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SWITCHING RESTRICTIONS FOR STABILITY DESPITE
SWITCHING DELAY: APPLICATION TO SWITCHED TRACKING

TASKS IN PARKINSON’S DISEASE

Meeko M. K. Oishi, Nikolai Matni, Ahmad Ashoori, and Martin J. McKeown ∗†‡§

Abstract. Switched nonlinear systems with delay in the switching

instant could be destabilized, despite stable dynamics in each mode,

if the delay is long enough. We identify a restriction on the switch-

ing scheme to assure stability despite a finite delay in switching

instant. The restriction partitions the state-space in a time-varying

manner for a known switching delay, and converges to a steady-state

partition that can be determined from the intersection of Lyapunov

functions in each mode. We apply this technique to experimental

data from a manual pursuit tracking task performed by 14 subjects

with Parkinson’s disease, and 10 control subjects. Each subject

manually tracks a moving target through a joystick-controlled cur-

sor, with sudden changes in the tracking dynamics. The tracking

task can be modeled as a 3-mode switched system. By calculating

the maximal time delay for each mode pair and for each subject, we

obtain a measure of relative stability that can be compared across

groups and across tasks. Using the derived stability measure, sub-

jects with Parkinson’s disease were shown to be relatively less stable

than control subjects.

Keywords. Switched systems, switching delay, Parkinson’s dis-

ease, nonlinear dynamics

1 Introduction

We consider stability of switched systems [1, 2, 3] with

delay in the switching instant. While such systems are

ubiquitous in engineered systems (such as those with com-

munication delays or with humans in the loop) we focus

here on application to a biological system – motor control

in a switched manual pursuit tracking task in Parkinson’s

disease – for which stability despite switching delay pro-

vides a measure of robustness to sudden changes in task

dynamics.
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For switched systems with stable dynamics in each

mode, existence of a common Lyapunov function proves

stability under arbitrary switching [4, 5]. If a common

Lyapunov function does not exist or cannot be found, sta-

bility can be assessed for a known switching signal [6, 7, 8]

or assured by constraining switching to occur in certain

regions of the state-space [9]. However, even if a switch-

ing signal is determined to result in stable behavior, a

delay in the switching instant could result in performance

degradation or even destabilization of the system.

In Parkinson’s disease, a neurodegenerative disorder

in which voluntary movement is impaired by a lack of

dopamine in the brain, slowness in switching between

multiple tasks (e.g., between reaching and balancing) may

underlie the empirical observation that PD subjects have

difficulty performing simultaneous movements. Indeed,

the slowness in switching may be a contributing factor to

the high prevalence of falls in Parkinson’s disease as com-

pared to the general population. In addition, cognitive

inflexibility in Parkinson’s disease [10, 11] may closely

correspond to an inability to adapt to sudden change.

When sudden changes occur in a dynamic context, as with

manual pursuit tracking tasks, delay in motor response to

sudden changes may be related to stability despite delay

in switching. In this paper, we investigate the effect of

delay on switching in Parkinson’s disease through the use

of a manual pursuit tracking task whose dynamics have

sudden changes – that is, a tracking task that has hybrid

dynamics.

A set of three motor tasks were designed to evaluate the

ability of subjects to respond to sudden and unexpected

changes in tracking dynamics. When switching between

multiple tracking tasks, the subject must stabilize their

error dynamics. In recent work [12], mode detection al-

gorithms were used to determine that the length of time

required for a subject to detect a sudden change in task

dynamics (based solely on their tracking performance)

was longer in subjects with Parkinson’s disease as com-

pared to normal subjects. In this paper, we take a slightly

different approach. We instead evaluate the stability of

each subjects’ tracking dynamics, and determine an up-

per bound on the maximum delay in switching instant

that each subject could tolerate without destabilization.
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We interpret this delay as an indirect indicator of relative

stability, such that longer delays correlate to a higher de-

gree of stability.

Previous work in switched systems with bounded delay

has focused on controller synthesis for delay differential

equations, in which linear state-space equations depend

on a time-delayed state [13, 14, 15, 16]. Work has also

been done on stabilizing autonomous systems in which

mode changes are detected with a time-varying delay [17,

18, 19]. In contrast, we focus here on autonomous systems

for which a delay in the state measurement affects only

the switching instant. Closely related to our work are the

results presented in [20], in which switched systems with

delay in the switching instant are stabilized by imposing a

minimum dwell-time condition to prevent instability that

could arise from switching too quickly between modes.

These techniques are an extension of standard dwell-time

methods [21, 22] that ensure stability by forcing a system

to remain in a given mode for a minimum, finite duration.

We consider switched systems with stable dynamics in

each mode, but for which no common Lyapunov function

can be found to prove stability under arbitrary switch-

ing. We exploit restrictions for stability under state-

constrained switching to determine, for a known delay

in switching instant, the set of states for which switch-

ing will not violate restrictions for stable switching. By

bounding the change in the Lyapunov functions of the

current mode and the next mode over the duration of the

switching delay, we introduce restrictions on the switching

scheme. These restrictions result in a time-varying parti-

tion in the state-space for a given mode pair and bounded

delay. By restricting the class of allowable switching sig-

nals to those which satisfy the time-varying state-space

constraint, stability is assured, despite possible worst case

evolution during the time-delay.

Our main contributions are 1) a method of synthesizing

state constraints that guarantee global uniform asymp-

totic stability in a nonlinear switched system despite a

switching delay, and 2) application of this technique to

evaluate stability in a switched manual pursuit tracking

task as a means of assessing motor performance in Parkin-

son’s disease.

2 Problem formulation

Consider a switched nonlinear system

ẋ = fσ(t)(t, x) (1)

with x ∈ Rn, σ : R+ → P ⊂ N a piecewise constant

switching signal, and F � {fp : R+ × D → Rn : p ∈
P} a family of functions indexed by p that are piecewise

continuous in t and locally Lipschitz in x on R+×D, D ⊂
Rn a domain containing the origin. We assume the origin

is an equilibrium point for each fp ∈ F without loss of

generality, and consider local stability of the equilibrium

point. Lastly, we use the notation � · � to indicate the

p−norm of a vector in Rn.

Definition 2.1 (Modified from [23]). The equilibrium

point x∗ = 0 of (1) is stable under Σ∗, a set of piecewise

constant switching signals, if ∀� > 0, ∃δ = δ(�, t0) > 0

such that

�x(t0)� < δ ⇒ �x(t)� < �, ∀t ≥ t0 ≥ 0 (2)

for all σ ∈ Σ∗.

Lemma 2.1 (Modified from [23]). The equilibrium point

x∗ = 0 for (1) is

• uniformly stable (US) under Σ∗ if and only if there

exists a class K function α and a positive constant c,
independent of t0, such that

�x(t)� ≤ α(�x(t0)�), ∀t ≥ t0 ≥ 0, ∀�x(t0)� < c (3)

for all σ ∈ Σ∗.

• uniformly asymptotically stable (UAS) under Σ∗ if

and only if there exists a class KL function β and a

positive constant c, independent of t0, such that

�x(t)� ≤ β(�x(t0)�, t−t0), ∀t ≥ t0 ≥ 0, ∀�x(t0)� < c
(4)

for all σ ∈ Σ∗.

The results of Lemma 2.1 hold globally for c = ∞.

Remark 2.1. If Σ∗ = {p}, (i.e. σ(t) ≡ p), Definition 2.1

and Lemma 2.1 are equivalent to standard definitions of

stability for a nonlinear system.

Assume that for (1), ẋ = fp(t, x), p ∈ P has a stable
equilibrium point x∗ = 0. Define a piecewise continuous

Lyapunov function

V (t, x) = Vσ(t)(t, x) (5)

which satisfies conditions for stability in each mode p with
a continuously differentiable Lyapunov function Vp(t, x) :
R+ × D → R that is positive definite, and for which
d
dtVp(t, x) is negative semidefinite, for all t ≥ 0 [23].

Lastly, assume that δ(�, t0) from Definition 2.1 is in-

vertible, such that for any δ, t0 ∈ R+, one can compute

� = �(δ, t0) (6)

satisfying (2).

Definition 2.2. Let Σs be the set of piecewise constant

switching signals σ : R+ → P such that (1) is stable.

From [7, 4], a sufficient condition for stability under a

switching signal σ ∈ Σs is that the piecewise continuous

Lyapunov function (5) be non-increasing, that is, at each

switching instant τ ,

Vp(τ, x(τ
−
))− Vq(τ, x(τ)) ≥ 0 (7)

with σ(τ−) = p and σ(τ) = q.

Problem 1. Characterize a class of switching signals

Σs
T ⊆ Σs such that the piecewise continuous Lyapunov

function (5) is non-increasing as in (7) for the system (1),

despite a switching delay of duration T .
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3 Stability under state con-
strained switching

We first develop state partitions that ensure (5) is strictly
decreasing in the case in which there is no switching de-
lay. We then examine the effect of the delay on those
partitions, and introduce a “delay buffer” to account for
the effect of the switching delay by bounding the possible
changes in the Lyapunov function Vp(t, x) of the current
mode p ∈ P and the Lyapunov function Vq(t, x) of the
next mode q ∈ P, q �= p, over the duration of the time
delay.

3.1 Restrictions on switching without de-
lay

First consider the case when T = 0. To assure that the
time derivatives of the two Lyapunov functions Vp(t, x)
and Vq(t, x) are bounded, assume the following:

Assumption 3.1. There exists a class K function
αp(�x�) such that

−αp(�x�) ≤
∂Vp

∂t
+

∂Vp

∂x
fp(t, x) ≤ 0 (8)

Assumption 3.2. There exists a class K function
αp,q(�x�) and a real constant bp,q ∈ {−1, 1} such that

∂Vq

∂t
+

∂Vq

∂x
fp(t, x) ≤ bp,qαp,q(�x�) (9)

Lyapunov functions that are Lipschitz continuous in x
will satisfy the restrictions (8), (9) for autonomous sys-
tems.

Hence to solve Problem 1 for the case in which T = 0,
define the delay-free switching restriction

S̄(p, q, τ) � {x ∈ Rn : Vp(τ, x)− Vq(τ, x) > 0} (10)

Theorem 3.1 (From [7]). Let Σs
0 be the set of piecewise

constant switching signals σ : R+ → P such that x(τ) ∈
Ss(σ(τ−),σ(τ), τ) at every switching instant τ . Then (1)
is stable under Σs

0.

Proof. Any switching signal σ ∈ Σs
0 that generates trajec-

tories that satisfy (10) at all switching instants will also
satisfy (7), hence Σs

0 ⊆ Σs.

3.2 Restrictions on switching with delay

Theorem 3.2. Let Σs
T be the set of piecewise constant

switching signals such that, for each switching instant τ ,
x(τ − T ) ∈ Ss(σ(τ−),σ(τ), τ), with

Ss(p, q, τ) � {x ∈ D :

Vp(τ − T, x)− Vq(τ − T, x) ≥ γs(p, q, τ)} (11)

the set of states for which switching from mode p to mode
q is allowed for a time-varying delay buffer

γs(p, q, τ) = T · [αp(Λ(p, q, τ))

+ max(0, bp,q) · αp,q(Λ(p, q, τ))] (12)

with Λ(p, q, τ) = �(�x(τ −T )�, τ −T ), �(·, ·) as defined in
(6), and αp(·), αp,q(·), and bp,q that satisfy (8) and (9).
Then (1) is stable under Σs

T .

Proof. We show that Σs
T ⊆ Σs by finding a lower bound

on the left-hand side of (7) based only on information
available when the switch is triggered, i.e. x(τ − T ), and
partitioning the state space such that (7) holds at each
switching instant, despite a switching delay T .

The Lypaunov function in mode p ∈ P

Vp(τ, x(τ)) = Vp(τ − T, x(τ − T ))

+
� τ
τ−T

�
∂Vp

∂t + ∂Vp

∂x fp(t, x)
�
dt

≥ Vp(τ − T, x(τ − T ))
−
� τ
τ−T αp(�x(t)�)dt

(13)
is bounded below by applying (8). Since �x(t)� is
bounded over [τ − T, τ), applying (2), (6), produces a
lower bound on Vp(τ, x(τ)) given x(τ − T ).

Vp(τ, x(τ)) ≥ Vp(τ − T, x(τ − T ))

− T · αp(�(�x(τ − T )�, τ − T )) (14)

Similarly, Vq(τ, x(τ)) is bounded above.

Vq(τ, x(τ)) = Vq(τ − T, x(τ − T ))

+
� τ
τ−T

�
∂Vq

∂t + ∂Vq

∂x fp(t, x)
�
dt

≤ Vq(τ − T, x(τ − T ))
+
� τ
τ−T bp,qαp,q(�x(t)�)dt

(15)
If bp,q = 1, the integral term is positive, and the upper

bound for �x(t)� given by (2), (6) further bounds (13),
and obtain a result similar to (14). However, if bp,q = −1,
a lower bound for �x(t)� is required to further bound (13).
In general, such a lower bound is unavailable, but can be
conservatively approximated as 0.

Vq(τ, x(τ)) ≤ Vq(τ − T, x(τ − T ))

+ max(0, bp,q) · T · αp,q(�(�x(τ − T )�, τ − T ) (16)

Combining (14), (16) with (7),

Vp(τ−T, x(τ−T ))−Vq(τ−T, x(τ−T )) ≥ γs(p, q, τ) (17)

with γs given as in (12). Letting Ss(p, q, τ) be the subset
of D where (17) holds, we obtain (11). Thus, for any
piecewise constant switching signal σ ∈ Σs

T , we have σ ∈
Σs, thus Σs

T ⊆ Σs.

The sets Ss(p, q, τ) thus partition the state space into
regions where switching from mode p to mode q ensures
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(5) is non-increasing, guaranteeing the stability of (1), de-
spite a switching delay T . Computing the delay buffer γs

given a delayed measurement x(τ−T ) is trivial once func-
tions αp, αp,q and constant bp,q have been determined,
and can be easily be performed online, resulting in a
computationally efficient manner of verifying whether a
desired switch between two modes is allowable.

Corollary 3.1. Let Σus be the set of piecewise constant
switching signals σ : R+ → P such that (1) is uniformly
stable. Let Σus

T be the set of piecewise constant switching
signals such that, for each switching instant τ ,
x(τ − T ) ∈ Sus(σ(τ−),σ(τ), τ), with

Sus(p, q, τ) � {x ∈ D :

Vp(τ − T, x)− Vq(τ − T, x) ≥ γus(p, q, τ)} (18)

the set of states for which switching from mode p to mode
q is allowed for a time-varying delay buffer

γus(p, q, τ) = T · [αp(Λ
us(p, q, τ))

+ max(0, bp,q) · αp,q(Λ
us(p, q, τ))] (19)

with Λus(p, q, τ) = ᾱp(�x(τ−T )�), ᾱp(·) that satisfies (3)
and αp(·), αp,q(·), and bp,q that satisfy (8) and (9).

Proof. Similar to Theorem 3.2: When bounding equa-
tions (13) and (15), ᾱp(�x(τ − T )�) provides an upper
bound for �x(t)� over [τ − T, τ) instead of (2), (6), thus
Σus

T ⊆ Σus.

Corollary 3.2. Let Σuas be the set of piecewise con-
stant switching signals σ : R+ → P such that (1) is UAS.
Let Σuas

T be the set of piecewise constant switching sig-
nals such that, for each switching instant τ , x(τ − T ) ∈
Suas(σ(τ−),σ(τ), τ), with

Suas(p, q, τ) � {x ∈ D :

Vp(τ − T, x)− Vq(τ − T, x) ≥ γuas(p, q, τ)} (20)

the set of states for which switching from mode p to mode
q is allowed for a time-varying delay buffer

γuas(p, q, τ) =

� τ

τ−T
αp(Λ

uas(p, q, τ))dt

+max(0, bp,q) ·
� τ

τ−T
αp,q(Λ

uas(p, q, τ))dt (21)

with Λuas(p, q, τ) = βp(�x(τ −T )�, t− (τ −T )), bounding
function βp(·, ·) as defined in (4) for mode p, and with
αp(·), αp,q(·), and bp,q that satisfy (8) and (9).

Proof. Similar to Theorem 3.2: When bounding equa-
tions (13) and (15), βp(�x(τ − T )�, t− (τ − T )) provides
an upper bound for �x(t)� over [τ − T, τ) instead of (2),
(6), thus Σuas

T ⊆ Σuas.

i Vi(x) αi(y) αi,j(y) bi,j βi(r, s)

1 x2
1 + x4

2 2y2 2.5y2 1
�

4r2

r2s+2

� 1
4

2 1
2 (x

2
1 + x2

2) 2y2 3y2 1 2
�

2r2

r2s+2

� 1
2

Table 1: Functions and constants necessary to apply
Corollary 3.2 to Example 3.4.1.

3.3 Wait-time condition

Since the delay buffer γuas is time-varying, by waiting
long enough before switching, the effect of the time delay
on the state-based partitioning can be made arbitrarily
small. Once this condition is satisfied, it is satisfied for
all future times, and hence can be thought of as a wait-
time condition.

Corollary 3.3. For σ ∈ Σuas
T , as t → ∞, the time-

varying partition Suas(p, q, τ) → S̄(p, q, τ) converges to
the delay-free partition in (10) for all p, q ∈ P, guaran-
teeing uniform asymptotic stability of (1).

Proof. We fix a “next mode” q and study the evolution of
Suas(σ(t), q, t) under a switching signal σ ∈ Σuas

T . Define
the functional γuas(·, q, ·) : P × R+ → R, evolving under
a switching signal σ ∈ Σuas

T .

γuas(σ(t), q, t) =

� t

t−T
ασ(t)(Λ

uas(σ(t), q, t))dr

+max(0, bσ(t),q) ·
� t

t−T
ασ(t),q(Λ

uas(σ(t), q, t))dr (22)

with Λuas(σ(t), q, t) = βσ(t)(�x(t− T )�, r − (t− T )). For
all σ ∈ Σuas

T , (1) is uniform asymptotically stable, and
by Lemma 2.1, there exists a class KL function β(·, ·)
satisfying (4). Hence �x(t)� → 0 as t → ∞, implying
that the integral terms in (22) asymptotically approach
0 as well. Thus the delay buffer γuas(σ(t), q, t) → 0 as
t → ∞ for all σ ∈ Σuas

T . Letting the final active mode of
σ be p, the result follows.

3.4 Examples

3.4.1 Autonomous nonlinear switched system

Consider a system (1) with F = {f1(x), f2(x)}, x =
[x1, x2]T ∈ R2 and fi

f1(x) =

�
−x1 + 2x3

2 − 2x4
2

−x1 − x2 + x1x2

�

f2(x) =

�
−x2 − x3

1

x1 − 2x3
2

� (23)

restricted to D := {x ∈ R2 : ||x||22 ≤ 1}, with a switching
delay TD = .01s.
Table 1 describes the Lyapunov functions, constants,

class K functions and class KL functions needed to apply
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t = 0.5s

−1 0 1
−1

0

1
t = 1s

−1 0 1
−1

0

1
t = 1.5s

−1 0 1
−1

0

1

t = 2s

−1 0 1
−1

0

1
t = 2.5s

−1 0 1
−1

0

1
t = 3s

−1 0 1
−1

0

1

t = 3.5s

−1 0 1
−1

0

1
t = 4s

−1 0 1
−1

0

1
t = 4.5s

−1 0 1
−1

0

1

Figure 1: Snapshots of the partition Suas(1, 2, t) (white)
evolving over time under the switching signal σ(t) ≡ 1.
Notice that the black region (states from which a switch
from mode 1 to mode 2 is disallowed) shrinks over time,
since Suas(1, 2, t) → S̄(1, 2) as t → ∞ (10).

Corollary 3.2. The functions αi(·), αi,j(·) and constants
bi,j are all obtained by exploiting the equivalence of norms
over Rn and the fact that �xr� < �xs� for all r > s and
�x� < 1. The functions βi(·, ·) are solved as in Theorem
4.9, Lemma 4.4 and Appendix C.5 of [23]. The resulting
second-order scalar ODE has an analytic solution.

Figure 1 shows snapshots of Suas(1, 2, t) (white) evolv-
ing over time under the switching signal σ(t) ≡ 1. Ini-
tially, Suas(1, 2, t) is not very large (recall that the domain
is the unit circle), but as the system evolves, the buffer
delay γuas(1, 2, t) decreases, and its effect becomes less im-
portant. The set Suas(1, 2, t) → S̄(1, 2) converges to the
delay-free partition in (10). A sample phase-plane tra-
jectory is presented in Figure 2, with portions of the tra-
jectory evolving according to ẋ = f1(x) plotted in black
(dark), and those evolving according to ẋ = f2(x) plotted
in cyan (light). A switch occurs as soon as the trajectory
enters a region of the state-space in which switching is al-
lowed. The system spends a relatively long time in mode
2 initially because Suas(1, 2, t) is relatively small (Figure
1). In the last snapshot of Figure 1, Suas(1, 2, t) occupies
approximately half of the unit circle. Hence, as the ef-
fect of the time delay lessens as γuas decreases, switching
between modes is enabled and occurs more frequently.

3.4.2 Time-varying linear switched system

Consider a system (1) with F = {f1(t, x), f2(t, x)},

fi(x) =

�
−x1 − gi(t)x2

x1 − x2

�
, (24)

with x = [x1, x2]T ∈ R2, gi : R+ → R,

g1(t) = 3
1+t

g2(t) = et

(1+et)

(25)

−0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x1

x 2

Figure 2: Example 3.4.1. Phase-plane trajectory gener-
ated by a two mode system (23) under switching signal
σ ∈ Σuas

TD
, with portions of the trajectory evolving ac-

cording to ẋ = f1(x) plotted in black (dark), and those
evolving according to ẋ = f2(x) plotted in cyan (light).

i ki ki αi(y) αi,j(y) bi,j βi(r, s)

1 3 3 7y2 2y2 1 2e−
3
8 sr

2 1 0 3y2 5y2 −1
√
2e−

3
4 sr

Table 2: Functions and constants to apply Corollary 3.2
to Example 3.4.2 with Vi(x) = x2

1 + (1 + gi(t))x2
2 in each

mode i.

and switching delay TD = .01s.

Since each continuously differentiable gi(t) satisfies

0 ≤ gi(t) ≤ ki
−k̄i ≤ ġ(t) ≤ g(t)

(26)

for some real ki, ki ≥ 0, it is possible to construct the nec-
essary Lyapunov functions, class K functions, and class
KL functions. These functions and constants were solved
(Table 2) in a similar manner as those in the previous
example, except that equivalence of norms was not nec-
essary as all terms were second-order. Figure 2 shows a
sample phase-plane trajectory with portions of the tra-
jectory evolving according to ẋ = f1(x) plotted in black
(dark), and those evolving according to ẋ = f2(x) plotted
in cyan (light). A switch occurs as soon as the trajectory
enters a region of the state space in which switching is
allowed. We see that in this example, as opposed to Ex-
ample 3.4.1, switching occurs much less frequently. This
highlights the effect of both the system dynamics and
Lyapunov function structures on delay buffer.
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−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x1

x 2

Figure 3: Example 3.4.2. Phase-plane trajectory of (24)

under a switching signal σ ∈ Σuas
TD

. Portions of the tra-

jectory evolving according to ẋ = f1(x) plotted in black

(dark), and those evolving according to ẋ = f2(x) plotted
in cyan (light).

4 Delayed switching in Parkin-
son’s Disease

4.1 Experiment Description

Fourteen PD subjects (on and off L-dopa medication)

with clinically diagnosed, mild to moderate PD and ten

healthy, age-matched subjects without active neurolog-

ical disorders conducted a series of experiments at the

Pacific Parkinson’s Research Centre at the University of

British Columbia at Vancouver, Canada. The study was

approved by the Ethics Board at UBC, and all subjects

first provided informed consent (a full description of the

experimental setup can be found in [12]). Subjects were

asked to perform a tracking task by using a joystick in re-

sponse to visual stimuli displayed on a computer screen,

as shown in Figure 4. A horizontal “glass rod” connect-

ing two boxes (each 60mm × 45mm) was shown on the

display, where the box on the left (Target) oscillated in

the vertical direction at a linear combination of two con-

stant frequencies (ω1 and ω2), thus giving it a smooth

but fairly complex appearing motion. Subjects were in-

structed to move the box on the right (Cursor) by using

the joystick so that the glass rod remained horizontal at

all times. PD subjects performed the task once after an

overnight withdrawal (minimum of 12 hours since their

last dose of L-dopa, minimum of 18 hours since the last

dose of dopamine agonists) of their anti-Parkinson drugs

and again one hour after admission of L-dopa.

Part 1: Single tracking task. Subjects were first trained
on three separate tracking tasks. Over a single 90-second

interval, a sequence of three separate tracking tasks was

performed, with a short delay (5-10 seconds) between

each task to mark its end. In each task, the visual feed-

Figure 4: Experimental setup. The target trajectory is

u(t) = sin(ω1t) + sin(ω2t). Users are instructed to keep

the cursor y(t) level with the target. The error u(t)−y(t)
is scaled by 0.3 in ‘Better’ mode, by 2.0 in ‘Worse’ mode,

and unchanged in ‘Normal’ mode.
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Figure 5: Switched manual pursuit tracking task for a

normal subject. The desired task is blue (solid), the ac-

tual tracking performance is red (dashed). Task modes

Better, Normal, Worse, correspond to scaling of the sub-

ject’s displayed error by 0.3, 1.0, and 2.0, respectively,

such that their cursor position appears to be better than

expected, as expected, or worse than expected.

back of the actual tracking errors was either amplified,

attenuated or unaltered (but did not switch between the

three options). In the ‘Normal’ task, the vertical distance

between the target and cursor displayed on the monitor

reflected the true error generated by the subject. In the

‘Better’ task, this distance was artificially reduced on the

computer screen to 30% of the true error. In practice,

the attenuation essentially made the tracking error bet-

ter than expected. Finally, in the ‘Worse’ task, the the

distance between the target and the cursor was artificially

doubled, making the tracking error worse than expected.

Subjects performed eight sets of the 90-second intervals

(e.g., a total of 8× 3 tasks).

Part 2: Switched tracking task. The same sequences

of three different tasks was again performed over a sin-

gle 90-second interval, but without a delay between tasks,

as shown in Figure 5. Subjects were not provided with

any additional signal that might indicate that the task

had changed, although two unenunciated mode switches

occurred in every 90-second interval. With a 10-second

pause at the start of each interval, the first task lasted

20 seconds, and the remaining two tasks each lasted

30 seconds. This pattern was repeated eight times, re-
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Normal Parkinson’s off med Parkinson’s on med

Better (0.54, 1.09)± (0.29, 0.15) (0.53, 1.51)± (0.29, 0.34) (0.46, 1.81)± (0.26, 0.40)
Normal (0.67, 0.91)± (0.35, 0.24) (0.58, 1.26)± (0.22, 0.43) (0.55, 1.56)± (0.12, 0.49)
Worse (0.53, 0.84)± (0.20, 0.17) (0.43, 1.26)± (0.12, 0.28) (0.41, 1.59)± (0.11, 0.33)

Table 3: Mean and standard deviations of (ζ,ωn) for combinations of subject groups and tasks.

Mode Ap Bp Dp

Better

�
1.998 1

−0.999 0

� �
0.002

−0.003

�
0.006

Normal

�
1.994 1

−0.994 0

� �
0.005

−0.006

�
0.004

Worse

�
1.917 1

−0.925 0

� �
0.039

−0.031

�
0.035

Table 4: System matrices for a typical normal subject.

sulting in a total of 8 × 2 mode switches. A total

of 4 sequences were each tested twice: ‘Normal-Better-

Worse’, ‘Worse-Normal-Better’, ‘Better-Worse-Normal’,

and ‘Better-Normal-Worse’.

In prior work [12, 24], black-box system identification

algorithms were used to determine second-order LTI dy-

namical system models of each subjects’ tracking perfor-

mance from Part 1 (e.g., for each of the three tasks), with

input as the Target position and output as the Cursor po-

sition. Using standard methods [25] implemented in Mat-

lab’s system identification toolbox [26], for each subject ×
task, four sets of data were used to create a second-order

model, and the remaining four sets of data were used to

validate the model. The resulting models for Parkinson’s

subjects on and off medication are qualitatively similar,

although as described in [12], damping ratio and natural

frequency vary depending on group and task, respectively.

As compared to control subjects, Parkinson’s subjects off

medication are more damped, and Parkinson’s subjects

on medication are less damped. For all groups, the natu-

ral frequency increased with task difficulty, with highest

values for the ‘Worse’ task. Mean and standard devia-

tions for damping ratio and natural frequency are shown

in Table 3; full description of the analysis and results can

be found in [12].

We then model each subject performing the switched

tracking task (Part 2) as a 3-mode switched linear system

ẋ = Apx+Bpu
y = Cpx+Dpu

(27)

with modes P = {Better, Normal, Worse} and state ma-

trices (Ap, Bp, Cp, Dp) identified numerically for each sub-

ject × task with x ∈ R2, u ∈ R, y ∈ R. A subject that

adapts to the sudden changes in tracking dynamics will

in essence switch modes. From the subjects’ perspective,

switches could occur at any time, so the switching scheme

is assumed to be arbitrary for the purpose of modeling.

System matrices for a typical normal subject are shown

in Table 4, with Cp = [1, 0] in all modes p ∈ P.

Subject type Subjects with Total

no CQLF subjects

Normal 5 10

Parkinson’s off med 9 14

Parkinson’s on med 9 14

Table 5: Subjects without a common quadratic Lya-

punov function (CQLF). The higher rate of subjects with

Parkinson’s disease whose dynamics are not stable un-

der arbitrary switching coincides with clinical observa-

tions that Parkinson’s disease reduces robustness to un-

certainty.

4.2 Arbitrary Switching

To determine whether the identified models for each sub-

ject were stable under arbitrary switching, we apply con-

verse theorem for arbitrary switching [9]. For each sub-

ject, solving the LMI

�

p∈P
(AT

p Rp +RpAp) > 0 (28)

for positive definite matrices Rp disproves the existence

of a common quadratic Lyapunov function. As expected

(Table 5), proportionally fewer subjects with Parkinson’s

disease had switched systems that were stable under arbi-

trary switching as compared to normal subjects. This is

consistent with clinical expectations that normal subjects

are more robust to uncertainty than subjects with Parkin-

son’s disease. For the subjects with common quadratic

Lyapunov functions, delays in switching will never desta-

bilize the system.

4.3 Restrictions on Switching

Since the dynamics of all subjects are stable in each mode

p ∈ {Better, Normal, Worse}, Lyapunov functions ex-

ist for all subjects × tasks. A stable switching scheme

σ ∈ Σs was identified for each subject for whom no com-

mon quadratic Lyapunov function could be found (Table

5), based on normalized quadratic Lyapunov functions

calculated for each mode with Qp = −I.

Vp(x(t)) = x(t)TPpx(t)/�Pp�, Pp = PT
p > 0, Pp ∈ Rn×n

(29)

Normalized Lyapunov functions (29) were calculated for

all 5 Normal + 9 PD on medication + 9 PD off medi-

cation subjects × tasks. Each subject was confirmed to

have non-empty intersections of Lyapunov functions at a
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Figure 6: The differences in time delays

∆BN = Tmax(Normal, Better) − Tmax(Better, Worse)

and ∆NW = Tmax(Worse, Normal)−Tmax(Better, Worse)

for subjects with Parkinson’s disease off medication, are

close to statistical significance, with p = 0.0869.

constant energy level for each of the 3 mode pairs (Bet-

ter, Worse), (Normal, Better), (Worse, Normal). Hence

the existence of a stable switching scheme for each sub-

ject without a common quadratic Lyapunov function is

assured.

For a switched system (1) with LTI dynamics and

quadratic Lyapunov functions (29) for each mode p ∈ P ,
and Qp(q) � −(AT

q Pp + PpAq) to track the evolution of

the Lyapunov function in mode q while σ(t) = p, the

partition Ss
(10) reduces to

S(p, q) �
�
x ∈ Rn

:
xT (Pp−Pq)x

�x�2 > γ(p, q)
�

γ(p, q) = Θ(p) · Λ(p, q)
(30)

with Θ(p) =
c2p
2λp

(1 − e2λpT ), Λ(p, q) = λmax(Qp(p)) −
min(0,λmin(Qq(p))), and cp,λp > 0 constants for mode p
such that

�x(t)� ≤ cpe
−λp(t−(τ−T ))�x(τ − T )� (31)

4.4 Robustness to delayed switching

For each subject, the amount of time required to violate

(11) can be determined for a given mode pair.

xT
(Pp −Qp − γ(p, q) · I)x > 0 (32)

Exploiting symmetry and realness for 2D matrices, the

positive solution to the quadratic equation

0 = γmax(p, q)
2 −Trace(Pp −Qp) · γmax(p, q) + |Pp −Qp|

(33)

is the largest delay buffer γmax(p, q), hence an upper

bound on the maximal delay that will not destabilize the

system is

Tmax(p, q) = − 1

2λp
ln

�
1− 2λp

c2p
· γmax(p, q)

Λ(p, q)

�
(34)
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Figure 7: The differences in time delays

∆BN = Tmax(Normal, Better) − Tmax(Better, Worse)

and ∆NW = Tmax(Worse, Normal)−Tmax(Better, Worse)

for subjects with Parkinson’s disease on medication, are

close to statistical significance, with p = 0.0878.

Since S(p, q) is determined conservatively (for all sub-

jects), and the bounds on the evolution of the Lyapunov

functions are not tight, we obtain an upper bound on the

maximum delay, as opposed to the actual maximum de-

lay. Let the switching scheme σ with delay T be denoted

by σT ∈ Σ
s
T . Hence delays T > Tmax(p, q) as in (34) could

destabilize the system under switching scheme σT .

Within subject groups, delay Tmax is statistically sig-

nificant across tasks, with p-values of p = 2.420×10
−3

for

normal subjects, p = 7.704 × 10
−5

for Parkinson’s sub-

jects off medication, and p = 3.156×10
−5

for Parkinson’s

subjects on medication. In all groups, the mean value of

Tmax(Better, Worse) is smaller than the mean values of

Tmax(Normal, Better) and Tmax(Worse, Normal). This

is consistent with the hypothesis that switching between

tasks Better and Worse is the most difficult amongst task

pairs. In addition, switching between Better and Worse

is less “robust” to delay – that is, the system is most

likely to become unstable due to a delay in a transition

between modes whose dynamics are extremely different.

In this case, the attenuation factor switches from its low-

est value (0.3) to its highest value (2.0) and a long delay

in adapting to the sudden change will significantly impair

tracking performance.

Using a paired t-test, we examine the differences in

delay across task pairs ∆BN = Tmax(Worse, Normal) −
Tmax(Better, Worse) and∆NW = Tmax(Normal, Better)−
Tmax(Better, Worse) for each subject. While for nor-

mal subjects the relative delays are not significant (p =

0.6280), for subjects with Parkinson’s disease, both on

and offmedication, the relative delays are close to statisti-

cal significance (p = 0.0878 and p = 0.0869, respectively).
Further, in Parkinson’s subjects on medication the mean

values follow the trend ∆WN = 0.01376 < ∆NB = 0.00890
where in Parkinson’s subjects off medication, the reverse

trend holds: ∆WN = 0.01443 > ∆NB = 0.00814, as shown
in Figures 6 and 7. This reversal indicates relatively

increased difficulty for Parkinson subjects in managing
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the transitions involving the Worse mode after medica-
tion, and the transitions involving the Better mode be-
fore medication. While counterintuitive at first glance,
this trend may be related to impaired response to error
that is known to worsen after medication. For example,
we found in earlier work on Part 1 of this same experi-
ment that Parkinson’s subjects on medication were more
underdamped in their responses (lower damping ratios on
average) than Parkinson’s subjects off medication. The
difficulty with the Worse mode after medication may be
the same phenomenon, in which medication may appar-
ently worsen some motor responses. This may also reflect
altered reward processing in PD subjects that may be re-
versed with medication [27].

5 Conclusion and Future Work

We present conditions for stability for nonlinear switched
systems despite a delay in switching instant. Exploiting
sufficient conditions for switched stability, in addition to
mild assumptions about the boundedness of Lyapunov
functions in each mode, we determine those set of states
that meet sufficient criteria for stability despite a constant
time delay in switching instant. The criteria essentially
creates a time-varying partition of the state-space. The
effect of the time delay decreases the system evolves.

We apply these techniques to experimentally obtained
switched LTI models of a manual pursuit tracking task
performed by 10 normal subjects and 14 subjects with
Parkinson’s disease, on and off medication. We iden-
tify the maximum time delay that a given switching se-
quence could withstand without violating the sufficient
conditions for stability of a switched system, and com-
pare the result across groups and mode pairs. Across
all subject groups, the Better → Worse task change is
the least tolerant to switching delays, as expected. In
addition, amongst subjects with Parkinson’s disease, the
relative difficulty of certain task changes reverses after
medication. This may be related to clinically observed
phenomena in which medication may make subjects hy-
persensitive to motor error and hence degrade some as-
pects of their motor performance.
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