in the dataset. The dataset is multi-label, i.e. each
chest X-ray image can bear more than one positive disease la-
bel. The dataset includes 67,310 PA view images and 44,810
AP view images.

The second dataset used here is the CheXpert dataset released
by a team at Stanford University (Irvin et al., 2019). The dataset
contains 223,648 chest X-ray images from 64,740 unique pa-
tients, with 35,917 male and 28,822 female subjects. The im-
ages were obtained between 2002 and 2017. Among the X-ray
images, 191,229 images are frontal chest X-rays and the rest
32,419 are lateral X-rays. The disease labels were generated
using an automatic rule-based labeler from their associated ra-
diology reports. The labeler classified the labels as positive,
negative and uncertain value. The uncertain label is assigned
when it has no positive mentions and at least one uncertain men-
tion in the associated radiologist reports. In this work, we used
nine disease labels based on their prevalence in the dataset. The
disease labels and their number of samples are reported in Ta-
ble 1. Fig. 2 shows a few frontal posterior-anterior (PA) images
from these datasets with di↵erent disease labels.

2.2. Image Code Generation
We start with a database of N X-ray images In’s with associ-

ated disease labels yn’s, D = {In|yn}Nn=1. The dataset is normal-
ized and passed through a data augmentation block that hori-
zontally flips the X-ray images randomly on the fly. A deep
CNN based model is then trained on the augmented data to gen-
erate the disease likelihood from the X-ray images. In this work
we considered a DL model proposed in Huang et al. (2017)
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Fig. 1. Illustration of the proposed framework.

Table 1. Description of the datasets. Number of cases from di↵erent disease types with positive, negative and uncertain labels.

Disease label NIH Dataset Stanford Dataset
Positive Negative Positive Negative Uncertain

Atelectasis 11,559 100,561 33,456 156,453 33,739
Enlarged Cardiomediastinum - - 10,907 200,338 12,403
Cardiomegaly 2,776 109,344 27,068 188,493 8,087
Consolidation 4,667 107,453 14,816 181,090 27,742
Edema 2,303 109,817 52,291 158,373 12,984
Pneumonia 1,431 110,689 6,047 198,831 18,770
Pneumothorax 5,302 106,818 19,456 201,047 3,145
Pleural E↵usion 13,317 98,803 86,254 125,766 11,628
Lung Opacity - - 105,707 112,343 5,598
Infiltration 19,894 92,226 - - -
Emphysema 2,516 109,604 - - -
Pleural Thickening 3,385 108,735 - - -
Fibrosis 1,686 110,434 - - -
Nodule 6,331 105,789 - - -
Mass 5,782 106,338 - - -

which consists of densely connected convolutional layer blocks,
known as DenseNet. Within the dense blocks, each convolu-
tional layer has a feed-forward connection to every other layer.
Neural networks based on dense blocks have shown superior
performances for chest X-ray based applications (Irvin et al.,
2019). Moreover, due to the flow of gradients throughout the
model, dense block based architectures are easy to train and
hence are preferable for training a deep neural network model
with smaller training set (Lee et al., 2015; Huang et al., 2017).

In this work, specifically, we have employed a DenseNet
model with four dense blocks and four convolutional blocks.
The structure of the model is shown in Fig. 3. The out-
put layer consists of a fully-connected sigmoid function-based
dense layer to allow for multi-label classification. The weights
are initialized from a model pre-trained on ImageNet dataset
(Deng et al., 2009) and then the model architecture is trained
on the chest X-ray dataset.

The medical image datasets used in this work are highly im-

balanced datasets, with di↵erent numbers of samples for di↵er-
ent diseases, and almost 2 to 14 times more negative samples
than the positive ones, as can be seen from Table 1. To handle
the class imbalance concern present in the datasets, we propose
optimizing the following weighted binary cross-entropy func-
tion as the loss function during training :

LI|y =
jX

y j2{0,1}
�wj+ ⇥ y jlog(ȳ j) � wj� ⇥ (1 � y j)log(1 � ȳ j) (1)

where, wj+ =
|n j�|
N

; wj� =
|n j+|
N

where LI|y is the loss term for image I with the label y, y j is
the ground truth label for disease class- j and ȳ j is the predicted
likelihood. |n j+| and |n j�| are the total number of positive and
negative samples respectively for class- j.

After training the DenseNet model, the 1024 dimensional
feature vector from the second last layer was extracted for each
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mediastinum
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Fig. 2. Examples of frontal posterior-anterior (PA) images from the
datasets for di↵erent disease labels.

image. The feature vector, in was then used as the image rep-
resentative code for image In in the dataset and the codes were
saved with the associated images in the database, D = {In !
in|yn}Nn=1. We denote the deep learning process of generating
image codes from the associated images as Fcode : I ! i.

2.3. Graph Network Formulation
The next step of the framework consists of generating a graph

network of similar images. The database can be considered as
a network of images where similar images are strongly con-
nected with each other whereas images that are di↵erent are
either loosely connected or unconnected. From the database, a
graph network G(I, E) was generated where I = {In|n 2 [1,N]}
represents the nodes of the network and E = {emn|emn =
Fedge(im, in),m 2 [1,N], n 2 [1,N]} denotes the edges. The edge
between two image nodes Im and In were calculated from their
corresponding code vectors im = Fcode(Im) and in = Fcode(In)
by an edge generating function Fedge as follows:

emn = Fedge(im, in) = �T
⇣ im · inp

im · im
p

in · in
⌘

(2)

where,

�T (x) =

8>><
>>:

x, if x  T
0, otherwise

(3)

The edge vector emn 2 {0, 1} and emn = 1 denotes the pres-
ence of an edge between samples Im and In. The threshold T is
selected to ensure that the graph network is sparse. In our large
scale network problem, for a network with N > 105 nodes, the
threshold is heuristically selected so that the total number of
edges is in the order of 1010.

Table 2. Definition of variables.
G(I, E) Graph with nodes I and edges E

N Total number of nodes in the network, N = |I|
L Total number of edges in the network, L = |E|
nu Total number of vertices in community-u
du Sum of degrees of vertices in community-u
lu Total number of edges within community-u

lext
uv Total number of edges between communities u and v
qu Modularity term of community-u, defined in Eqn. 4
�u Weight term for community-u, defined in Eq.5
Q Weighted modularity, defined in Eq.4

CN⇥1 Community label vector

Algorithm 1 Image Community Formation
Input: Network, G(I, E)
Output: Image community labels, C

1: Initialize: Ḡ(V̄ , W̄) G(I, E), V̄  {i|8i 2 I}
2: outer  TRUE
3: while outer do
4: inner  TRUE
5: C  {{i}},8i 2 V̄
6: lc  

P
wi j,8i 2 c,8 j 2 c

7: dc  
P

wi j,8i 2 c,8 j 2 V̄
8: while inner do
9: for i 2 V̄ do

10: c̄ arg max
c⇤
{�qi!c⇤ , qi!c⇤ > 0} ; 8c ⇤ s.t. wi j >

0, j 2 c⇤
11: dc̄  dc̄ +

P
j2V̄ wi j; lc̄  lc̄ +

P
j2c̄ wi j

12: dc  dc �
P

j2V̄ wi j; lc  lc �
P

j2c wi j
13: c̄ c̄ [ {i}; c c \ {i}
14: end for
15: if no movement possible then
16: inner  FALS E
17: end if
18: end while
19: V̄  {c}; 8c 2 C
20: W̄  {wcc̄|wcc̄ =

P
i2c, j2c̄ wi j, c 2 C, c̄ 2 C}

21: if no change in communities then
22: outer  FALS E
23: end if
24: end while
25: return C

2.4. Image Community Formation

The next step of the framework consists of finding similar
image clusters from the database of images. From the net-
work G, we can extract similar image clusters by optimizing
a community quality metric named the weighted modularity,
that has the ability to find clusters from networks without re-
quiring any prior knowledge regarding the number and sizes of
clusters (Haq et al., 2019). For a graph G with N nodes which
are divided into c communities, the weighted modularity of the
partition is defined as:
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Fig. 3. Architecture of the deep neural network model.

Q =
cX

u=1

�u

 lu
L
�
✓ du

2L

◆2 �
=

cX

u=1

�uqu (4)

where,
�u = 1 + ⇣u (5)

⇣u =

8>><
>>:

0, f or coarse communities;
2lu

nu(nu�1) , f or f iner communities.
(6)

Here, nu is the total number of nodes and lu is the total num-
ber of edges within community-u. du means the sum of degrees
of vertices in community-u and L is the total number of edges
in G. The related variables are defined in Table 2. The first
term �u from Eqn. 4 denotes how strong the community is, and
the second term qu represents the di↵erence between the frac-
tion of edges that exist within the members of the community-u
and the expected such fraction if the edges were distributed at
random. Modularity maximization based methods target to find
such a partition of the network for which the modularity in Eq.
4 is the maximum. ⇣u = 0 is used to find bigger communities,
and ⇣u = 2lu

nu(nu�1) is used to extract smaller communities from
a large network. Here we used �u = 1 for coarse-level image
community generation. Eqn. 4 then reduces to the traditional
modularity equation (Newman and Girvan, 2004).

Since our network is large, to extract image communities
from the graph network G, we adopt an approach proposed
in Blondel et al. (2008), which is a heuristic method to ex-
tract approximate communities from very large networks. This
method has two phases that are repeated iteratively. With this
approach, we start by assigning each node into separate com-
munities. Then for each image node, In, we consider the neigh-
bour Im of In and calculate the gain in terms of Q if In is placed
in the community of Im. When ⇣u = 0, the change in Q when
an isolated node In with its own community n is placed in the
community c can be computed by:

�qn!c =

"
lc + lext

nc

2L
�
✓dc + dn

2L

◆2#
�
"

lc
2L
�
✓ dc

2L

◆2
�
✓ dn

2L

◆2#
(7)

Here, lc is the total number of edges within community-c, dc
is the sum of degrees of nodes within c. dn denotes the de-
gree of the isolated node In and lext

nc is the total number of edges
between In and the nodes within community-c. The method
computes the gain in Q from Eqn. 7 for each node In and the
node is placed in the community c for which the gain �qn!c
is the maximum. The process is applied sequentially for all
nodes until no further increment in Q can be achieved. Sup-
pose we get a total number of c̄ communities from the first
phase. The second phase of the algorithm builds a new graph,
Ḡ(V̄ , W̄) whose nodes, V̄ = {i|i 2 [1, c̄]} represent the commu-
nities found from the first phase, and the weights of the edges,
W̄ = {wi j|i 2 [1, c̄], j 2 [1, c̄]} between these new nodes are
denoted by the total number of edges between the nodes in
the corresponding communities. The total number of edges
between the nodes of a community generate self-loops in the
newly formed graph. Then the first phase of the algorithm is
applied to the newly formed graph. Since this is a weighted
network the variables from Eqn. 7 becomes:

lc =
X

i2c, j2c
wi j; dc =

X

i2c, j2V̄
wi j

dn =
X

j2V̄
wn j; lext

nc =
X

j2c
wn j;

L =
P

i2V̄ , j2V̄ wi j

2

(8)

These two phases are applied to the network repeatedly. The
above method to generate image community is outlined in Al-
gorithm 1. Since the number of communities decreases at each
two phase iteration, the network size decreases. Hence this
approach is applicable for extracting communities faster from
larger networks. The process terminates when no further im-
provement in modularity is observed, and the resulting partition
is returned. The database is then updated with the clustering la-
bel associated with each image,D = {In ! in|yn,Cn}Nn=1, where
C = {Cn|Cn 2 [1, c], n 2 [1,N]} means the community labels
representing the resulting partition that divides the image nodes
into c-communities.
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Table 3. Disease labels considered for the datasets.
Dataset Disease Labels Considered

NIH Atelectasis, Cardiomegaly, E↵usion, Pneumothorax, Emphysema, Pleural Thickening, Fibrosis,
Consolidation, Edema, Pneumonia, Infiltration, Nodule, Mass

NIH-U Atelectasis, Cardiomegaly, E↵usion, Pneumothorax, Emphysema, Pleural Thickening, Fibrosis,
(consolidated labels) Opacities (includes Consolidation, Edema, Pneumonia, Infiltration), Lesion (includes Nodule, Mass)

Stanford Atelectasis, Enlarged Cardiomediastinum, Cardiomegaly, Pleural E↵usion, Pneumothorax,
Lung Opacity, Consolidation, Edema, Pneumonia

Stanford-U Atelectasis, Enlarged Heart (includes Enlarged Cardiomediastinum, Cardiomegaly), Pleural E↵usion,
(consolidated labels) Pneumothorax, Opacities (includes Lung Opacity, Consolidation, Edema, Pneumonia)

Algorithm 2 Top-K similar image retrieval for a query image,
Iq

Input: G(I, E) ,C, Fcode, Fedge, Iq, K
Output: Retrieved Images, R

1: Initialize: Ḡ(Ī, Ē) G(I, E)
// Add query image to G and assign a separate community,
cq

2: R {{Iq, cq}}
3: iq  Fcode(Iq)
4: Ī  Ī [ R
5: Ē  Ē [ {eqn|eqn = Fedge(iq, in),8n 2 I}
6: C̄  C [ {cq}
7: while |R \ Iq| < K do
8: c = arg max

c̃2C̄\{cq}
�QR[c̃

9: Rs  {{u}}; 8u 2 c
10: if |R [ Rs| < K then
11: R R [ Rs
12: else
13: Es  {euv|u 2 R [ Rs, v 2 R [ Rs}
14: Cs  {{u}},8u 2 Rs
15: Generate subgraph: Gs(R [ Rs,Es)
16: for u 2 Rs \ (Rs \ R) do
17: Iu  arg max

u
�QGs

u!R

18: R R [ {Iu}
19: if |R \ {Iq}| � K then
20: break while loop
21: end if
22: end for
23: end if
24: end while
25: return R

2.5. Similar Image Retrieval

After training the deep neural network model and forma-
tion of similar image community, the next step of the frame-
work consists of extractingK similar images for a query image.
Given a query image, Iq, at first its image representative code,
iq, is extracted from the trained model, iq = Fcode(Iq). We then
place the query image node in the graph network, G. The edges
between the query image node and the database image nodes
are generated based on their code similarity as follows:

eqn = Fedge(iq, in) = �T
⇣ iq · inp

iq · iq
p

in · in
⌘
; 8n 2 I (9)

The updated graph network Ḡ = (I [ {iq}, E [ {{eqn}}) is then
used to extract theK most similar images. For this purpose, we
implement a region growing algorithm based on the maximiza-
tion of the weighted modularity to extract K similar images.
The proposed algorithm is outlined in Algorithm 2. We start
with a region, R, with a community label cq that only includes
the query image node iq. We then assign database images nodes
to R iteratively until K images are retrieved. This is a two step
process which is repeated until K images are retrieved. At the
first step, we solve for the image community, c, which is closest
to the query image node in terms of weighted modularity. Then
the second step begins, where we confine our search space to
find K most similar images only to those nodes that belong to
the image community c. If the query image node iq, with a sep-
arate community cq, is placed in the image community c, then
from Eqn. 4, the gain in terms of the weighted modularity can
be expressed as:

�Qcq[c = �cq[c ⇥ qcq[c � [�cq ⇥ qcq + �c ⇥ qc] (10)

Here, qc and �c are the modularity and the weight term of the
image community c, and qiq and �iq are the terms for the query
image iq. qcq[c and �cq[c are the modularity and the weight term
for the community generated if iq is placed in the community c.
Since hereK ⌧ N, for the retrieval we used the ⇣ value for finer
communities in Eqn. 6. From Eqn. 4, following the notations
defined in Table 2, these terms can be expressed as:

�c = 1 +
2lc

nc(nc � 1)
; qc =

lc
L + diq

� 1
4

✓ dc

L + diq

◆2

�cq = 1 +
2lcq

ncq (ncq � 1)
; qcq =

lcq

L + diq
� 1

4

✓ dcq

L + diq

◆2 (11)

Here diq means the degree of the query node, iq. Similarly
the terms �cq[c and qcq[c can be expressed as:

�cq[c = 1 +
2lcq[c

ncq[c(ncq[c � 1)

qcq[c =
lcq[c

L + diq
� 1

4

✓ dcq[c

L + diq

◆2 (12)

where,
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ncq[c = nc + ncq

dcq[c = dc + dcq

lcq[c = lc + lcq + lext
ccq

(13)

To find the closest community, we solve for c which gen-
erates the maximum increase of weighted modularity if the
query image node iq is placed in the community-c, i.e. c =
arg max

c̃
�QR[c̃. We then extract the sub-network forming the

community c, Gs(Vs, Es) and confine our search space to select
similar images to the nodes of the community-c, Vs.

To retrieve K similar images, we first assign each node of
the sub-network into their own separate communities. So at
the first step, we start from |Vs| number of communities, where
|Vs| is the total number of nodes and |Es| is the total number
of edges in Gs. Then the increase in weighted modularity is
calculated if any node is placed in the region, R with the query
node, iq. Finally, the node that generates the maximum increase
in weighted modularity is placed in the region R. Following the
notations of Table 2, the gain in weighted modularity if node- j
with community j is moved to R can be expressed as:

�QGs
j!R = � j!R ⇥ q j!R � [�R ⇥ qR + � j ⇥ q j] (14)

where q j!R and � j!R are the modularity and the weight term
for the new community generated if j is merged with R. Let
us assume that lR denotes the number of edges within R, dR is
the sum of degrees of the nodes in R, d j is the degree of node-
j, and lext

j!R denotes the total number of edges between node- j
and the nodes in the region R. Then the terms of Eqn.14 can be
expressed as follows:

� j = 1; �R = 1 +
2lR

|R|(|R| � 1)
q j = �(d j/2|Es|)2;

qR = (lR/|Es|) � (dR/2|Es|)2

� j!R = 1 + 2
lR + lext

j!R
|R|(|R| + 1)

q j!R =
lR + lext

j!R
|Es|

�
✓dR + d j

2|Es|
◆2

(15)

At each iteration step, we solve for the image node u that
generates the maximum weighted modularity gain if merged
with R, i.e. u  arg max

j
�QGs

j!R. This process is repeated

and image nodes are merged repeatedly to R. The process ter-
minates when K image nodes are retrieved. If |Vs| < K , then
after retrieving the nodes of community c, the first step of the
algorithm is repeated, i.e. the algorithm searches for the closest
image community from the rest of the communities. This two
step process is repeated untilK image nodes are retrieved or no
increase in weighted modularity is possible, i.e. no increment
in weighted modularity is observed by merging any remaining
nodes to R. The images that belong to the region R is then
returned as the retrieved images.

Table 4. Results of the area under receiver operating characteristics curves
(AUC) for the neural network model trained with the NIH dataset.

Disease label AUCLR AUCHR
Atelectasis 0.79 0.82
Cardiomegaly 0.88 0.89
Consolidation 0.79 0.81
Edema 0.88 0.90
Pneumonia 0.71 0.73
Pneumothorax 0.76 0.83
Pleural E↵usion 0.85 0.84
Infiltration 0.73 0.73
Emphysema 0.98 0.98
Pleural Thickening 0.79 0.82
Fibrosis 0.77 0.78
Nodule 0.80 0.83
Mass 0.84 0.82
Mean AUC 0.81 0.83

Table 5. Results of the area under receiver operating characteristics curves
(AUC) for the neural network model trained with the Stanford dataset.

Disease label AUCLR AUCHR
Atelectasis 0.81 0.79
Enlarged Cardiomediastinum 0.61 0.68
Cardiomegaly 0.84 0.83
Consolidation 0.93 0.93
Edema 0.93 0.92
Pneumonia 0.76 0.71
Pneumothorax 0.80 0.90
Pleural E↵usion 0.93 0.94
Lung Opacity 0.91 0.92
Mean AUC 0.84 0.88

3. Experiments

We report the retrieval performances with two settings. In the
High Resolution (HR) setting, the chest X-ray images were of
size 512 ⇥ 512, and in the Low Resolution (LR) setting the im-
ages were downsampled to the size of 224 ⇥ 224. The weights
of the deep neural network model were initialized from a model
pretrained on ImageNet dataset. We then trained the model on
chest X-ray image datasets. For both datasets, the model was
trained with a batch size of 32 for 20 epochs. For the NIH
dataset, the initial learning was set as 10�3, and for the Stanford
dataset that was 10�4. The initial learning rate was 10�3 and the
learning rate was reduced by a factor of 10 each time a plateau
was reached up to a learning rate of 10�8. Adam optimizer with
�1 = 0.9 and �2 = 0.999 was used to train the model. We calcu-
lated the area under the receiver operating characteristic (ROC)
curves for each of the labels and the model with the highest
mean area under ROC curve was picked as the best model for
generating image codes. Note that the Stanford dataset has un-
certain labels for one or more diseases in a large number of
samples. Here we have included all the samples to train the
model and ignored the uncertain labels while updating the gra-
dient during training. During the retrieval the uncertain labels
were counted as positive labels.
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We report the performances of the proposed image retrieval
system using all disease labels provided for both datasets. The
labels for both datasets are generated from their corresponding
radiologic reports. However, certain clinical information is also
taken into account while generating the radiologic reports to
predict the thoracic diseases, since some diseases have similar
appearances on chest X-rays. Hence we also considered re-
labeling the diseases based on their appearances on a chest X-
ray and reported the retrieval performances. Table 3 reports the
disease labels considered for each of the datasets. For NIH-U
and Stanford-U dataset setup, we considered consolidating all
the opacity related labels under one label and the lesion related
labels under one label.

We compared the performance of the proposed approach with
six state-of-the-art literature-based approaches in terms of their
normalized discounted cumulative gain. The Discounted Cu-
mulative Gain (DCG) of a retrieval system retrieving K similar
images is defined as:

DCG =
KX

n=1

2rn � 1
log(n + 1)

(16)

where rn is the graded relevance of the retrieved image at
position-n with respect to the query image. The graded rel-
evance is defined as the number of common positive labels
shared by the images. The Normalized Discounted Cumula-
tive Gain (nDCG) is the defined as the ratio of the DCG over
the DCG that a perfect retrieval system would achieve given the
database, as follows:

nDCG =
DCG

DCGideal
(17)

To have a fair comparison, we would like to compare with
the reported results of previous methods directly by testing our
approach on the same dataset. It is worth mentioning that, to
our knowledge, there has been no reported retrieval result on
the two large datasets studied in this work. Existing methods
were evaluated at much smaller datasets. We therefore report
the performances of three shallow learning based and three deep
neural network-based methods using a small subset of the NIH
chest X-ray dataset, for which the the performances of the com-
pared methods in terms of their normalized discounted cumu-
lative gain were reported in the literature (Chen et al., 2018).
The dataset consists of 12,000 training images and 1,000 test
images. For the CNN-based methods, the raw pixels were used
as inputs; and for other deep learning methods, the 1024 di-
mensional GIST features were used as inputs. For hashing
based methods, the bit sizes of di↵erent length were consid-
ered (16,3,48,64 bits), and we report the best performance that
was achieved for each compared method.

We further report the performances of the proposed approach
on the large scale datasets by investigating two literature based
retrieval metrics that are used in medical image retrieval frame-
works (Müller et al., 2004; Li et al., 2018). For a system retriev-
ing K similar images, the Average Cumulative Gain (ACG) is
defined as:

ACG =
PK

n=1 sn

K (18)

Table 6. Comparison of the retrieval performances of the proposed frame-
work with literature-based approaches. The retrieval performances of the
literature-based methods were reported in Chen et al. (2018) on a subset of
NIH data.

Method nDCG
Wang et al. (2012) 0.15
Gong et al. (2012) 0.16
Erin Liong et al. (2015) 0.19
Liu et al. (2016a) 0.17
Chen et al. (2018) 0.24
Lan et al. (2018) 0.15
Proposed Framework 0.31

where sn is the graded similarity of the image retrieved at posi-
tion n with respect to the query image. Here we defined sn as
the ratio of common positive labels between the retrieved image
at n and the query image to the total positive labels in the query.
The metric Precision is defined as the percentage of relevant
images retrieved over the total number of retrieved images. The
relevance of each retrieved image is assigned based on the ex-
istence of common positive disease labels between the query
image and the retrieved images. If �(·) 2 {0, 1} is an indicator
function, the precision is defined as:

precision =
PK

n=1 �(rn > 0)
K (19)

4. Results

The performances of the deep neural network models trained
on the X-ray datasets are reported here using the area under re-
ceiver operating characteristics curves (AUC). Table 4 reports
the AUC for the model trained on NIH dataset, and Table 5 re-
ports the AUC for the Stanford dataset. As reported here, we
were able to achieve a mean AUC of 0.81 for the NIH dataset
with the model trained on LR images, and that of 0.83 was
achieved with the HR image trained model. For the Stanford
dataset we also observed an increase in mean AUC with HR
images (0.88) as opposed to the mean AUC with the LR images
(0.84). Higher AUC values were achieved on the Cardiomegaly,
Edema and Pleural E↵usion labels for both datasets. For both
datasets, Pneumonia was one of the low-performing labels in
terms of AUC. This is partly because pneumonia is not entirely
a radiologic diagnosis, rather it is a clinical diagnosis where
other clinical information is incorporated to make a decision.

We then compare the proposed method with existing methods
on a specific smaller dataset, citing their performances as re-
ported in the literature. We report the performances of the pro-
posed framework, together with six state-of-the-art literature-
based methods, in Table 6 in terms of the normalized discounted
cumulative gain. As can be seen from Table 6, the proposed ap-
proach performs better than other literature-based approaches
and achieves an nDCG value of 0.31, outperforming the other
methods reported.

We further report the performance of the proposed approach
on the large scale datasets defined in Table 3 using two retrieval
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Cm Cm Cm Cm (un) Cm Cm

Pth Pth Pth Pth/Opc/E↵ Pth/E↵ Pth

Enl/Cm/Opc/Atl/E↵ Opc/Atl/E↵/Enl(un) Opc/E↵ Opc/Edm/E↵ Enl/Opc/E↵ Opc/E↵

Opc/Cons/E↵ Opc/E↵ Opc/E↵/Edm Cons/E↵/Cm/Edm Opc/E↵ Cons/E↵

Query Retrieved Images

Fig. 4. Examples of the retrieval framework from the Stanford Dataset with nine disease labels. Each row represents the top-five retrieved images for
the query image in the first column. The disease labels are enlisted at the bottom of each image using the following abbreviations– Cm:Cardiomegaly,
Pth:Pneumothorax, Opc:Lung Opacity, E↵:Pleural E↵usion, Enl:Enlarged Cardiomediastinum, Atl:Atelectasis, Edm:Edema, Cons:Consolidation, un:
uncertain.

Table 7. Performances of the proposed image retrieval framework on top-
10 retrieved images.

Dataset ACG Precision
NIHLR 0.36 48%
NIHHR 0.40 52%

NIH-ULR 0.46 58%
NIH-UHR 0.51 63%

StanfordLR 0.38 76%
StanfordHR 0.43 81%

Stanford-ULR 0.53 81%
Stanford-UHR 0.59 85%

metrics. Table 7 reports the performances in terms of ACG and
precision. As it can be seen for the LR setting, for NIH dataset
with all thirteen disease labels, we achieved an ACG value of
0.36 with a 48% precision. The retrieval performances are bet-
ter for the Stanford dataset. When all nine disease labels were
used, the framework was able to retrieve images where 76% of
the retrieved images’ disease labels matched exactly with the
query image. With the HR setting, we were able to achieve
better retrieval performances. For the NIH dataset the ACG in-
creased to 0.40 and the precision increased to 52%. For the

Stanford dataset, the HR setting resulted in an ACG value of
0.43 with a 81% precision. In both LR and HR settings, we
observed a better retrieval performance on the Stanford dataset.
The superior performance of the proposed framework on the
Stanford dataset might be related to the quality of labels in these
two datasets. The labeler used for the Stanford dataset to ex-
tract the disease labels from the associated radiologic reports is
shown to outperform the NIH labeler, and hence the disease la-
bels in Stanford dataset are less noisy. However, in this work,
we used the disease labels generated by the NIH labeler for the
NIH and NIH-U datasets to report the performance metrics.

When we combined the disease labels based on their similar
appearances, the retrieval performances improved for both the
NIH and the Stanford datasets. With NIH-U labeling, we ob-
serve more than 20% increase in precision and ACG, for both
LR and HR settings. For Stanford dataset, combining similar la-
bels results in an ACG of 0.53 with the LR setting, as opposed
to 0.38 when the labels generated from an automated labeler are
used. The precision also improves to 81%. With the HR setting,
ACG of 0.59 was achieved with consolidated labels as opposed
to 0.43 with the labeler generated labels. The retrieval also in-
creased to 85% with the consolidated labels. The improvements
in performances indicate the potential of the method on the dis-
ease labels that can be diagnosed based on image contents only.



10 Nandinee F. Haq et al. /Medical Image Analysis (2020)

Fig.4 shows examples of the retrieval results on the Stanford
dataset. The first image of each row is the query image and the
rest of the images are the top-five retrieved images. The posi-
tive disease labels are shown at the bottom of each image. The
first two example shows the retrieved images for a query image
with a single positive label, and the last two query images have
multiple disease labels. As can be seen, all the positive disease
labels can be retrieved from the top few retrieved images.

5. Discussion and Conclusion

In this work, we have presented a large scale medical im-
age retrieval framework and reported its performances on the
two largest available chest X-ray image datasets. The proposed
framework consists of a deep neural network-based image code
generator trained on the medical image dataset. A graph net-
work is then formed based on code-similarity values, and a
graph community detection scheme is applied to form similar
image communities. Although developed for chest X-ray im-
age retrieval, the proposed approach is generally applicable to
other medical image-based retrieval tasks.

The deep community model was able to distinguish the radi-
ologic disease labels, while performance on clinical diagnosis-
based disease labels indicates the necessity of incorporating
clinical information in the decision making process. Never-
theless, the proposed framework is shown to outperform other
state-of-the-art approaches for content-based medical image re-
trieval.

We observed better performance of the proposed framework
on the Stanford dataset. The disease labels used in this work
were generated from the associated radiological reports using
automatic rule-based labeler. However, the accuracy of labels
provided with the NIH data is challenged in the literature (Irvin
et al., 2019), and hence the disease labels in the Stanford dataset
are potentially less noisy. Therefore we also observed a better
retrieval performance on the Stanford dataset.

When both radiologic diagnosis-based and clinical
diagnosis-based disease labels were used, the performance
across diseases vary in terms of classification AUCs, as seen
from Tables 4 and 5, which is consistent with other studies on
these datasets (Wang et al., 2017; Allaouzi and Ahmed, 2019).
One of the reasons of such variation originates from the fact
that a few of the thoracic diseases have similar appearances in
X-ray film. For example, the disease labels– Consolidation,
Infiltration and Lung Opacity all appear as clouds or opacities
in an X-ray film. The labels used in both of these datasets
came from radiology reports, which also incorporates clinical
information to distinguish between the diseases. However, in
this work, we only considered the image content to extract
similar images. Since we did not incorporate clinical infor-
mation in the current implementation, we observed that the
performance on some of the clinical labels were lower. One
such example is Pneumonia, which is a clinical disease, as
opposed to an image finding. We observed that when only
image content is considered, the performance is among the
lowest among disease labels. However, further improvement
in the retrieval performance was observed when diseases with

similar appearances in chest X-rays are consolidated under one
label. In the absence of clinical information, annotating the
X-rays solely based on image appearances can thereby improve
the e�ciency of the proposed content-based image retrieval
framework.

One possible limitation of this work is the exclusion of meta-
data and other clinical information from the framework. The
framework currently only considers image contents to extract
similar cases from the database. However, while content-based
image descriptors and similarity measures can help bridge the
gap between visual content and semantic features, image-only
approaches have a limited resolving ability for the clinical deci-
sion process (Akgül et al., 2011). Medical diagnosis and prog-
nosis is a complex process that can be benefit from a retrieval
framework that also incorporates clinical metadata, patient his-
tory and other relevant information along with the medical im-
ages. Another limitation is the unbalanced number of positive
samples across di↵erent diseases in the datasets. The Stanford
dataset also has uncertain labels. Although we addressed this
unbalance by incorporating a weight term in the loss function,
nonetheless a balanced dataset could help in learning disease
signatures. Nevertheless, the promising performance of the pro-
posed image content based framework indicates its potential as
a large scale image retrieval tool and paves its way for future
developments.

The proposed framework targets to extract image codes from
a deep neural network model and generates image similarity
network from the image codes. The similarity network is then
used to divide the database images into similar image commu-
nities. This approach is di↵erent from the geometric deep learn-
ing or graph convolutional network based learning approaches
(Kipf and Welling, 2017; Hamilton et al., 2017; Bronstein et al.,
2017). Geometric deep learning attempts to generalize deep
neural models to non-Euclidean domains, such as graphs, where
the goal is to learn a function of features on a graph, where each
node is associated with a set of of attributes or features. These
attributes or features are modelled as signals on the nodes of
the graph. In our current implementation, we extracted similar
image communities on a traditional graph, and while forming
communities, no node-level attributes were considered. In fu-
ture we plan to extend the current work to incorporate the clini-
cal information associated with the image nodes by formulating
the image retrieval task as a geometric learning problem.

With the availability of the growing number of images in hos-
pitals along with their associated reports, the proposed frame-
work for large scale retrieval can be a powerful tool to guide the
diagnosis.
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