
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 16, NO. 2, MARCH 2008 229

Invariance-Preserving Abstractions of Hybrid
Systems: Application to User Interface Design

Meeko Oishi, Member, IEEE, Ian Mitchell, Member, IEEE, Alexandre M. Bayen, Member, IEEE, and
Claire J. Tomlin, Senior Member, IEEE

Abstract—Hybrid systems combine discrete state dynamics
which model mode switching, with continuous state dynamics
which model physical processes. Hybrid systems can be con-
trolled by affecting both their discrete mode logic and continuous
dynamics: in many systems, such as commercial aircraft, these
can be controlled both automatically and using manual control.
A human interacting with a hybrid system is often presented,
through information displays, with a simplified representation of
the underlying system. This user interface should not overwhelm
the human with unnecessary information, and thus usually con-
tains only a subset of information about the true system model,
yet, if properly designed, represents an abstraction of the true
system which the human is able to use to safely interact with the
system. In safety-critical systems, correct and succinct interfaces
are paramount: interfaces must provide adequate information
and must not confuse the user. We present an invariance-pre-
serving abstraction which generates a discrete event system that
can be used to analyze, verify, or design user-interfaces for hy-
brid human–automation systems. This abstraction is based on
hybrid system reachability analysis, in which, through the use
of a recently developed computational tool, we find controlled
invariant regions satisfying a priori safety constraints for each
mode, and the controller that must be applied on the boundaries
of the computed sets to render the sets invariant. By assigning a
discrete state to each computed invariant set, we create a discrete
event system representation which reflects the safety properties of
the hybrid system. This abstraction, along with the formulation
of an interface model as a discrete event system, allows the use of
discrete techniques for interface analysis, including existing inter-
face verification and design methods. We apply the abstraction
method to two examples: a car traveling through a yellow light at
an intersection, and an aircraft autopilot in a landing/go-around
maneuver.

Index Terms—Autopilot, discrete abstraction, hybrid systems,
pilot displays, reachability, user interface.

Manuscript received November 28, 2005. Manuscript received in final form
April 12, 2007. This work was supported in part by the National Science Foun-
dation under a Graduate Research Fellowship, by DARPA under the Software
Enabled Control Program (AFRL Contract F33615-99-C-3014), by the DoD
Multidisciplinary University Research Initiative (MURI) Program administered
by the Office of Naval Research under Grant N00014-00-1-0637, and by Grant
NCC2-798 from NASA Ames Research Center to the San Jose State University
Foundation, as part of NASA’s base research and technology effort, human–au-
tomation theory sub-element (RTOP 548-40-12).

M. Oishi is with the Department of Electrical and Computer Engineering,
University of British Columbia, Vancouver, BC V6T 1Z4, Canada (e-mail:
moishi@ece.ubc.ca).

I. M. Mitchell is with the Department of Computer Science, University of
British Columbia, Vancouver, BC V6T 1Z4, Canada (e-mail: mitchell@cs.ubc.
ca).

A. M. Bayen is with the Department of Civil and Environmental Engi-
neering, University of California, Berkeley, CA 94720-1710 USA (e-mail:
bayen@berkeley.edu).

C. J. Tomlin is with the Department of Electrical Engineering and Com-
puter Sciences, University of California, Berkeley, CA 94720-1770 USA and
also with the Department of Aeronautics and Astronautics, Stanford University,
Stanford, CA 94305-4035 USA (e-mail: tomlin@eecs.berkeley.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCST.2007.903370

I. INTRODUCTION

HUMAN–AUTOMATION interaction is pervasive, oc-
curring in consumer products (alarm clocks, VCRs,

cellular phones), transportation systems (automobiles, com-
mercial aircraft, air traffic control), scientific research platforms
(unmanned ocean- and aerial-vehicles), and military systems
(fleets of semi-autonomous and autonomous aircraft), among
others. Often complicated by the underlying dynamics of the
physical system, human–automation interaction in aviation has
been a controversial topic since the advent of computers and
their integration into the cockpit [1]–[3]. The aviation industry
has experienced many incidents and some accidents in which
the pilot became confused about the current mode or could
not anticipate the next mode in the automation [4]–[7]. This
potentially dangerous problem has been loosely termed mode
confusion, and is often addressed in flight when the pilot has
the time to devote attention to it, and resolved later with ad hoc
“fixes.” However, mode confusion may occur at critical times
of flight: In 1994, all seven people on-board died during a test
flight of the A-330 in Toulouse, France [8], [9]. The pilot had
attempted to complete a go-around with a simulated engine
failure, but an unanticipated combination of aircraft and engine
dynamics, flight envelope protection schemes, and confusing
interface indications led to the aircraft’s stall. The accident
involved the aircraft’s software, aerodynamics, as well as the
pilot’s interaction with the combined system.

We focus specifically on an aspect of this problem which we
can quantify: the information content presented in the interface.
While graphical design of the interface is key in determining
how the user processes and interacts with information in the in-
terface, we assume that the user can and does process all in-
formation displayed. In human–automation systems, the inter-
face allows observation of information regarding the underlying
system dynamics and processes, as well as control over specific
behaviors through input devices in the interface. Too much in-
formation can overwhelm the user; with too little information
the user may not understand the system’s behavior or may not
be able to perform the desired task. A key part of the problem
of interface design and verification involves the selection of ap-
propriate information from the underlying human–automation
system which should be displayed to the human controlling the
system.

Although the engineering psychology community has his-
torically dominated research on human–automation interaction,

1063-6536/$25.00 © 2008 IEEE

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 13, 2008 at 17:01 from IEEE Xplore. Restrictions apply.

230 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 16, NO. 2, MARCH 2008

there have recently been efforts by the formal methods com-
munity [6], [10]–[13] as well as systems and control communi-
ties [14], [15] to address these safety-critical problems. Using
model checkers, researchers in formal methods have evaluated
such interfaces to identify design problems [10], [11], [16] for
discrete state models. In [12], [17], and [18], the authors were
not only able to verify interfaces for a given task, but addition-
ally formally determine the minimum set of information that
must be displayed in the cockpit interface in order to safely
complete a given maneuver. We believe that the continuous dy-
namics plays a crucial role in understanding and designing inter-
faces, and that it is necessary to introduce both a continuous dy-
namic component to represent the physical dynamics of the un-
derlying system, and a control component, into previously pro-
posed methodologies to make them sound techniques for phys-
ical systems.

We model complex human–automation systems as hybrid
systems over which a human shares control with automation.
In this framework, which establishes a new way of modeling
human interaction with automation, we determine how to
abstract, from the hybrid system, a reduced representation of
the underlying system. This representation can then be used
in existing discrete interface verification or design algorithms.
The particular representation which we construct addresses the
problem of system safety, in which we consider a system to be
safe if it fulfills a certain mathematical property which can be
encoded as a condition on the system’s reachable set of states.
In aircraft, for example, a safe system is one which remains
within its aerodynamic flight envelope. This contribution dif-
fers from existing work in hybrid system verification in our
treatment of the user’s interactions with the hybrid system.

One of the key enabling technologies for human–automation
systems is verification, which allows for heightened confidence
that the system will perform as desired. Verification is defined
simply as the process of developing and executing a mathemat-
ical proof that a system model satisfies a given specification.
Methods and tools to verify systems have become very impor-
tant as the complexity of automated systems has grown; it is no
longer possible to rely on intuition and simulation to test that
a system satisfies its specification. Verification tools can aid in
drastically reducing time spent on design and validation, but
are also crucial in ensuring that safety properties are upheld.
In safety-critical, expensive, or high-risk applications such as
airbag deployment circuitry, aircraft autopilots, and medical de-
vices, guarantees of safe operation are paramount.

Hybrid reachability analysis and controller synthesis address
the problem of guaranteeing system safety. Many problems of
interest may be posed as reachability specifications. For ex-
ample, in the problem of verifying system safety, the safety
specification is first represented as a desired subset of the state-
space in which the system should remain, and then the following
reachability question is posed—Do all trajectories of the system
remain within this set of desired states? The process of verifying
safety then involves computing the subset of the state-space
which is backwards reachable from this “safe set” of states. If
this backwards reachable set intersects any states outside the de-

sired region, then the system is deemed unsafe. Controller syn-
thesis for safety is a procedure through which one attempts, by
restricting the behavior of the system through a controller, to
prune away system trajectories which lead to unsafe states.

In the past several years, methods and tools have been de-
veloped for computing reachable sets for continuous and hy-
brid systems [19]–[23]. Many of these approximate the con-
tinuous dynamics and use an over-approximative set represen-
tation in order to maintain computational tractability for high
dimensional systems. In this paper, we use a time-dependent
Hamilton–Jacobi formulation [24] for specifying the reachable
set, and the corresponding numerical toolbox based on level
set methods [25]–[27] for computing the reachable set. This
technique works for general nonlinear dynamics and set rep-
resentation. Previous work in analyzing hybrid system safety,
for example [28], has focused on applications of hybrid system
theory to fully automated systems, assuming that the controller
itself is an automaton. Here, we consider the problem of control-
ling human–automation systems, in which the automaton and a
human controller share authority over the control of the system
[7]. The user interacts with the underlying system through an
interface, a reduced description of the behavior of the system.
In particular, we consider the problem of verification of an in-
terface between a semi-automated hybrid system and a human
controller, and we pose the question—Is the information dis-
played to the human controller about the hybrid system evolu-
tion sufficient for the human controller to act in such a way that
the system remains safe?

In previous work [15], we focused on one particular example
in which verification that an interface correctly represented the
underlying hybrid system was paramount: the automatic landing
of a large civil jet aircraft. Here, we generalize the abstrac-
tion technique which allowed us to make use of discrete inter-
face verification tools. We analyze the user-interface of a hy-
brid human–automation system through tools for hybrid system
reachability analysis. These tools assume a hybrid model of the
human–automation system (which includes how the user inter-
acts with the system). We create a discrete representation of
the hybrid model based on the hybrid system reachability re-
sult, from which we can then design an appropriate interface for
the hybrid system. In cases in which we are given an interface
which can be represented as a discrete system, the task, then, is
to verify the safety of the discrete interface using the discrete
representation of the hybrid human–automation system.

This paper is organized as follows. We first introduce the
modeling formalism and describe the particular way in which
we model human interaction with a hybrid system. We then
describe a method to create the discrete invariance-preserving
abstraction, and apply it to two examples, in which correct
interface design requires information drawn from the under-
lying hybrid dynamics. We first present an everyday example:
driving on an expressway through a yellow light, and show
how, with this method, an interface can be constructed based on
the reachability result of the underlying hybrid system. After
discussing the abstraction method, we present a more com-
plicated example: the automatic landing of a civil jet aircraft,

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 13, 2008 at 17:01 from IEEE Xplore. Restrictions apply.

OISHI et al.: INVARIANCE-PRESERVING ABSTRACTIONS OF HYBRID SYSTEMS: APPLICATION TO USER INTERFACE DESIGN 231

without the simplifications taken advantage of in [15]. Last, we
offer some conclusions and directions for future work.

II. PROBLEM DESCRIPTION

A. Problem Formulation

Consider a hybrid system defined by
the following:

• set of discrete modes ;
• domain of continuous states ;
• transition function ;
• functions ;
• set of discrete inputs or events ;
• set of continuous inputs .

We assume that discrete controlled inputs are initi-
ated by an automated controller (e.g., an automatic transition
based on the continuous state), discrete human-initiated events

are initiated by the human (e.g., pushing a button, tog-
gling a lever), and discrete disturbance inputs are ini-
tiated by something external to the system (e.g., a fault, caused
neither by the automatic controller nor the human). We index
the continuous dynamics by the current discrete mode, so that

, with and in mode
. We assume that the continuous input is controlled au-

tomatically. While we anticipate that the method presented in
this paper can be extended to treat systems with continuous dis-
turbances or continuous human inputs, these issues are not ad-
dressed here. Additionally, the initial set is and the
constraint set is . The constraint set rep-
resents the desired subset of the state-space in which the system
should remain. We index the continuous constraint set in mode

by , i.e., .
Let us also consider a discrete event system ,

defined by the following:
• set of discrete modes ;
• transition relation ;
• set of events .

The event set contains controlled, human-initiated, and distur-
bance events. The set of initial modes is and the constraint
set is .

Definition 1: A hybrid system , defined as before, for which
, is called a hybrid human–automation system.

Definition 2: For a trajectory to be invariant with respect to a
constraint set , it must begin within, and always remain within

.
Definition 3: For a trajectory to be user-invariant with respect

to a constraint set , it must begin within , and may exit only
under human inputs.

Definition 4: A discrete event system is invariance-pre-
serving with respect to the constraint set if it accepts only tra-
jectories of that are invariant or user-invariant.

Definition 5: An invariance-preserving abstraction is a
discrete event system representation of a hybrid system with
constraint set , for which discrete event system is invariance-
preserving.

1) Problem 1: Given a hybrid human–automation system ,
and a constraint set , find an invariance-preserving abstraction

of .
The invariance-preserving abstraction can be compared

to an existing discrete interface through a discrete verification
procedure; or it can be used to synthesize a discrete interface

, a reduced version of which a user can use to safely
interact with the underlying system . The majority of work on
abstractions (see, for example, [29]–[35]) makes use of discrete
abstractions to aid in continuous or hybrid verification, often by
exploiting certain properties of the system (for example, poly-
nomial or bounded continuous dynamics). The invariance-pre-
serving abstraction we propose here can take place after reach-
ability analysis has been used to determine sets of initial condi-
tions which produce invariant trajectories. Rather than aiding in
the verification process, this is a post-processing step in which
a discrete automaton is formed based on the verified system.

In our formulation of a hybrid human–automation system,
human-initiated input occurs through discrete inputs. The
human may influence the hybrid system trajectory, but does not
have to. For example, consider , in
which the human may initiate a transition which switches
the mode from to . The human controls not only when,
but if the transition occurs at all. If the human does not initiate

, then the system will remain in unless other state-based
or disturbance transitions exist which will allow the system to
exit mode . This nicely models applications such as flight
management systems, in which the pilot may initiate high-level
mode-changes and the flight management system maintains
low-level control.

B. Illustration: Advisory System for the Yellow Interval
Dilemma

Consider the following scenario. As a single driver on an ex-
pressway approaches an intersection, suddenly the light turns
yellow. The driver must decide whether to brake and try to stop
at the intersection or to continue driving through the intersec-
tion before the red light appears. In either case, the driver must
avoid a red light violation, which occurs whenever the car is in
the intersection at any time during a red light. Typically, due to
several factors, including accumulated experience about the par-
ticular car’s braking capabilities, the duration of the yellow light
at a given intersection, and the road and weather conditions, the
driver has an “intuitive” feel for the correct course of action [36].
At some intersections, despite the driver’s best intentions, there
are certain combinations of speed and distance from the inter-
section for which a red light violation is inevitable: this is known
as the yellow interval dilemma [37], [38]. We wish to design an
add-on advisory system, whose interface would indicate to the
driver which action must be taken in order to avoid a red light
violation.

We assume a point-mass model of the car without the ad-
ditional complexity of gearing [39]. With position from the
near-side of the intersection and speed , braking and
acceleration forces enter through . The car has limited
braking and acceleration capabilities and

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 13, 2008 at 17:01 from IEEE Xplore. Restrictions apply.

232 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 16, NO. 2, MARCH 2008

Fig. 1. Hybrid model for a car traveling through an intersection, where the input is the car’s acceleration, and .

must obey the speed limit at all times . For this sce-
nario, 4 m/s , 2 m/s , and 24 m/s.
The intersection is 10 m in length and the duration of the yellow
light is 4 s [37], [40]. A typical driver’s reaction time
after seeing the yellow light is 1.5 s [36], [40], [41], during
which time we presume the car travels at its present speed. The
advisory system should be designed with the assumption that
the driver will take one of two courses of action when a yellow
light appears: 1) accelerate through the intersection (without vi-
olating the speed limit) or 2) brake to stop at the intersection.
The question we wish to answer is: What actions does the driver
need to take and when should the driver enact them in order to
avoid a red light violation?

Consider the hybrid model with continuous state
, shown in Fig. 1, in which it follows that:

;

;

, with controlled events
(which

are triggered when the inequality is met),
human-initiated events , and
disturbance event .

The event represents the light turning yellow. The
transition function and the continuous dynamics

are defined as shown in Fig. 1. The initial set is
, and the constraint set is ,

, with
,

, , and
. The constraint set

encapsulates the desired regions of operation in terms of the
car’s position relative to the intersection and the car’s speed:
during the red interval, the constraint set is any position outside
the intersection and any positive speed, plus the position right
at the boundary of the intersection with a speed of 0; during the
green and yellow intervals the constraint set is any position and
positive speed.

1) Problem 2: Find an invariance-preserving abstraction
of the hybrid human–automation system , given the

constraint set .

III. CREATING AN INVARIANCE-PRESERVING ABSTRACTION

In this section, we propose a three-step algorithm to construct
an invariance-preserving abstraction of a hybrid human–au-
tomation system . Each of the three steps in Algorithm 1 will
be detailed in the following sections, followed by a proof that
the resultant discrete event system is an invariance-preserving
abstraction of the hybrid human–automation system .

Definition 6: For every mode in the hybrid human–au-
tomation system , define the set of modes
as the set of all modes which could result after any human-con-
trolled transition from

for all such that exists (1)

Definition 7: Define the set of entry modes
as the union of those modes

which result after any discrete human input and those modes
in the initial set. Define the cardinality of the entry modes as

.
Algorithm 1: To create an invariance-preserving discrete ab-

straction of a hybrid human–automation system , the fol-
lowing must be done.

1) Separate the hybrid human–automation system into
hybrid subsystems , using the

operator to delineate subsystems which contain no human
input.

2) For , compute the invariance-preserving abstrac-
tion of hybrid subsystem .

3) Combine discrete event systems into one discrete event
system .

A. Step 1: Separation Into Hybrid Subsystems

In many human–automation systems, it is important to limit
how a human’s actions will be prescribed. We therefore wish
to minimize the restrictions placed on the human input through
our analysis. We begin our analysis of the human–automation
system by first characterizing regions of in which human

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 13, 2008 at 17:01 from IEEE Xplore. Restrictions apply.

OISHI et al.: INVARIANCE-PRESERVING ABSTRACTIONS OF HYBRID SYSTEMS: APPLICATION TO USER INTERFACE DESIGN 233

input is impossible. The first step is to decompose into sub-
systems which contain no discrete human inputs. As noted ear-
lier, it is impossible to guarantee that a trajectory will be in-
variant when the system contains human-initiated inputs. How-
ever, we can determine regions of the state-space for which
invariant trajectories are possible because no human-initiated
inputs exist. We accomplish this by isolating modes forward-
reachable after a human-initiated transition has occurred, and
defining those modes as a subsystem of the original system .
Thus, within each subsystem, all of the transitions are controlled
or disturbance transitions.

Definition 8: Given an entry mode , the
hybrid system , and a con-
straint set , define the hybrid subsystem

as follows:
• is the set of modes reachable from through any string

of automatic and disturbance events (that is, any string
which does not contain a user-initiated event);

•
if and
otherwise

• exists, ;
and , , are subsets of , , which correspond
to the modes in . Similarly, the constraint set

is a subset of which corresponds to
the modes .

For ease of notation, we label the entry modes .
These indices also label the hybrid subsystems, .
The following indexing function associates each mode
to the hybrid subsystems it is contained in

where (2)

Note that in general, hybrid human–automation systems will
separate into hybrid subsystems which could overlap.

Yellow Interval Example: For the hybrid human–au-
tomation system , applying Definition 7 results
in entry modes ,

since and
. We then apply Definition 8 to find that

separates into three hybrid subsystems: , ,
and , as shown in Fig. 1. For example,
contains , , and

is graphically depicted in the left-most shaded re-
gion of Fig. 1. The constraint set for is

. The index
function maps each mode in to either ,

, or : for example, , since
.

B. Step 2: Invariance-Preserving Discrete Abstraction

In Step 2 of Algorithm 1, we create an invariance-preserving
abstraction of each hybrid subsystem identified in Step 1. Since
the hybrid subsystems do not contain any discrete human in-
puts, standard reachability tools can be used to find invariant
sets within each subsystem.

Fig. 2. Constraints on the state-space are encapsulated in the constraint set
. Applying the reachability computation for seconds, we obtain the

invariant set . Trajectories whose initial conditions are contained
within will remain within for seconds.

Hybrid reachability analysis and controller synthesis pro-
vides us with a mathematical guarantee of invariance to within
the limits of the hybrid model, through the generation of:
1) the invariant set of states, contained within
the constraint set and 2) a control law which ensures that
trajectories which reach the boundary of the invariant set will
not be allowed to exit the invariant set (see Fig. 2). For the
reachability computations in Problem 1, any tool can be used
which can compute the backwards-reachable invariant set for
each hybrid subsystem. This flexibility allows for selection of
the hybrid reachability tool most appropriate for the particular
system at hand [42]–[47]. We use a tool based on level-set
methods [26], [27] that computes not only the reachable set,
but also the control law necessary to enforce invariance along
the boundary of the reachable set. This tool accommodates
hybrid systems with general nonlinear continuous dynamics,
continuous inputs and disturbances, and discrete inputs and
disturbances.

Definition 9: An invariant set has the property that
all trajectories with initial state are invariant with re-
spect to .

Definition 10: Given a hybrid system with (no
discrete human input), and a constraint set ,
define as the result of com-
puting, for seconds, the invariant set by means of
a backwards-reachable, over- or convergent-approximative nu-
merical tool: .

Yellow Interval Example: We compute the invariant sets for
each of the constraint sets in : ,

, and .
In each computed invariant set, we denote the discrete and con-
tinuous components as set of pairs of (mode, continuous
set): ,
for example. The reachability computation reveals that

. In the braking sub-
system , the invariant region in each of the three modes

is: , the
shaded region shown in Fig. 3. In the acceleration subsystem

, the invariant set is represented by the three
shaded regions, labeled in Fig. 4. The invariant

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 13, 2008 at 17:01 from IEEE Xplore. Restrictions apply.

234 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 16, NO. 2, MARCH 2008

Fig. 3. Invariant region in in .

Fig. 4. Invariant set in .

set is represented by ; and the invariant set
is represented by .

Proposition 1: Given a hybrid subsystem with constraint
set , all trajectories whose initial state is contained in the in-
variant set are user-invariant over time period .

Proof: Proof by contradiction; see Appendix I-A for de-
tails.

The only way in which a trajectory that begins in can exit
is through a human-initiated discrete event: a human-ini-

tiated event may transition the system into a state outside of
the invariant set in the new mode, such that for ,

. Denote the complement of a continuous
set as . Additionally, we presume that trajecto-
ries which begin outside the invariant set in one mode

evolve to states outside the invariant set in the next
mode for controlled or disturbance events
in the hybrid system such that ,

.

Fig. 5. Intersection of invariant sets , , and
.

Yellow Interval Example: For any trajectory which begins in
the shaded region of Fig. 3, the car will be able to avoid a red
light violation by coming to a complete stop before the inter-
section. For any trajectory which begins in the shaded regions
of Fig. 4, the car will be able to pass completely through the in-
tersection before the red light occurs. In both cases, computed
control laws to enforce invariance must be applied along the
boundaries of the shaded sets.

Definition 11: Given a set of sets ,
, define a map from the set of

regions in the continuous state-space to the discrete
state-space, based on a partition of the continuous do-
main . The partition divides into disjoint regions

according to the intersection
of the sets. Define the set of discrete modes, correspondingly:

,
so that, for example

(3)

and more generally, . The labeling convention of
the discrete modes reflects the partitioning of the continuous
state-space.

Definition 11 therefore defines a discrete state-space in which
the system being in a particular discrete state corresponds pre-
cisely to the continuous state being in the corresponding cell of
the state-space partition, according to (3).

Yellow Interval Example: Consider the in-
tersection of three invariant sets,

, representing
the mode from which a user-initiated transition is possible,
and the two resulting modes. Since ,
we construct the intersection of the remaining two sets,
producing disjoint regions in . In Fig. 5,

region 1 represents ; region 2

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 13, 2008 at 17:01 from IEEE Xplore. Restrictions apply.

OISHI et al.: INVARIANCE-PRESERVING ABSTRACTIONS OF HYBRID SYSTEMS: APPLICATION TO USER INTERFACE DESIGN 235

represents ; region 3 represents

; and region 4 represents

. We abstract these four regions

to the discrete modes: , , , and ,
respectively. Let ,
where . The result is a set of discrete
modes which represent the intersection of a set of continuous
invariant sets.

Definition 12: Define a map which selects, for
, certain modes in , created from a partition

as defined in Definition 11

for which (4)

The result is modes in which represent continuous states for
which .

Yellow Interval Example: Using the map previously de-
fined, consider the case in which the driver should brake to a
stop. We want to select the discrete modes in which
represent the continuous states from which this is possible:

. We now have
a discrete representation of the hybrid states from
which a safe braking maneuver is possible.

These definitions are key in creating a discrete abstraction of
a hybrid mode. However, beyond constructing the modes of the
discrete abstraction (as shown before), we must also construct
the discrete transition relation in a way which mimics the be-
havior of the original hybrid system. Both of these points are
addressed in the following algorithm. In the first step, discrete
modes are constructed according to the partition defined in Defi-
nition 11. The remaining steps define the discrete transition rela-
tion for: 1) controlled or disturbance events; 2) human-initiated
events; and 3) internal transitions which arise from the contin-
uous dynamics of the original hybrid systems.

Algorithm 2: Given a hybrid subsystem of the hybrid
human–automation system , a constraint set , and an in-
variant set , create a discrete event system

as follows.
1) For each mode , uniquely map the contin-

uous state-space (partitioned into cells, where
is the number of dis-

tinct modes possible after any human-initiated transition
from mode to a set of discrete states corresponding
to the hybrid state

(5)

Here, since has no discrete human input, the only states
for which are the “exit”

modes from .
2) Define the relation for each ,

corresponding to the hybrid subsystem transition
, for (i.e.,

for those controlled or disturbance transitions to modes

Fig. 6. Discrete abstraction of two-mode hybrid automaton with one controlled
discrete input . Both hybrid modes belong to the same hybrid subsystem ,
therefore, . The invariant set is . In the
corresponding discrete abstraction, and .

within the hybrid subsystem . For ease of notation,
denote the invariant set in mode ,

the invariant set in mode ,
the set of discrete modes which represent the hybrid state

, and the set of discrete modes which
represent the hybrid state

for
for .

(6)

Because the reachability analysis of Section II ensures that
for controlled and disturbance events in the hybrid system

, trajectories that begin in the invariant set in mode
evolve to the invariant set in the following mode , in Step
2, the discrete transition relation is defined to reflect this
behavior for controlled and disturbance events. See Fig. 6
for clarification.

3) Define the relation for each , corre-
sponding to any hybrid subsystem transitions to modes

, for
, (i.e., for those human-initiated

transitions to modes in other hybrid subsystems). For ease
of notation, denote the invariant set in
mode

for
for .

(7)

In Step 3, the discrete transition relation is defined such
that for human-initiated events, trajectories which begin in
the invariant set in mode may or may not evolve
to the invariant set in the following mode . This reflects
the user’s prerogative to initiate a transition—whether or
not the system will be in the invariant set in the next mode
depends on the region of the state-space from which the
user enacts the switch. See Fig. 7 for clarification.

4) Define the relations and for ,
corresponding to movement of the continuous state in one
mode with respect to the boundary of the invariant set in
the next mode , for ,

, (i.e., internal transi-
tions not corresponding directly to any discrete transition
in . See Fig. 7 for clarification

with

(8)

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 13, 2008 at 17:01 from IEEE Xplore. Restrictions apply.

236 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 16, NO. 2, MARCH 2008

Fig. 7. Discrete abstraction of a two-mode hybrid automaton with human-ini-
tiated discrete input . The hybrid modes belong to different hybrid subsys-
tems and , therefore, and . The invariant sets are

and . In the corresponding discrete ab-
straction, and .

The discrete transition relation is defined such that
for internal events, it reflects the original continuous
dynamics that govern the movement between cells of the
partition defined in Definition 11. The controlled event

occurs when the continuous state exits the region in
which a transition to mode would be invariance-pre-
serving: . Conversely, the
controlled event occurs when the continuous state
enters the region in which a transition to mode would
invariance-preserving: .
The result is , with ,

, and .
The discrete event system reflects, by construction, the
evolution of hybrid system trajectories with respect to the
hybrid invariant sets.

Proposition 2: The discrete event system is invariance-
preserving for trajectories whose initial states are contained in

.
Proof: Proof by induction; see Appendix I-B for details.

Yellow Interval Example: Consider subsystem . With
no user-controlled transitions ,
the state-space for is partitioned into re-
gions: . The abstraction of these
two continuous regions is the modes .
Previously we constructed the discrete modes

. Since the transition from
to is a disturbance event, we follow Step 2 of

Algorithm 2 to determine the transition function in the discrete
abstraction. According to (6) since
and , the transition relation
is .

Now consider mode . Two transitions are possible,
both human-initiated events. If braking is applied, the hybrid
system switches into mode ; if acceleration is chosen,
the hybrid system switches into mode . In the discrete
abstraction, these two modes are represented by and

, respectively, based on reachability analysis performed
earlier. Following (7) of Algorithm 2, since we know that the

Fig. 8. Discrete event system is the invariance-preserving abstraction of
. In each mode of the abstraction, the name of the discrete mode is listed

in the top line. Listed below are the continuous regions the discrete mode cor-
responds to, as shown in Figs. 3–5 and as appropriate.

mode is in the region

of the state-space that is “safe” in the next mode, , the
corresponding relation in the discrete abstraction is defined as

, which

simplifies to . Similarly, we can
find that . A total of eight such
transitions are defined for the two user-initiated transitions

and possible from each of the four modes in
. The result is depicted in Fig. 8. Additionally, internal

transitions are shown graphically in Fig. 8. The transition
corresponds to the contin-

uous state evolving from a region in which braking would be a
safe course of action, to one where it would not be safe.

Last, consider one of the remaining hybrid modes: .
No user-initiated transitions are possible, so we abstract this hy-
brid mode to discrete modes, . We again
look to (6) of Algorithm 2 to determine the appropriate transi-
tion relation in the discrete abstraction: ,

, where . The dis-
crete abstraction of the other modes in and pro-
ceeds similarly, with , ,

, and , and similarly de-
fined transition relations in the discrete abstraction, as shown in
Fig. 8.

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 13, 2008 at 17:01 from IEEE Xplore. Restrictions apply.

OISHI et al.: INVARIANCE-PRESERVING ABSTRACTIONS OF HYBRID SYSTEMS: APPLICATION TO USER INTERFACE DESIGN 237

C. Step 3: Connecting Systems

The third step of Algorithm 1 is to combine the abstractions
into a single discrete event system .

Definition 13: We define , , and
with .

Yellow Interval Example: The invariance-preserving discrete
abstraction of the hybrid system (see Fig. 1) is shown
graphically in Fig. 8.

Proposition 3: The discrete event system
with initial modes , constructed according to the
three-step procedure in Algorithm 1 from the hybrid system

with constraint set , is an
invariance-preserving abstraction of .

Proof: Proof by contradiction; see Appendix I-C for
details.

D. Using the Discrete Abstraction
An advisory system can then be deduced from the invari-

ance-preserving abstraction using existing discrete reduction
techniques, not covered here. See [48]–[51] for information on
reduction of finite-state machines, [52]–[56] for computational
techniques to accomplish discrete-state reduction, and [17], [18]
for application of discrete-state reduction to the problem of in-
terface design. Using these techniques, we can design an inter-
face, or advisory system, which will maintain the invariance-
preserving properties of the abstraction .

In some situations, an interface may already exist and may
be designed by different people than those who designed the
safety control laws for the system. In this case, it is important to
verify that the interface correctly represents the underlying, hy-
brid system. The authors in [12] and [17] developed a method
to formally verify that one discrete system (such as an inter-
face) adequately represents another discrete system (such as a
“truth” model of a system). Using these methods, the existing in-
terface can be verified against the invariance-preserving discrete
abstraction developed here, according to the method in [12] and
[17]. (We demonstrated this on the autoland example in [15].)

The same authors have used techniques for state reduction of
deterministic, incompletely-specified finite state machines, as a
tool for interface design [18]. Given a finite-state machine which
representsa“truth”modelof theactualsystemandanoutputfunc-
tion defined for every state, the resultant reduced model, created
throughstate reduction, represents the interface for theoriginalfi-
nite-statemachine.This techniquecanbeextendedforthetypesof
nondeterministic systems particular to the abstraction technique
presented here, which may contain far more information than the
user needs in order to accurately interact with the system.

Yellow Interval Example: An interface for the yellow interval
advisory system, constructed through discrete state-reduction
techniques, is shown in Fig. 9. We associate the modes of
in Fig. 8 to five advisories

Continue Driving
Slow to Stop
Accelerate

Accelerate or Brake
Unsafe

Fig. 9. Interface indications for the dashboard device, as determined from
Figs. 3, 4, and 8.

The advisory system provides the reduced set of control in-
structions to guide the user successfully in navigating the inter-
section, avoiding a red light violation. The process of interface
design through discrete state reduction is closely related to the
topic of discrete observability: this relationship is investigated
in [57].

IV. APPLICATION: AUTOMATIC LANDING OF A LARGE

CIVIL JET AIRCRAFT

Autoland systems are complex, safety-critical systems,
subject to stringent certification criteria [58]. Modeling the
aircraft’s behavior, which incorporates logic from the autopilot
as well as inherently complicated aircraft dynamics, results in
a high-dimensional hybrid system with many continuous and
discrete states. Naturally, only a subset of this information is
displayed to the pilot. We want to design a cockpit interface
which provides the pilot with enough information so that the
pilot can safely land or safely go-around. In previous work [15],
[59], we introduced a model of an autoland system for a large
civil jet aircraft which made many simplifying assumptions
regarding the pilot’s input. This work demonstrated the use of
a hybrid reachability tool [26], [27] to aid in the problem of
user-interface verification. We now introduce a more realistic
model of the autoland scenario and demonstrate the general
method developed in this paper to create an invariance-pre-
serving abstraction. The new model incorporates the multitude
of options a pilot has at his disposal in the event of an aborted
landing, known as a go-around. The autoland example is
derived from publicly available aerodynamic data and actual
flight management systems onboard a commercial jet aircraft.

During a typical autoland, the pilot and the autopilot share
control over the aircraft. The pilot controls the aircraft’s flaps
setting and landing gear, which affect the aircraft’s aerody-
namics. The flaps can be set at Flaps-20, Flaps-25, or Flaps-30,
in increasing deflections; the landing gear can be either up or
down. The autopilot controls the thrust and angle of attack
in order to guide the aircraft to a smooth touchdown with an
appropriate descent rate—this is known as a “flare” maneuver.

However, if for any reason the pilot or air traffic controller
deems the landing unacceptable (debris on the runway, a po-
tential conflict with another aircraft, or severe wind shear near
the runway, for example), the pilot must initiate a go-around
maneuver. The pilot initiates a go-around maneuver at any time
before the aircraft touches down, by toggling the “TO/GA”
(Take-Off/Go-Around) lever. We, therefore, model the decision
to go-around as a human-initiated event .

We model the nonlinear longitudinal dynamics of a large civil
jet aircraft by , in which the state

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 13, 2008 at 17:01 from IEEE Xplore. Restrictions apply.

238 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 16, NO. 2, MARCH 2008

Fig. 10. Autoland/go-around automaton . The mode labels refer to the particular combination of mode-logic (i.e., desired trajectory the aircraft autopilot
is tracking) as well as the dynamics of the particular mode. The first part of the TO/GA maneuver (Toga-Fxx-1) occurs with input , the second part of
the TO/GA maneuver (Toga-Fxx-2) occurs with input . The automatic transition occurs when , occurs when , and occurs
when .

TABLE I
AERODYNAMIC CONSTANTS FOR AUTOLAND MODES

includes the aircraft’s speed , flightpath angle , and alti-
tude (see [44] and [60])

(9)

We assume the control input is , with aircraft thrust
and angle of attack . The aircraft has mass 190 000

kg, pitch , and gravitational acceleration is
9.81 m/s . The aircraft’s lift and
drag depend on air density
1.225 kg/m , wing surface area 427.80 m , and the coef-
ficients of lift and drag, and

. The constants , , and were de-
termined for the particular combinations of flap settings and
landing gear in an autoland/go-around scenario [60]–[64] (see
Table I). in all modes.

The initial state is the mode (see Fig. 10), in which
the flaps are at Flaps-30 and the thrust is fixed at idle. During
a normal automatic landing, upon touchdown, the aircraft
switches to Rollout mode. We model this event through ,
which occurs when . We do not model the dynamics of
the aircraft as it rolls along the runway.

If a go-around is required, the pilot immediately changes the
flaps to Flaps-20 and the autothrottle forces the thrust to .
When the aircraft obtains a positive rate of climb, the pilot raises
the landing gear, and the autothrottle allows .

TABLE II
STATE BOUNDS FOR AUTOLAND MODES OF

TABLE III
COMPUTATIONAL DOMAIN FOR AUTOLAND HYBRID SUBSYSTEMS

The user-controlled transition occurs when the pilot selects
Flaps-20, and the automatic transition occurs when .
The aircraft continues to climb to the missed approach altitude,

, then automatically switches into an altitude-holding mode,
. We model this event as an automatic transition

which occurs when .
While standard procedure calls for a flap change simultane-

ously when the go-around is initiated, the pilot may complete
the flap change after toggling the TO/GA lever. While stan-
dard procedure indicates a strict order of events, in practice the
pilot has more flexibility. For example, the pilot may raise the
landing gear before or after obtaining a positive rate of climb.
After initiating a go-around, three changes must occur, but can
occur in any order: 1) the pilot changes the flaps from Flaps-30
to Flaps-20 ; 2) the pilot raises the landing gear ; and
3) the aircraft obtains a positive rate of climb .

State and input bounds due to constraints arising from aircraft
aerodynamics and desired aircraft behavior, are summarized in

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 13, 2008 at 17:01 from IEEE Xplore. Restrictions apply.

OISHI et al.: INVARIANCE-PRESERVING ABSTRACTIONS OF HYBRID SYSTEMS: APPLICATION TO USER INTERFACE DESIGN 239

Fig. 11. Constraint set (wireframe box) and invariant set
(solid).

Table II [64], [65]. Bounds on and are determined by the
desired maneuver [66], [67], with 686 700 N. Addition-
ally, at touchdown, to prevent a tail strike, and

1.829 m/s to prevent damage to the landing gear. These
constraints, in addition to those listed in Table III, form the con-
straint set .

A. Reachability Analysis of Hybrid Subsystems

We separate the hybrid model into five hybrid sub-
systems with no human-initiated events, as shown in Fig. 10. We
perform standard reachability analysis on each system using the
level-set-based tool [26], [27]. Computationally, automatic tran-
sitions are smoothly accomplished by modeling the change in
dynamics across the switching surface as another nonlinearity
in the dynamics. Additionally, we assume in that if the
aircraft exits the top of the computational domain 20 m
without exceeding its flight envelope, it is capable of safely
achieving mode. The computational domain is indi-
cated in Table III.

Invariant sets are computed with a level-set-based reacha-
bility tool [27]. While coarse computations can be accomplished
in under an hour, computations on a finer grid such as
those shown in Figs. 11–13 can take as long as a day. Fig. 11 de-
picts the constraint set (shown as the wireframe box)
as well as the invariant set (solid). Fig. 12 depicts the con-
straint set (wireframe box), as well as the invariant

set (solid). The computed invariant set is indistin-
guishable from since the dynamics differ
from only slightly, in the drag term . (See
Fig. 10 and Table I). Fig. 13 depicts the constraint set

(wireframe box), as well as the invariant set (solid). The
computed invariant set is indistinguishable from
since the dynamics and also differ
only slightly, in .

The intersections of these sets must be computed for the pilot
to be able to safely control the aircraft. For example, for the pilot
to safely switch from or to
or , respectively, by enacting , the pilot must have
information at his disposal regarding the intersection of
and . The intersections of and ; of and

Fig. 12. Constraint set (wireframe box) and invariant set
(solid), which are computationally indistinguishable from the constraint set

and invariant set , respectively.

Fig. 13. Constraint set (wireframe box) and invariant set
(solid), which are computationally indistinguishable from the constraint set

and invariant set , respectively.

Fig. 14. Invariant sets [dark mesh (blue)], [light mesh (green)],
and their intersection [solid (red)]. The intersection represents the set of contin-
uous states in from which the pilot can safely change the flaps .

; of , , and ; and of and
must be computed.

The intersection of and in Fig. 14 is the set
of states from which the aircraft can safely remain in
and from which the aircraft is safe to switch to . States
in which are outside of this intersection are states from

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 13, 2008 at 17:01 from IEEE Xplore. Restrictions apply.

240 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 16, NO. 2, MARCH 2008

Fig. 15. Intersection [light solid (cyan)] represents the set
of continuous states in in which the pilot can safely enact the transition

.

Fig. 16. In a simplified version of [15], and are assumed
to be concurrent. This results in a significantly reduced region in from
which a safe go-around is possible.

which the aircraft can safely remain in , but will become
unsafe if the pilot switches the aircraft to (by raising the
flaps from Flaps-30 to Flaps-20). Similarly, the intersection of

and in Fig. 15 is the set of states from which the
aircraft can safely land, and alternatively, from which the air-
craft can safely switch into the first mode. The analysis
shows that there are regions from which a safe landing is pos-
sible, but a safe go-around is not: for
in mode, the aircraft will become unsafe when the pilot
initiates a go-around by enacting . This region is neces-
sary for the aircraft to be able to complete a landing, however
is problematic in the event of a go-around. The region in
from which a safe go-around is possible is considerably larger
than the result in [15], shown in Fig. 16: expanding the system
to account for all user options results in an increased safe region
of operation, since the pilot can allow the aircraft to gain suffi-
cient speed in before changing to Flaps-20.

B. Invariance-Preserving Discrete Abstraction

Using the reachability computations, we can now create an
invariance-preserving discrete abstraction of . In most
commercial aircraft, the low-level control is performed by the

autopilot, which has authority over small control surface move-
ment. The details of the low-level control are hidden from the
pilot, who anticipates system behavior by understanding the be-
havior of each autopilot mode. We, therefore, assume an auto-
mated controller enforces along the boundary of the
controllable sets, but leave it to the pilot to enforce any discrete
switches necessary to maintain safety. By doing so, we mimic
the supervisory role pilots have in highly automated aircraft, in-
cluding the prerogative not to enforce a recommended switch.

In previous work [15], we used the discrete composition
method of Heymann and Degani [17], [18] to determine
whether or not a given interface adequately and unambiguously
represents , the invariance-preserving abstraction of

. The hybrid model and discrete interface in [15]
were both simplified systems with a relatively small number
of discrete modes. In general, more complex systems (such as
in Fig. 10) will result in discrete systems with a much higher
number of discrete modes. The mode explosion which will
result from the abstraction of Fig. 10 is necessary to determine
the interaction of the user’s actions and maintenance of the
aircraft within its flight envelope; it also motivates the use of a
method, as in [17] and [18], for the verification and design of
interfaces too large to be accurately studied in an ad hoc way.

C. Results

The discrete abstraction has 111 states. With the
information contained in the abstracted model , it is
possible to determine what information the pilot needs in order
to steer the aircraft to safe regions of operation. We reduce

using discrete state reduction techniques (see Fig. 17),
and propose an interface for by relabeling the modes
of this reduced automaton to indicate possible actions to the
pilot. The result is shown in Fig. 18.

We validated the use of the invariance-preserving abstrac-
tion through tests in an actual commercial aircraft flight sim-
ulator. Using the abstraction method as a tool for user-interface
verification, we successfully predicted problematic behaviors in
human–automation interaction.

V. CONCLUSION

Human-automation systems are ubiquitous, from common
consumer devices (an indoor thermostat) to extremely complex,
specialized systems (modern aircraft autopilots). As the use of
human–automation systems inevitably grows, verification of
how users interact and supervise such systems becomes crucial.
This is especially true when the applications involve safety-crit-
ical, expensive, or high-risk systems, but is also applicable to
simpler, less-critical systems which can cause pointless frus-
tration. While some systems can be reasoned through in an ad
hoc way, systems which have nontrivial continuous dynamics
or many modes require a methodical approach.

We presented a method for the synthesis of an invariance-pre-
serving abstraction of a hybrid human–automation system. The
method presented here involves three steps: 1) separation of the
hybrid system into hybrid subsystems with no discrete human
inputs; 2) abstraction of each hybrid subsystem into a discrete

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 13, 2008 at 17:01 from IEEE Xplore. Restrictions apply.

OISHI et al.: INVARIANCE-PRESERVING ABSTRACTIONS OF HYBRID SYSTEMS: APPLICATION TO USER INTERFACE DESIGN 241

Fig. 17. Reduced version of discrete event system for autoland/go-around maneuver.

Fig. 18. Proposed interface for autoland/go-around maneuver , based on reduced version of (see Fig. 17). The pilot’s presumed
and recommended actions are indicated in each mode. Events which will transition the system to unsafety are struck through.

system on the basis of information procured through hybrid
reachability analysis and controller synthesis of each hybrid
subsystem; and 3) connection of each of the resultant discrete
subsystems into one discrete event system which is an invari-
ance-preserving abstraction of the original hybrid system. The
key contribution of this work is a systematic way to create an
abstraction of hybrid systems based on a hybrid reachability re-
sult: the resultant discrete system is one for which existing in-
terface analysis, verification, and design techniques can be im-
plemented.

The resulting discrete event system preserves information re-
garding the invariance of the underlying hybrid system and the
potential effect of the human’s input on maintaining invariance.
Applying discrete state reduction techniques to this invariance-
preserving abstraction results in a reduced discrete event system
(interface) with which the human can effectively interact. The
advantage of using this technique is that interfaces designed
through this method will contain information about the invari-
ance of the underlying hybrid system—this information would

not otherwise have been incorporated through standard discrete
event system modeling and analysis techniques. In safety-crit-
ical systems, such as civil jet aircraft automation, information
about the effect of the human’s actions in system invariance is
vital for safe operation. In autoland/go-around scenario, this in-
formation results in a interface which provides the minimal in-
formation necessary for the pilot to safely complete a go-around
maneuver. The two examples presented, an add-on dashboard
device for yellow interval guidance and an aircraft autopilot,
served to demonstrate the abstraction algorithm and its appli-
cation to a wide range of problems.

APPENDIX

Proof of Proposition 1: Proof by contradiction. Assume
there exists a trajectory with initial state

which is not user-invariant. From Definition 3, this
means that either (a) or (b) the trajectory may exit

under disturbance or controlled inputs. Since ,
we know which contradicts the first point (a).

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 13, 2008 at 17:01 from IEEE Xplore. Restrictions apply.

242 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 16, NO. 2, MARCH 2008

In addition, since all trajectories which begin in , will by
construction (Definition 10), remain in under controlled and
disturbance inputs, this contradicts the second point (b).

Proof of Proposition 2: Proof by induction. 1) Begin
with the mode in the initial set .
By definition, the initial set contains only modes corre-
sponding to hybrid states within the in-
variant set. 2) Consider a generic state resultant from
a string of events. (a) For any controlled or disturbance
input for which , implementing
the control law arising from the reachability calculation
assures that , and
(6) assures that this is reflected in the abstracted system

, as well. According to the discrete transition func-
tion formed in (6), implies that

, so that the set of
discrete modes corresponding to are contained within
the discrete representation of . (b) For any human input
such that , the hybrid state may transi-
tion to a state outside of the invariant set ,
depending from which regions of the hybrid state space
the human enacts , and (7) reflects this same phenom-
enon in the abstracted system as well. Similarly, in the
abstracted system , although ,

, , as
indicated in (7): discrete trajectories are allowed to transition
into discrete states which correspond to the complement of the
invariant set.

From the two previous points, we can conclude that trajec-
tories beginning from will remain in discrete modes cor-
responding to the hybrid region for any event strings con-
sisting only of controlled or disturbance inputs. For any discrete
human input to a state outside of , the resultant discrete state
will not necessarily correspond to a hybrid state within .
Thus with initial mode accepts only invariant or user-
invariant trajectories, and is therefore invariance-preserving.

Proof of Proposition 3: Proof by contradiction. Assume
that accepts trajectories which are not user-invariant. Then
there exists a trajectory with initial state which is not
invariant and not user-invariant. Therefore, this trajectory must
enter a discrete state corresponding to , where

, for each subsystem , , through
either a controlled or disturbance discrete input.

From Proposition 2, we know that each subsystem is an
invariance-preserving abstraction of its corresponding hybrid
subsystem for trajectories whose initial states are contained
within . From Definition 2, this means that only in-

variant or user-invariant trajectories are accepted by . This
contradicts the existence of the trajectory assumed previously,
which is neither invariant nor user-invariant.

In addition, the only transitions possible between subsystems
(i.e., from modes in to modes in are discrete human in-
puts. Trajectories corresponding to hybrid states in the invariant
set can transition into modes corresponding to hybrid states
outside the invariant set , as allowed by user-invariant tra-
jectories. Therefore, all trajectories whose state may transition
from one subsystem to another subsystem are user-invariant.
This contradicts the existence of the trajectory assumed above,
which is neither invariant nor user-invariant.

ACKNOWLEDGMENT

The authors would like to thank A. Degani and M. Heymann
for their contributions to the interface analysis and verification
methods which inspired this work. They would also like to thank
D. Austin, R. Mumaw, and C. Hynes for their help regarding the
aircraft autoland scenario.

REFERENCES

[1] C. Billings, Aviation Automation: The Search for a Human-Centered
Approach. Hillsdale, NJ: Erlbaum, 1997.

[2] E. Wiener and R. Curry, “Flight-deck automation: promises and prob-
lems,” NASA Ames Research Center, Moffett Field, CA, Tech. Memo.
81206, 1980.

[3] R. Parasuraman, T. Sheridan, and C. Wickens, “A model for types and
levels of human interaction with automation,” IEEE Trans. Syst., Man,
Cybern. A, Syst. Humans, vol. 30, no. 3, pp. 286–297, May 2000.

[4] N. Sarter, D. Woods, and C. Billings, “Automation surprises,” in Hand-
book of Human Factors and Ergonomics. New York: Wiley, 1999, pp.
1295–1327.

[5] E. Palmer, “Oops, it didn’t arm—A case study of two automation
surprises,” presented at the 8th Int. Symp. Aviation Psych. Conf.,
Columbus, OH, 1995.

[6] N. Leveson and E. Palmer, “Designing automation to reduce operator
errors,” in Proc. IEEE Conf. Syst., Man, Cybern., 1997, pp. 1144–1150.

[7] A. Degani, M. Shafto, and A. Kirlik, “Modes in human-machine sys-
tems: Constructs, representation, and classification,” Int. J. Aviation
Psych., vol. 9, no. 2, pp. 125–138, 1999.

[8] K. Abbott, S. Slotte, and D. Stimson, “The interfaces between
flightcrews and modern flight deck systems,” Federal Aviation Ad-
ministration, Human Factors Team Report, Washington, DC, 1996.

[9] C. Hynes, G. Hardy, and L. Sherry, Synthesis From Design Require-
ments of a Hybrid System for Transport Aircraft Longitudinal Con-
trol. Moffett Field, CA: NASA Ames Research Center, 2001.

[10] J. Rushby, “Using model checking to help discover mode confusions
and other automation surprises,” Reliab. Eng. Syst. Safety, vol. 75, no.
2, pp. 167–177, 1999.

[11] R. Butler, S. Miller, J. Potts, and V. Carreno, “A formal methods ap-
proach to the analysis of mode confusion,” in Proc. AIAA/IEEE Digit.
Avionics Syst. Conf., 1998, pp. C41/1–C41/8.

[12] A. Degani, M. Heymann, G. Meyer, and M. Shafto, “Some formal
aspects of human–automation interaction,” NASA Ames Research
Center, Moffett Field, CA, Tech. Memo. 209600, 2000.

[13] N. Leveson, L. Pinnel, S. Sandys, S. Koga, and J. Reese, C.
Johnson, Ed., “Analyzing software specifications for mode confu-
sion potential,” in Proc. Workshop Human Error Syst. Develop.,
1997, pp. 132–146.

[14] S. Vakil, A. Midkiff, T. Vaneck, and R. Hansman, “Mode
awareness in advanced autoflight systems,” presented at the 6th
IFAC/IFIP/IFORS/IEA Symp. Anal., Des., Evaluation Man-Mach.
Syst. Conf., Cambridge, MA, 1995.

[15] M. Oishi, I. Mitchell, A. Bayen, C. Tomlin, and A. Degani, “Hybrid
verification of an interface for an automatic landing,” in Proc. IEEE
Conf. Dec. Control, 2002, pp. 1607–1613.

[16] J. Crow, D. Javaux, and J. Rushby, “Models and mechanized methods
that integrate human factors into automation design,” presented at the
Int. Conf. Human-Comput. Interaction Aeronautics, Toulouse, France,
2000.

[17] A. Degani and M. Heymann, “Formal verification of human–automa-
tion interaction,” Human Factors, vol. 44, no. 1, pp. 28–43, 2002.

[18] M. Heymann and A. Degani, “On abstractions and simplifications in
the design of human–automation interfaces,” NASA Ames Research
Center, Moffett Field, CA, Tech. Memo. 211397, 2002.

[19] A. Chutinan and B. H. Krogh, “Verification of infinite-state dynamics
systems using approximate quotient transition systems,” IEEE Trans.
Autom. Control, vol. 46, no. 9, pp. 1401–1410, Sep. 2001.

[20] G. Frehse, “PHAVer: Algorithmic verification of hybrid systems past
HyTech,” in Hybrid Systems: Computation and Control, ser. LNCS
34143, M. Morari and L. Thiele, Eds. New York: Springer Verlag,
2005, pp. 258–273.

[21] E. Asarin, “Reachability analysis of nonlinear systems using conserva-
tive approximation,” in Hybrid Systems: Computation and Control, ser.
LNCS 2623, T. Dang, A. Girard, O. Maler, and A. Pneuli, Eds. New
York: Springer Verlag, 2003, pp. 20–35.

[22] A. B. Kurzhanski, “Ellipsoidal techniques for hybrid dynamics: The
reachability problem,” in New Directions and Applications in Control
Theory, ser. Lecture Notes in Control and Information Sciences 321,
W. Dayawansa, A. Lindquist, Y. Zhou, and P. Varaiya, Eds. New
York: Springer Verlag, 2005, pp. 193–205.

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 13, 2008 at 17:01 from IEEE Xplore. Restrictions apply.

OISHI et al.: INVARIANCE-PRESERVING ABSTRACTIONS OF HYBRID SYSTEMS: APPLICATION TO USER INTERFACE DESIGN 243

[23] M. Kvasnica, P. Grieder, M. Baotic, and M. Morari, “Multi-parametric
toolbox (MPT),” in Hybrid Systems: Computation and Control, ser.
LNCS 2993, R. Alur and G. Pappas, Eds. New York: Springer Verlag,
2004, pp. 448–462.

[24] C. Tomlin, J. Lygeros, and S. Sastry, “A game theoretic approach to
controller design for hybrid systems,” Proc. IEEE, vol. 88, no. 7, pp.
949–970, Jul. 2000.

[25] I. Mitchell, “Application of level set methods to control and reacha-
bility problems in continuous and hybrid systems,” Ph.D. dissertation,
Dept. Scientific Comput. Comput. Math., Stanford Univ., Stanford,
CA, 2002.

[26] I. Mitchell, A. Bayen, and C. Tomlin, “Validating a Hamilton–Jacobi
approximation to hybrid system reachable sets,” in Hybrid Systems:
Computation and Control, ser. LNCS 2034, M. D. Benedetto and A.
Sangiovanni-Vincentelli, Eds. New York: Springer Verlag, 2001, pp.
418–432.

[27] I. Mitchell, A “Toolbox of level-set methods, Version 1.1 Beta
ed.,” University of British Columbia, Vancouver, BC, Canada,
2005 [Online]. Available: http://www.cs.ubc.ca/~mitchell/Tool-
boxLS/index.html

[28] M. Oishi, C. Tomlin, V. Gopal, and D. Godbole, “Addressing
multiobjective control: Safety and performance through constrained
optimization,” in Hybrid Systems: Computation and Control, ser.
LNCS 2034, M. Di Benedetto and A. Sangiovanni-Vincentelli,
Eds. Philadelphia, PA: Springer-Verlag, 2001, pp. 459–472.

[29] A. Bhatia and E. Frazzoli, “Incremental search methods for reachability
analysis of continuous and hybrid systems,” in Hybrid Systems: Com-
putation and Control, ser. Lecture Notes in Computer Science 2993, R.
Alur and G. Pappas, Eds. Philadelphia, PA: Springer-Verlag, 2004,
pp. 142–156.

[30] A. Tiwari and G. Khanna, “Nonlinear systems: Approximating reach
sets,” in Hybrid Systems: Computation and Control, ser. Lecture Notes
in Computer Science 2993, R. Alur and G. Pappas, Eds. Philadelphia,
PA: Springer-Verlag, 2004, pp. 142–156.

[31] R. Alur, F. Ivancic, and T. Dang, “Progress on reachability analysis of
hybrid systems using predicate abstraction,” in Hybrid Systems: Com-
putation and Control, ser. Lecture Notes in Computer Science 2623, F.
Wiedijk, O. Maler, and A. Pneuli, Eds. Prague, The Czech Republic:
Springer-Verlag, 2003, pp. 4–19.

[32] T. J. Koo and S. Sastry, “Bisimulation based hierarchical system ar-
chitecture for single-agent multi-modal systems,” in Hybrid Systems:
Computation and Control, ser. Lecture Notes in Computer Science
2623, C. Tomlin and M. Greenstreet, Eds. Stanford, CA: Springer-
Verlag, 2002, pp. 281–293.

[33] P. Tabuada, G. Pappas, and P. Lima, “Composing abstractions of hy-
brid systems,” in Hybrid Systems: Computation and Control, ser. Lec-
ture Notes in Computer Science 2623, C. Tomlin and M. Greenstreet,
Eds. Stanford, CA: Springer-Verlag, 2002, pp. 436–450.

[34] G. Pappas and S. Sastry, “Towards continuous abstractions of dynam-
ical and control systems,” in Hybrid Systems IV, ser. Lecture Notes
in Computer Science 1273, P. Antsaklis, W. Kohn, A. Nerode, and S.
Sastry, Eds. New York: Springer-Verlag, 1997, pp. 329–341.

[35] A. Puri and P. Varaiya, “Verification of hybrid systems using abstrac-
tions,” in Hybrid Systems II, ser. LNCS. New York: Springer-Verlag,
1995.

[36] A. Crawford, “Driver judgment and error during the amber period
at traffic lights,” Ergonomics, vol. 5, no. 4, pp. 513–532, Oct.
1962.

[37] C. Liu, R. Herman, and D. Gazis, “A review of the yellow interval
dilemma,” Transportation Res. A, vol. 30, no. 5, pp. 333–348, 1996.

[38] D. Gazis, R. Herman, and A. Maradudin, “The problem of the amber
signal light in traffic flow,” Oper. Res., vol. 8, no. 1, pp. 112–132, Jan./
Feb. 1960.

[39] S. Hedlund and A. Rantzer, “Optimal control of hybrid systems,”
in Proc. IEEE Conf. Dec. Control, Phoenix, AZ, 1999, pp.
3972–3977.

[40] ITE Technical Council Task Force 4TF-1, Institute of Transportation
Engineers, Washington, D.C., “Determining vehicle signal change and
clearance intervals,” 1994.

[41] W. Stimpson, P. Zador, and P. Tarnoff, “The influence of the time du-
ration of yellow traffic signals on driver response,” ITE J., pp. 22–29,
Nov. 1980.

[42] A. Chutinan and B. Krogh, “Computational techniques for hybrid
system verification,” IEEE Trans. Autom. Control, vol. 48, no. 1, pp.
64–75, Jan. 2003.

[43] F. Torrisi and A. Bemporad, “Hysdel—A tool for generating
computational hybrid models for analysis and synthesis problems,”
IEEE Trans. Control Syst. Technol., vol. 12, no. 3, pp. 235–249,
Mar. 2004.

[44] C. Tomlin, I. Mitchell, A. Bayen, and M. Oishi, “Computational tech-
niques for the verification of hybrid systems,” Proc. IEEE, vol. 91, no.
1, pp. 986–1001, Jan. 2003.

[45] E. Asarin, T. Dang, and O. Maler, “D/DT: A verification tool for hybrid
systems,” in Proc. IEEE Conf. Dec. Control, 2001, pp. 2893–2898.

[46] T. Henzinger, P. Ho, and H. Wong-Toi, “A user guide to hytech,” in
TACAS 95: Tools and Algorithms for the Construction and Analysis
of Systems, ser. LNCS 1019, E. Brinksma, W. Cleavel, K. Larsen, T.
Margaria, and B. Steffen, Eds. New York: Springer-Verlag, 1995, pp.
41–71.

[47] S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo,
“SOSTOOLS: Sum of squares optimization toolbox for MATLAB,”
2004 [Online]. Available: http://www.cds.caltech.edu/sostools;
http://www.aut.ee.ethz.ch/~parrilo/sostools

[48] Z. Kohavi, Switching and Finite Automata Theory. New York: Mc-
Graw-Hill, 1978.

[49] M. Paull and S. Unger, “Minimizing the number of states in incom-
pletely specified sequential switching functions,” IRE Trans. Electron.
Comput., vol. EC-8, pp. 356–367, Sep. 1959.

[50] S. Ginsburg, “A technique for the reduction of a given machine to a
minimal-state machine,” IRE Trans. Electron. Comput., vol. EC-8, pp.
346–355, Sep. 1959.

[51] A. Grasselli and F. Luccio, “A method for minimizing the number of
internal states in incompletely specified sequential networks,” IEEE
Trans. Electron. Comput., vol. EC-14, no. 3, pp. 350–359, Jun. 1965.

[52] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli, “Implicit
computation of compatible sets for state minimization of ISFSM’s,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 16, no. 7,
pp. 657–676, Jul. 1997.

[53] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli, “Theory
and algorithms for state minimization of nondeterministic FSM’s,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 16, no.
11, pp. 1311–1322, Nov. 1997.

[54] J. Rho, G. Hachtel, F. Somenzi, and R. Jacoby, “Exact and heuristic
algorithms for the minimization of incompletely specified state ma-
chines,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol.
13, no. 2, pp. 167–177, Feb. 1994.

[55] R. Puri and J. Gu, “An efficient algorithm to search for minimal closed
covers in sequential machines,” IEEE Trans. Comput.-Aided Des. In-
tegr. Circuits Syst., vol. 6, no. 6, pp. 737–745, Jun. 1993.

[56] J. Pena and A. Oliveira, “A new algorithm for exact reduction of incom-
pletely specified finite state machines,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 18, no. 11, pp. 1619–1632, Nov. 1999.

[57] M. Oishi, I. Hwang, and C. Tomlin, “Immediate observability of dis-
crete event systems with application to user-interface design,” in Proc.
IEEE Conf. Dec. Control, 2003, pp. 2665–2672.

[58] Federal Aviation Administration, U.S. Department of Transportation,
Washington, DC, “Criteria for approval of category III weather minima
for takeoff, landing, and rollout,” Advisory Circular 120-28D, 1999.

[59] M. Oishi, A. Degani, and C. Tomlin, “Verification of hybrid systems:
Application to user-interfaces,” NASA Ames Research Center, Moffett
Field, CA, Tech. Memo. 212803, 2003.

[60] A. Bayen and C. Tomlin, “Nonlinear hybrid automaton model for air-
craft landing,” Dept. Aeronautics and Astronautics, Stanford Univ.,
Stanford, CA, SUDAAR 737, 2001.

[61] S. Rogers, K. Roth, H. Cao, J. Slotnick, M. Whitlock, S. Nash, and
M. Baker, “Computation of viscous flow for a boeing 777 aircraft in
landing configuration,” presented at the AIAA Conf., Denver, CO,
1992.

[62] J. Roskam and C.-T. Lan, Airplane Aerodynamics and Performance.
Lawrence, KS: Design, Analysis, and Research Corporation, 1997.

[63] A. Flaig and R. Hilbig, “High-lift design for large civil aircraft,” in
AGARD CP 515, 1992, pp. 31-1–31-12.

[64] L. Jenkinson, P. Simpkin, and D. Rhodes, Civil Jet Aircraft Design.
Reston, VA: American Institute of Aeronautics and Astronautics, Inc.,
1999.

[65] I. Kroo, “Aircraft Design: Synthesis and Analysis, Version 0.99”
Desktop Aeronautics, Stanford, CA, 2001.

[66] C. Hynes, Personal communication, Aug. 2001.
[67] T. Lambregts, “Automatic flight control: Concepts and methods,” FAA

National Resource Specialist, Advanced Controls, 1995.

Meeko Oishi (S’99–M’04) received the M.S. and
Ph.D. degrees in mechanical engineering from
Stanford University, Stanford, CA, in 2000 and
2004, respectively, and the B.S.E. in mechanical
engineering from Princeton University, Princeton,
NJ, in 1998.

She is an Assistant Professor with the Department
of Electrical and Computer Engineering, University
of British Columbia, Vancouver, BC, Canada. She
has held postdoctoral positions with Sandia National
Laboratories (2005) and with the National Science

Foundation (NSF) National Ecological Observatory Network (NEON) (2004).

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 13, 2008 at 17:01 from IEEE Xplore. Restrictions apply.

244 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 16, NO. 2, MARCH 2008

She has been a Science and Technology Policy Fellow at The National
Academies (2004), a Visiting Researcher at NASA Ames Research Center
(2001–2003) and Honeywell Technology Center (2000), and a summer intern
with Boeing, Intel, and Sandia National Laboratories. Her research interests
include nonlinear dynamical systems, hybrid control theory, user-interface
analysis, and reachability analysis.

Dr. Oishi was a recipient of the Truman Postdoctoral Fellowship in National
Security Science and Engineering in 2005, the NSF Graduate Research Fellow-
ship (1998–1999 2000–2002), and the John Bienkowski Memorial Prize from
Princeton University in 1998.

Ian M. Mitchell (S’97–M’03) received the B.A.Sc.
in engineering physics and the M.Sc. degree in
computer science from the University of British
Columbia, Vancouver, BC, Canada, in 1994 and
1997, respectively, and the Ph.D. degree in scientific
computing and computational mathematics from
Stanford University, Stanford, CA, in 2002.

After spending a year as a Postdoctoral Researcher
with the Department of Electrical Engineering and
Computer Science, University of California,
Berkeley, and the Department of Computer Science,

Stanford University, in August, 2003, he became an Assistant Professor with
the Department of Computer Science, University of British Columbia. He is
the author of the Toolbox of Level Set Methods, the first publicly available high
accuracy implementation of solvers for dynamic implicit surfaces and the time
dependent Hamilton–Jacobi equation that works in arbitrary dimension. His
research interests include scientific computing, hybrid systems, verification
and robot path planning.

Dr. Mitchell was a recipient of a 1999 SIAM/AAAS Mass Media Fellowship
and a 1997–1998 Stanford School of Engineering Graduate Fellowship.

Alexandre M. Bayen (S’02–M’04) received the
B.S. degree in applied mathematics from the Ecole
Polytechnique, Palaiseau, France, in 1998, the M.S.
and the Ph.D. degrees in aeronautics and astronautics
from Stanford University, Stanford, CA, in 1999 and
2004, respectively.

Since March 2005, he has been an Assistant
Professor with the Department of Civil and Envi-
ronmental Engineering, University of California
at Berkeley, Berkeley. From 2001 to 2003, he was
a Visiting Researcher with NASA Ames, Moffett

Field, CA. From 2004 to 2005, he held the rank of Major with the Department
of Defense, France. During that time, he was the Research Director of the
Laboratoire de Navigation Autonome, Laboratoire de Recherches Balistiques
et Aérodynamiques, Vernon, France. His research interests include control of
distributed parameter systems, combinatorial optimization, hybrid systems and
air traffic automation.

Mr. Bayen was a recipient of the Graduate Fellowship of the Délégation
Générale pour l’Armement (1998–2002) from France and of the Ballhaus Prize
for best doctoral thesis from the Department of Aeronautics and Astronautics,
Stanford University (2004).

Claire J. Tomlin (S’93–M’99) received the M.Sc.
degree from Imperial College London, London,
U.K., in 1993, the B.A.Sc. degree from the Uni-
versity of Waterloo, Waterloo, ON, Canada, in
1992, and the Ph.D. degree from the University
of California at Berkeley, Berkeley, in 1998, all in
electrical engineering.

She is a Professor with the Department of Elec-
trical Engineering and Computer Sciences, Univer-
sity of California at Berkeley, and with the Depart-
ment of Aeronautics and Astronautics, Stanford Uni-

versity, Stanford, CA. She has held Visiting Research Positions with NASA
Ames, Honeywell Labs, and the University of British Columbia. Her research
interests include control systems, specifically hybrid control theory, and she
works on air traffic control automation, flight management system analysis and
design, and modeling and analysis of biological cell networks.

Prof. Tomlin was a recipient of the MacArthur Fellowship (2006), the
Eckman Award of the American Automatic Control Council (2003), the MIT
Technology Review’s Top 100 Young Innovators Award (2003), the AIAA
Outstanding Teacher Award (2001), an NSF Career Award (1999), a Terman
Fellowship (1998), and the Bernard Friedman Memorial Prize in Applied
Mathematics (1998).

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 13, 2008 at 17:01 from IEEE Xplore. Restrictions apply.

