

23rd International Conference on Medical Image Computing and Computer Assisted Intervention

Parkinson's Disease Detection from fMRI-derived Brainstem Regional Functional Connectivity Networks

<u>Nandinee F. Haq</u> (*nandinee@ece.ubc.ca*), J. Cai, T. Yu, M.J. McKeown, & Z. Jane Wang (*zjanew@ece.ubc.ca*)

> *The University of British Columbia, Vancouver, Canada.*

Motivation

- Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder
 - largely idiopathic
 - misdiagnosis rate can be very high due to its overlap with other neurological conditions
- Imaging based diagnostic tools can help in characterization of the disease

Motivation

- Motor symptoms associated with PD caused by progressive loss of dopaminergic neurons in the Brainstem (BS)
 - Yet brainstem and its sub-structures are relatively unexplored
- We propose a data-driven, connectivitypattern based framework to extract functional sub-regions within BS and devise a machine learning based tool that is sensitive to PD changes

Proposed Framework

Group Model Generation For Brainstem Functional Sub-regions

Group Model Generation For Brainstem Functional Sub-regions

Feature Extraction & Classification

Feature Extraction & Classification

Datasets

Dataset-I

- 15 Healthy Control (HC)
- 10 male, 5 female
- Average age 69.4 ±4.76 years
- Used to generate the group model for brainstem functional subregions

Dataset-II

- 17 HC, 7 male, 10 female, 68.1 ± 5.2 years
- 17 PD, 9 male, 8 female, 67.7 ± 4.7 years
 - H&Y scores 1-3, UPDRS score of 26.7±11.5
 - disease duration of 5.8 ± 3.7 years
 - Levodopa medication
 - scanned exactly one hour after the intake of their medication
- Used for classification

Results : Group Model Generation For Brainstem Functional Sub-regions

- 84 functional sub-regions
 - spatially contiguous
- Leave-one-out analysis:
 - Normalized Mutual Information between partitions ~0.9

Results: Classification

	Sensitivity	Specificity	Accuracy	AUC
PC _{fdr} based classifier	94 %	71%	82 %	0.81
SICov based classifier	82 %	82%	82%	0.77
Chen et al. (2015), 150 features, whole brain	90.47%		93.62%	
Cai et al. (2019), whole- brain dynamic connectivities			85.7%	

())

Conclusions

- The first study that targets the generation of brainstem functional sub-regions and the application of the associated network in PD detection
- Developed a novel data-driven framework for PD detection solely from BS regional functional connectivity networks
 - A novel community detection algorithm on a participant-level and a consensusclustering based approach to generate group-level BS functional sub-regions
 - Proposed features from BS regional connectivity networks for Parkinson's disease detection.
- Achieved 94% sensitivity with an AUC of 0.81

Future Works

- Large scale study
- Incorporation of the connectivity alterations of BS sub-regions with other cortical/subcortical brain regions
- Investigate both functional connectivity and task-related activation to infer which of the potentially many nuclei are actually being detected

Thank You!

