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Abstract. Parkinson’s disease is the second most prevalent neurode-
generative disorder after Alzheimer’s disease. The brainstem, despite its
early and crucial involvement in Parkinson’s disease, is largely unex-
plored in the domain of functional medical imaging. Here we propose a
data-driven, connectivity-pattern based framework to extract functional
sub-regions within the brainstem and devise a machine learning based
tool that can discriminate Parkinson’s disease from healthy participants.
We first propose a novel framework to generate a group model of brain-
stem functional sub-regions by optimizing a community quality function,
and generate a brainstem regional network. We then extract graph theo-
retic features from this brainstem regional network and, after employing
an SVM classifier, achieve a sensitivity of disease detection of 94% –
comparable to approaches that normally require whole-brain analysis.
To the best of our knowledge, this is the first study that employs brain-
stem functional sub-regions for Parkinson’s disease detection.

Keywords: Parkinson’s disease · brainstem · functional sub-regions.

1 Introduction

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disor-
der after Alzheimer’s disease [31]. Parkinsonism is characterized by a progressive
psychomotor syndrome reflecting the multi-system nature of the disease, that
may include rigidity, tremor, bradykinesia, postural instability, depression, sleep
disturbances, and dementia [5,18]. Parkinson’s disease is still considered largely
idiopathic with the pathophysiology of the disease is not fully understood [30].
There is no cure available, and treatments are designed to reduce the symp-
toms once the disease has been clinically diagnosed. Due to PD’s overlap with
other neurological conditions, especially in its early stages, the misdiagnosis rate
can be very high [1,22]. Therefore an imaging based non-invasive technique for
Parkinson’s disease diagnosis can help in the characterization of the disease and
more accurately differentiate between similar disorders, especially during the
early stages of the disease when clinical symptoms are unnoticeable.
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The motor symptoms associated with Parkinson’s disease are caused mainly
by a progressive loss of dopaminergic neurons in the substantia nigra in the
brainstem. Hence Parkinson’s disease is often associated with brainstem dys-
function and many brainstem alterations occur during early disease stages when
the clinical symptoms may be unnoticeable [8,15]. Yet despite its importance in
Parkinson’s disease and other neurodegenerative processes, the brainstem and
its sub-structures are relatively unexplored in functional medical image analysis
[13]. Although functional Magnetic Resonance Imaging (fMRI) has been used
widely to characterize brain functionality and connectivity alterations in PD,
all studies have emphasized whole-brain cortical networks [9,14,23,30]. Only a
few studies are designed to develop a data-driven diagnostic tool for Parkinson’s
disease classification [6,7,29], and these studies also incorporate whole-brain cor-
tical and subcortical structures. The literature on brainstem subregions mainly
consist of extraction of anatomical regions [3,4,17,19,26] whereas data-driven
functional segments remained unexplored.

In this work, we propose a data-driven, connectivity-pattern based frame-
work to extract functional sub-regions within the brainstem and devise a ma-
chine learning based tool that is sensitive to Parkinson’s disease-related changes.
We first propose a novel framework to extract data-driven functional segments
within the brainstem on a participant-by-participant basis by optimizing a com-
munity quality function. We then combine the participant-level partitions via
a consensus-based partition agglomeration approach to generate a group-model
for brainstem functional sub-regions. Data-driven features are then extracted
from the proposed group-model based regional network and a soft-margin Sup-
port Vector Machine (SVM) classification is employed for Parkinson’s disease
detection. We validate the proposed method on a balanced dataset of thirty-
four participants. To the best of our knowledge, this is the first study to target
the extraction and incorporation of brainstem regional functional networks in
Parkinson’s disease detection.

2 Materials and Methods

2.1 Data Acquisition and Preprocessing Protocols

Dataset-I The dataset consists of fifteen healthy control (HC) participants.
The participants underwent a resting-state fMRI (rsfMRI) scanning session at
the University of British Columbia (UBC). The average age of the healthy par-
ticipants was 69.4 ±4.76 years and out of these fifteen, five were female and the
rest of them were male participants. The study was approved by the UBC re-
search ethics board and the participants provided their written, informed consent
before the study.

Dataset-II The dataset consists of seventeen individuals diagnosed with Parkin-
son’s disease (PD), and seventeen age-matched elderly healthy control (HC) par-
ticipants. The individuals had not gone through any prior neurosurgical proce-
dures and did not have a history of other neurological diseases. The participants
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underwent a resting-state fMRI scanning session. The average age of the patients
with Parkinson’s disease was 67.7 ± 4.7 years and out of these seventeen, eight
were female and the rest of them were male participants. For the healthy con-
trol participants, the average age was 68.1 ± 5.2 years and out of the seventeen
participants, ten were female. For the individuals diagnosed with Parkinson’s
disease, the severity of motor symptoms were assessed with the Hoehn and Yahr
(H&Y) scale [11] and Unified Parkinson’s Disease Rating Scale (UPDRS) mo-
tor examination score [12]. All individuals with Parkinson’s disease had mild
to moderate Parkinson’s disease (H&Y stage 1-3) with a disease duration of
5.8 ± 3.7 years and UPDRS score of 26.7±11.5. The study was approved by the
UBC research ethics board and the participants provided their written, informed
consent prior to the study.

This dataset was the rsfMRI part of a larger task-based fMRI study that
involved a horizontally-oriented balance simulator based on the principle of an
inverted pendulum. Since balance deficits in PD are typically dopamine ‘un-
responsive’, we specifically tested participants on medication. PD participants
were on Levodopa medication and scanned exactly one hour after the intake
of their medication to coincide with their subjectively best clinical ‘on’ condi-
tion. Participants were debriefed afterwards. While participants were instructed
to “not think of anything in particular”, we note that this was followed up by
a motor-task (balance) study (not reported here), and no one was asleep at
the start of the motor task. Participants were excluded if any medical issues
influenced their balanced (excessive levodopa-induced dyskinesia, documented
proprioceptive loss, etc.). In total three participant’s data were excluded from
the study. Out of the seventeen PD participants two had an H&Y score of 3,
three participants had an H&Y score of 1 and the rest of the participants had a
score of 2.

Imaging Protocol The resting state fMRI data were acquired using a 3T MRI
scanner (Achieva, Philips Healthcare, Best, The Netherlands) equipped with
a headcoil. The participants laid on their back with their eyes closed during
the examination during which a whole-brain T1-weighted images were acquired
with a repetition time of 7.9 ms, echo time of 3.5 ms and flip angle of 8◦. The
functional run spanned eight minutes during which blood oxygen level dependent
(BOLD) contrast echo-planar (EPI) T2*-weighted images were acquired with a
repetition time of 2000 ms, echo time of 30 ms and flip angle of 90◦. The field
of view (FOV) was set to 240 mm × 240 mm and the matrix size was 80 × 80.
In total 240 time-points were acquired with 3 mm thickness. The pixel size was
3 mm × 3 mm. Voxels were resliced to ensure isotropic voxels of 3 mm on each
size. Thirty-six axial slices were collected in each volume, with a gap thickness
of 1 mm. The duration of the fMRI task was 8mins based on a single trial per
participant. We have done statistics on head movement and the mean volume-
to-volume framewise displacement was less than 0.34mm. Statistical comparison
found no significant main effect of group, or interaction effect between group
and task, for mean framewise displacement. As part of our pipeline, FreeSurfer
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segmentations were visualized to ensure accuracy. The resolution for the 3D
structural MRI was 1 mm × 1 mm, with a scan duration of 394 seconds, flip
angle of 8◦, matrix size of 256×256 and a repetition time of 7.73 ms.

Preprocessing The fMRI datasets were processed with SPM12 software pack-
age using the framework reported in [32]. The preprocessing steps included de-
spiking, slice time correction, 3-D isotropic reslicing, slice time correction, and a
motion correction technique reported in [32]. After the preprocessing and motion
correction, only minimal motion was estimated in the brainstem. Spatial normal-
ization was carried out to all fMRI volumes to transform the data to a common
MNI space. The nuisance regression was used to remove white-matter signal,
and cerebro-spinal fluid signal. The fMRI signal was then detrended, filtered
and iteratively smoothed with a Gaussian kernel of 6 mm. After preprocessing,
the motion observed inside the brainstem was less than 0.05mm, rotation (pitch,
roll, yaw) was less than 0.4 degrees.

2.2 Group Model Generation for Brainstem Functional Sub-Regions

We first generated a group model of the brainstem functional sub-regions with
the healthy control participants from Dataset-I. For each of the healthy control
participants, we generated the brainstem connectivity network where voxels were
represented as nodes and edges between the nodes were generated using the
following equation: emn = δ(ρmn ≥ ρT ), where δ(·) is an indicator function. ρmn

represents the Pearson correlation coefficient between the fMRI timecourses of
the brainstem voxels m and n, and ρT is a threshold that ensures the degree
distribution of the voxel nodes in the generated connectivity network follows
a power-law pattern, to comply with previous observations on real networks
[2,21,24]. emn = 1 represents the existence of an edge between nodes m and n.
The connectivity network was generated for each healthy participant separately.

The extraction of the functional sub-regions from the brainstem connectivity
network was formulated as a network community detection problem. To extract
the functional sub-networks, we incorporated an unsupervised community detec-
tion approach that has shown to outperform other literature-based methods in
detecting small sub-networks from a parent network [16]. The method is based
on maximizing a community quality function named weighted modularity. For a
brainstem network with L edges and N nodes divided into k sub-regions, the
weighted-modularity, q is defined as:

q =
∑
i

[1 + 2li/(n
2
i − ni)][(li/L)− (di/2L)2] =

∑
i

λimi (1)

Here, ni is the total number of nodes and li is the total number of edges within the
brainstem sub-region-i, and di is the sum of degrees of nodes in the sub-region-i.
The term λi represents how strong a brainstem sub-network is in terms of its
conductance, and the term mi represents how far the sub-network community
is from that of a random network, defined as the difference between the fraction
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of edges that exist within the members of a sub-network i and the expected
such fraction if the edges were distributed at random. The community detection
method proposed in [16] targets to find such a partition of the network for which
the weighted-modularity of the network, q is maximum by iteratively merging
nodes until no further merging increases the quality metric.

We applied the aforementioned community detection method on each par-
ticipant separately to generate participant-level partitions. The partition with
the highest weighted-modularity produced the functional sub-regions at the
participant-space. Then a partition agglomeration approach based on consen-
sus clustering [28] was applied on the participant-level partitions to generate a
consensus network that combines the participant-space partitions. In the con-
sensus network, edges are drawn between two brainstem voxel nodes m and n if
m and n ended up in the same sub-region in the majority of the participant-level
partitions. Then we applied the weighted-modularity based community detection
approach on the consensus network to find the optimal partition and divide the
network into k sub-regions. The final partition with k sub-regions represented
the group model of the brainstem functional sub-regions.

2.3 Brainstem Regional Connectivity Network Generation

In the second phase of the framework, we generated brainstem regional connec-
tivity networks for all the participants in Dataset-II individually. We first map
the group-model of brainstem functional sub-regions to each of the participant’s
fMRI space in Dataset-II. For a participant-s we then generated brainstem re-
gional connectivity network, G with k nodes where nodes represent each of the
k functional sub-regions derived from the group-model in Sec.2.2. The represen-
tative regional signal, rc of a brainstem functional sub-region c with nc voxels
is generated by taking the mean of the fMRI signals of all voxels included in
the associated sub-region, i.e. rc = (1/nc)

∑
x;x∈c vx; where vx is the fMRI sig-

nal for the x-th voxel. The edges between the nodes in G are generated by two
fMRI-based connectivity models as described below.

FDR-Controlled PC Based Connectivity Network (PCfdr) To gener-
ate the edges of the brainstem regional connectivity network, G we first used
the FDR-controlled PC algorithm (PCfdr) [20] which estimates the functional
connectivity between the sub-regions from their associated signals rc, where
c ∈ {1, 2, · · · , k}. The PCfdr algorithm is suitably adapted from the PC algo-
rithm [27], which is a conditional independence based network structure learn-
ing approach, by incorporating a false discovery rate (FDR) control procedure.
Therefore, the PCfdr algorithm can control the FDR of the estimated network
structure under a pre-defined level. In this study, the significance level of the
FDR was set to be 0.05. By applying the PCfdr algorithm, a k × k binary
symmetric matrix was obtained, with functional connectivity indicated by the
non-zero elements of the estimated matrix, which represent the edges for the
PCfdr-based brainstem regional connectivity network, GPCfdr

.



6 N. F. Haq et al.

Sparse Inverse Covariance Based Connectivity Network(SICov) The
inverse covariance matrix is another efficient way to estimate the edges of the net-
work by incorporating their functional connectivity. Under the assumed sparse
nature of functional connectivity between the k brainstem functional sub-regions,
a regularization strategy can be applied to the inverse covariance matrix gen-
erated from the associated regional signals rc, c ∈ {1, 2, · · · , k}. Here we incor-
porated the connectivity modeling approach using the sparse inverse covariance
matrix (SICov)[10], which was estimated by imposing a sparsity constraint on
the inverse covariance matrix through the Least Absolute Shrinkage and Selec-
tion Operator (LASSO) method. This results in a k × k sparse weighted sym-
metric matrix, with functional connectivity indicated by the non-zero elements
of the estimated matrix. These non-zero elements of the matrix generated the
edges for the SICov-based network GSICov. Specifically, a sparse estimate of
the inverse covariance matrix is obtained by minimizing the penalized negative
log likelihood: Θ̂ = arg min {tr(SΘ)− log |Θ|+ Λ‖Θ‖1}; where Θ is the inverse
covariance matrix, S is the sample covariance matrix, ‖Θ‖1 is the element-wise
L1-norm of Θ, and Λ is the penalty parameter controlling the sparsity of the
network.

2.4 Feature Extraction and Classification

After generating the brainstem regional connectivity network, G for each par-
ticipant separately, the following graph theoretic features were extracted using
the brain functional connectivity toolbox [25] that represent the topology of the
network:

Characteristic Path Length (CPL): defined as the average shortest path
length between all pairs of nodes in the network.

Global Efficiency (GE): defined as the average over the inverse of the
shortest path lengths in the brainstem regional network.

Clustering Coefficient (CC): for one node, defined as the fraction of the
node’s neighbors that are also neighbors of each other. Over a network, the
clustering coefficient is defined as the average clustering coefficient of its nodes.

Modularity (MD): defined as the sum of the differences between the frac-
tion of edges that exist within a group of nodes, or modules and the expected
such fraction if the edges of the network were distributed at random. These dif-
ferences are summed over all the modules of the network when the network is
divided into non-overlapping modules such a way that maximizes the number of
within-module edges while minimizing between-module edges.

Transitivity (TS): defined as the ratio of triangles (any three nodes that
are connected with three edges) to triplets (any three nodes that are connected
with two or more edges) in the network.

Assortativity Coefficient (AC): defined as the correlation coefficient be-
tween the degrees of all connected nodes. The degree of a node is the total
number of edges attached to the node, and a positive assortativity coefficient
indicates that nodes of the network tend to link to other nodes with a similar
degree.
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(a) (b) (c)

Fig. 1: Brainstem functional regions. (a) Sagittal view of the brainstem functional
sub-regions. (b) Brainstem regional connectivity network for a healthy control
participant. (c) Brainstem regional connectivity network for a PD patient. Both
networks were generated from PCfdr-based connectivity model.

Fiedler Value (FD): defined as the second smallest eigenvalue of the Lapla-
cian matrix of the network.

Normalized Fiedler Value (nFD): defined as the second smallest eigen-
value of the normalized Laplacian matrix of the network.

Sychronizability (SYC): defined as the ratio of the maximum eigenvalue
to the second smallest eigenvalue of the Laplacian matrix of the network.

We trained two different classifiers to classify patients diagnosed with Parkin-
son’s disease and healthy control participants using the features extracted from
GPCfdr

and GSICov networks separately. Soft margin Support Vector Machine
(SVM) classifiers were trained on each feature set separately by tuning two pa-
rameters: the margin violation penalty weight, C, and the Radial Basis Function
(RBF) kernel parameter, γ. The classifiers were tuned by cross-validation on a
leave-one-participant-out basis. We investigated the possible combinations of C
and γ by a grid search on C ∈ {2−10, 2−9, · · · , 210} and γ ∈ {2−10, 2−9, · · · , 210},
and the cross-validation was targeted at maximizing the Area Under the receiver
operating characteristic Curve (AUC).

3 Results

We generated the group model of brainstem functional sub-regions in healthy
individuals from the Dataset-I. The framework generated 84 functional sub-
regions in the brainstem from healthy individuals and all the functional sub-
regions were spatially contiguous. The classification experiments were carried
out on a separate dataset (Dataset-II) with an equal number of patients diag-
nosed with Parkinson’s disease and age-matched healthy individuals. The brain-
stem functional sub-regions derived from Dataset-I were mapped to each of the
participants in Dataset-II. For the participants in Dataset-II, we then gener-
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Table 1: Performance of the classifiers.
Sensitivity Specificity Accuracy AUC

PCfdr based classifier 94% 71% 82% 0.81
SICov based classifier 82% 82% 82% 0.77

Table 2: Generated average Parkinson’s disease likelihood values with different
H&Y scores, calculated using the SVM classifier on the PCfdr-based network.

HC samples H&Y: 1 H&Y:2 H&Y: 3

Average PD likelihood 0.21 0.56 0.57 0.77

ated the brainstem regional connectivity network with two connectivity model-
ing approaches- PCfdr and SICov. Each of the brainstem regional connectivity
networks consisted of 84 nodes, where nodes represent the derived brainstem
functional sub-regions. Fig. 1 shows the generated group model for brainstem
functional sub-regions along with the examples of the generated PCfdr-based
brainstem regional networks for one healthy control and one Parkinson’s disease
patient. The networks, as can be seen from Fig.1, are structurally different.

The proposed nine-dimensional feature vector was extracted from each of
the networks. We trained the classifiers based on the feature sets generated from
PCfdr-based and SICov-based networks separately. The classifiers were cross-
validated on a leave-one-participant-out basis. Table.1 reports the classification
performances with different connectivity models at optimal operating points,
where cutoff is applied to the a posteriori class probabilities. With the SICov-
based classifier, we were able to achieve 82% sensitivity and 82% specificity. The
classifier trained on features from the PCfdr-based brainstem regional network
was able to achieve a better sensitivity of 94% with only one patient misclassified
as healthy control. We also investigated the average Parkison’s disease likelihood
generated by this classifier, and the likelihood values for patient’s with different
H&Y scores are reported in Table. 2. We observed that the mean Parkinson’s
disease likelihood increases with the severity of the disease. For the patients with
the H&Y score of 1, the generated mean PD likelihood was 0.56, whereas, for
more severe patients with H&Y score of 3, an average likelihood of 0.77 was
observed.

As no prior studies incorporated brainstem regional functional connectivi-
ties for Parkinson’s disease detection, we could not compare our approach with
literature-based methods. However, one of the best performing classifiers based
on whole-brain fMRI connectivity on a balanced dataset was reported in [7],
where a sensitivity of 90.47% was achieved with 150 features, and a higher sensi-
tivity of 95.24% was achieved when the number of features was tuned for maxi-
mizing classification performances, with 149.15 features on average. More recent
work used fewer features to achieve an accuracy of 85.7% using whole-brain dy-
namic connectivities on a less balanced dataset (sensitivity was not reported) [6].
Although our reported classification performances are not better than [7], note
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that here we have only used the brainstem regional connectivities – the site of
initial patholoy in PD and therefore likely to occur early – whereas in [7] whole-
brain connectivity network was used. Nevertheless, we could achieve promising
performance with only nine features extracted from brainstem regional network
alone, as opposed to ∼150 features in [7]. The performance of our classifier shows
the potential of brainstem regional connectivity based features as Parkinson’s
disease biomarkers.

4 Conclusion

We have developed a novel data-driven framework for Parkinson’s disease de-
tection solely from brainstem regional functional connectivity networks. The
method incorporates a community detection algorithm on a participant-level
and a consensus-clustering based partition agglomeration approach to gener-
ate group-level brainstem functional sub-regions. Features from this group-level
approach were sensitive to Parkinson’s disease detection. With a soft margin
support vector machine classifier, we were able to achieve 94% sensitivity with
an AUC of 0.81.

To the best of our knowledge, this is the first study that targets the generation
of brainstem functional sub-regions and the application of the associated network
in Parkinson’s disease detection. Our next target is to incorporate the connec-
tivity alterations of the extracted brainstem sub-regions with other cortical and
subcortical brain regions into the Parkinson’s disease detection framework.
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