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Amethod for thenumerical computation of reachable sets for hybrid systems is presented andapplied to thedesign

and safety analysis of autoland systems. It is shown to be applicable to specific phases of landing: descent, flare, and

touchdown. The method is based on optimal control and level set methods; it simultaneously computes a maximal

controlled invariant set and a set-valued control law guaranteed to keep the aircraft within a safe set of states under

autopilot mode switching. The method is applied to the sequenced flap and slat deflections of a simplified model of a

DC9-30. The paper concludes with a demonstration of the method on higher dimensional aircraft models.

Nomenclature

b = wingspan, m
CL, CD = lift and drag coefficients
D��; V� = drag of the aircraft, N
e = efficiency factor
f�x; u� = continuous system’s dynamics
H�x; p� = Hamiltonian of the system
halt = missed approach altitude, m
h� = parameter of CL depending on flap deflection
J�x; t� = solution of the Hamilton–Jacobi equation
J0�x� = implicit surface function representing the unsafe set

V0

K = modeling constant
L��; V� = lift of the aircraft, N
m = mass of the aircraft, kg
p = costate of the system
S = wing area
T = thrust of the aircraft T 2 �0; Tmax�, N
u = input thrust and angle of attack or its derivative
u� = optimal input
V = velocity of the aircraft, m=s
V�t� = reachable set
V0 = a priori unsafe set
W = maximal controllable set or set of controllable states
W0 = safe flight envelope in a mode
X = state space, R3 or R4

x = state vector of the aircraft, x� �V; �; z�
z = altitude of the aircraft, m
_z0 = maximal touchdown vertical velocity, m=s
� = angle of attack of the aircraft, � 2 ��min; �max�, deg
� = flight-path angle of the aircraft, � 2 ��min; �max�, deg
� = flap setting, deg
� = pitch of the aircraft, deg
� = air density, kg=m3

Introduction

O NE of the key technologies for design and analysis of safety
critical and human-in-the-loop systems is verification, which

allows for heightened confidence that the system will perform as
desired. In the context of the present work, verification consists of
proving that, from an initial set of states (for example, aircraft
configurations), a system can reach another desired set of states
(target) while remaining in an acceptable range of states (envelope).
The subset of states that can reach the target while remaining in the
envelope is called the set of controllable states or the maximal
controllable set. For example, if an aircraft is landing, the initial set of
states is the set of acceptable aircraft configurations, or states, such as
position, velocity, flight-path angle, and angle of attack, of the
aircraft a few hundred feet before landing; the target is the set of
acceptable aircraft states at touchdown; and the envelope is the range
of states in which it is safe to operate the aircraft. A safe landing
trajectory is one that starts from the set of initial states, is contained in
the envelope, and reaches the target in finite time.

Although the verification of discrete state systems is a relatively
well-explored field for which efficient tools have been successfully
developed [1,2], algorithms for verification of continuous state
systems have been developed relatively recently [3,4]; verifying an
uncountable (infinite) set of states represented by continuous
variables requires a numerical treatment that is theoretically more
difficult than for discrete systems and harder to implement in
practice. A possible approach is to use the Hamilton–Jacobi partial
differential equation (HJ PDE). The HJ PDE framework models the
envelope as the zero sublevel sets of a user defined function. This
function is used as a terminal condition for a HJ PDE that is
integrated backward in time. The result of the integration provides a
new function, the zero sublevel sets of which can be shown to be the
set of points that can reach the target while staying in the envelope,
i.e., the maximal controllable set. The HJ PDE framework also
provides a set-valued control law, which indicates the range of
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allowable control inputs that can be applied as a function of the
continuous state, to keep the system inside the maximal controllable
set.

The benefit of this approach, sometimes called reachability
analysis, is that it provides a proof (for the mathematical models
used) that the system will remain inside the envelope and reach the
target. This is to be contrasted with Monte Carlo methods, which do
not provide any guarantee for trajectories that are not part of the
simulation. Monte Carlo methods have historically been used to
explore the possible trajectories a system might follow. The more
finely gridded the state space, the more information the Monte Carlo
simulations will provide. However, this class of methods is
fundamentally limited in that it provides no information about initial
conditions in between the grid points. A second benefit of
reachability analysis is that it complements the traditional gain-
scheduled linear control design methods used for commercial flight
systems [5]. Aswill be seen in this paper, reachability analysis can be
applied to analyze the behavior of the aircraft over the full flight
envelope and can generate a least restrictive control filter that is only
applied if the aircraft state gets close to the boundary of the maximal
controllable set. Inside the maximal controllable set, traditional
controllers designed to optimize, for example, performance or
passenger comfort would be applied. Finally, the reachable set
framework encompasses systemswith inputs; thus, control problems
with cooperating inputs or differential game problems with
competing inputs (from different players) can be treated effectively.

The validity of this proof goes back to the discovery of the
viscosity solution [6,7] of the HJ PDE. Before this, methods based on
differential games [8] (or optimal control, for only one player)
provided, at best, certificates that specific trajectories of the system
stayed inside of the envelope but did not provide guarantees on sets.
The advent of level set methods [9–11] enabled numerical
computation of the viscosity solution, with a theoretical proof of
convergence of the numerical result to the viscosity solution. In
parallel, viability theory [12] provided engineers with an equivalent
approach to solve the same problems, leading to a new suite of
numerical schemes [13] developed to solve differential game
problems [14]. These numerical schemes have also been proved to
converge to the viscosity solution of the HJ PDE, providing the same
guarantees as level set methods. These methods have now been
extended to treat hybrid systems, which combine continuous state
and discrete state dynamics [15–18].

When the actual implementations of these methods became
operational in the late 1990s, the computational power limited such
computations to two dimensional systems [13,15]. Algorithmic
improvements and the increase in computing power now enable
computations for systemswith continuous state dimension up to four
or five depending on the mathematical characteristics of the
dynamics considered. This is a major technological breakthrough
that now allows the treatment of problems involving realistic models
of physical systems. This gives aerospace engineers an
unprecedented ability to use these methods for analysis and safety
verification of aircraft control systems, which are inherently hybrid,
i.e., their evolution exhibits continuous behavior (position and
velocity change) as well as discrete behavior (autopilot mode
switches). For example, the motion of a landing aircraft is described
by continuous variables, but it undergoes different discrete flap
settings during landing, which have distinct dynamics and can be
viewed as discrete modes that the pilot selects by pushing a lever or
buttonwith the corresponding setting. Interestingly, landing is one of
the few portions of the flight that is not fully automated; in particular,
flap deflection is still operated manually by pilots.

Aerospace engineering offers a long list of examples of algorithms
or methods that slowly made their way from research to
implementation onboard physical aircraft. The most famous
example is probablyBryson’sminimum time to climb control history
computation for a supersonic jet fighter (the F4) [19]. Reachability
analysis is one such example, and it is now at a stage where system
implementations have become possible. It has been used in research
on air traffic control, for enhanced traffic management system data
classification [20], for soft wall analysis [21], and in conflict

resolution and analysis [22]. It has also been used for underwater
technology: five-dimensional reachability computations have been
implemented on a glider submarine at the French Department of
Defense [23]. Hardware implementation of reachable set
computations has led to successful demonstrations of automated
unmanned aerial vehicles conflict avoidance [24]. This technology
was implemented in a T33 aircraft and a F15 aircraft, and a successful
conflict resolution maneuver was realized, demonstrating the
feasibility of the method for manned aircraft [24,25]. This provides
evidence that an actual implementation on a civilian airliner of the
schemes presented in this paper is feasible and realistic, which is the
motivation for this paper.

This paper presents several contributions. First, a model of aircraft
longitudinal dynamics is presented and analyzed. The model is
written in such a way that it is possible to find an analytical
expression of the optimal input to apply in the reachability
computation of interest. This is a remarkable property given the
model; in general, optimal Hamiltonians in HJ PDEs have to be
computed numerically. The second contribution is the application of
the technique to successive phases of landing. The novelty of this
result lies in the hybrid reachability computation, a field for which
few nonacademic examples (such as this one) exist. The hybrid
nature of the model makes it possible to compute the maximal
controllable set, despite the fact that the system switches dynamics
several times through the landing. Finally, these results are extended
to higher dimensional models, which incorporate flap dynamics in
the formof amore realistic description of the evolution of the angle of
attack.

This paper is organized as follows: The first section of this paper
presents the model of the longitudinal dynamics of the aircraft, as
well as the definition of the safety envelopes in the different modes of
the aircraft (e.g., descent, flare, go-around) with corresponding slat
and flap deflections. The following section presents the method used
to do the verification and the corresponding input to apply to keep the
aircraft inside the flight envelope. This method is then generalized to
hybrid systems and applied to the successive flap and slat deflections
of a DC9-30 in final approach. Finally, current research directions
with higher dimensional models are shown. Themodel of the aircraft
is refined, and the numerical technique is adapted accordingly. The
appendix presents the proof of optimality, which is necessary for the
solution of the HJ PDE.

Physical Model

This section presents the equations of motion used to model the
aircraft’s longitudinal dynamics. The aerodynamic properties of the
aircraft are derived from empirical data as well as fundamental
principles. The aircraft envelopes are derived using the aircraft
characteristics as well as regulations.

Equations of Motion

The longitudinal dynamics of an aircraft are modeled using the
frame of reference shown in Fig. 1. The state variables are the
velocity, the flight-path angle, and the altitude. The state of the
system is called xT � �V; �; z�. A point mass model is considered in
which the aircraft is subjected to forces of thrust, lift, drag, and mg

Fig. 1 Point mass force diagram for the longitudinal dynamics of the

aircraft.
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due to gravity. The equations of motion for this system read

d

dt

V
�
z

2
4

3
5�

1
m
�T cos� �D��; V� �mg sin ��

1
mV

�T sin�� L��; V� �mg cos ��
V sin �

2
4

3
5 (1)

In Eq. (1), T and � are the inputs. In some modes (i.e., portions of
landing), T might be fixed at nominal values Tidle or Tmax, where
Tidle � 0:2 	 Tmax and Tmax is the maximal thrust. Although the pilot
has control over elevator deflection, the model assumes that it can
control � directly. A realistic model would assume that the pilot has
control over ��. This is unfortunately not possible given the currently
available computing resources. The validity as well as limitations of
these assumptions will be discussed in the last section of this paper.

Aerodynamic Properties of the Aircraft

In a commonly accepted approximation (see, for example,
[26,27]), lift and drag depend on the two flight parameters � andV as
well as on numerous characteristics of the aircraft. The model of
these characteristics is expressed by the dimensionless lift and drag
coefficients defined by

CD � D

�1=2��SV2
and CL �

L

�1=2��SV2
(2)

The coefficientCL can be computed for an ideal lift using thin airfoil
theory. CL is a linear function of � given by

CL��� � CLo
� CL�

� (3)

where CLo
is the lift coefficient at zero angle of attack and CL�

is the
lift coefficient slope. Figure 2 shows a typical affine model ofCL���
for differentflap and slat deflections aswell as the corresponding stall
angles �max, above which Eq. (3) is not valid and the aircraft might
become uncontrollable. As seen, CL increases with flap deflection,
but the stall angle �max decreases. The stall angle �max increases with
slat deflection. The terminology used in this figure and the deflection
angle values correspond to a DC9-30 aircraft. For drag, because
coefficients are not available, estimates have to be used. A procedure
advocated byKroo [27] is followed. From lifting line theory [28], the
drag coefficient CD can be computed using the drag polar:

CD � CD
 �
C2

L

� 	 AR 	 0:95 	 e� CD
 � K 	 C2
L (4)

where CD
 accounts for the drag of the body of the aircraft, the slats,
the flaps, and the landing gear. The second term accounts for drag
induced by lift K � 1=�� 	 AR 	 0:95 	 e� and is a constant (its
numerical value will be given later for a specific aircraft). AR is the
aspect ratio of the aircraft defined by AR� b2=S. The efficiency

factor is corrected by 0.95 for the landing configuration. The
efficiency factor quantifies the difference in performance between
idealized lift (available from lifting line theory [28]) and actual lift
(which accounts for the assumptions made in the idealized case).

In a typical autoland maneuver (Fig. 3), the aircraft begins its
approach approximately 10 nmile from the touchdown point. The
aircraft descends towards the glide slope, an inertial beam that the
aircraft can track. The landing gear is down, and the pilot sets the
flaps at the first high-lift configuration in the landing sequence. The
autopilot captures the glide slope signal around 5 nmile from the
touchdown point. The pilot increases flap deflection to effect a
descent without increasing speed (indicated by larger � in the flap
settings). The pilot steps the flaps through the different flap settings,
reaching the highest deflection when the aircraft reaches 1000 ft in
altitude. At approximately 50 ft, the aircraft leaves the glide slope and
begins the flare maneuver, which allows the aircraft to touch down
smoothly on the runway with an appropriate descent rate. The
deflection of the slats is correlated with the deflection of the flaps in
an automated way.

Flight operating conditions are defined by the limits of aircraft
performance, as well as by airport and FAA regulations [29]. The
aerodynamic envelope for each discrete mode is the set of states in
which the aircraft should remain. The envelope is associated with a
set of operating conditions, which are allowed ranges of input signals
for each discrete state. Given this set of operating conditions, the
controllable subset of the envelope is defined as that subset from
which it is possible tomaintain the aircraft in the envelope. States not
in the controllable subset are such that no matter what input the pilot
chooses, the pilot will not be able to prevent the state from exiting the
envelope.

During descent and flare, the aircraft proceeds through successive
flap and slat settings. In each of these settings, the safe set is defined
by bounds on the state variables. The maximal allowed speed Vmax is
dictated by regulations. The minimal speed is related to the stall
speed by Vmin � 1:3 	 Vstall. The minimal speed is an FAA safety
recommendation; the aircraft might become uncontrollable below
Vstall. The stall speed is given by the formula

Vstall �
�����������������
2mg

�SCLmax

s
(5)

Here, CLmax
:� CLo

� CL�
�max is the maximal lift coefficient

(denoted by a dot in Fig. 2) obtained at the stall angle �max.
During descent, the aircraft tracks the glide slope (GS) and must

remain within �d� of the glide-slope angle �GS. As a result, the
flight-path angle in flare mode can range from �min � �GS � d� to
�max � �GS � d�. As the aircraft reduces its descent rate to land
smoothly (in the last 50 ft before touchdown), this range becomes
��GS � d�; 0 deg�. By regulation, the flight-path angle � is thus
restricted to lie in the interval ��min; 0 deg�. (Typical values for
landing are d� ��0:7 deg, �GS ��3:0 deg; thus, �min�
�3:7 deg. Note that this is a conservative approximation. Other
studies have suggested to extend this range to ��6 deg; 0 deg�.¶)−5 0 5 10 15 20 25
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Fig. 2 Lift coefficient model for three different flap settings (�� 0, 25,
and 50 deg) and for deflected/retracted slats.

Rollout

Flare

1000’

50’

Glide slope signal

Glide slope capture

Fig. 3 Typical landing profile.

¶Charlie Hynes, private communication.
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During descent and flare, thrust should be at idle, but the pilot can use
the full range of the angle of attack. In the following computations,
wewill thus use ��min; 0� as the set for �, which encompassesflare and
approach. A more detailed analysis of the sets ��GS � d�; �GS � d��
and ��min; 0� and the corresponding switches is provided in [30].

Parameters:

8>>><
>>>:
V � Vmin faster than stall speed

V  Vmax slower than limit speed

� � �min limited descent flight path

� < 0 monotonic descent

Inputs:

�
T � Tidle thrust at idle

� 2 ��min; �max� full range available

(6)

At touchdown (for z� 0 and with a negative descent velocity
_z�0�< 0), the restrictions on the parameters are the same as in the
previous paragraph for the state space except for the descent velocity.
This last requirement becomes _z�0�> _z0, where _z0 is a constant and
represents the maximal touchdown velocity (to avoid damage to the
landing gear). The subscript 0 in _z0 denotes z� 0 (ground). This
condition thus reads V sin � � _z0. In summary,

Parameters:

8>><
>>:
V � Vmin faster than stall speed

V  Vmax slower than limit speed

V sin � � _z0 limited touchdown velocity

� < 0 monotonic descent

Inputs:

�
T � Tidle thrust at idle

� 2 ��min; �max� full range available

(7)

Safety Analysis

The state bounds described in the previous section define safe
flight envelopes for the different types of flight conditions in which
the aircraft operates. The states in these envelopes are not necessarily
controllable, i.e., it might not be possible to maintain the aircraft in
the flight envelope from any of these states. (Note that the word
controllable is used in a nontraditional way here and throughout the
article. By saying that a state is controllable, it is understood that it is
possible to keep it inside the safety set. This property is sometimes
referred to as viable [12] or control invariant [15,30].) For example,
an aircraft traveling just above stall speed and already at a steep
negative flight-path angle might inevitably stall or start to descend
too quickly. Thus, it is necessary to determine what subsets of these
envelopes are actually controllable given the input authority
available to the pilot or autopilot. Because the nonlinear dynamics of
themodel (1)make analytic determination of the controllable subsets
impossible, a previously developed computational algorithm for
finding controlled invariant sets for this problem is used [3].

Computation of the Reachable Set

Given some dynamically evolving system and some set of a priori
unsafe states, the (backward) reachable set is defined as the set of all
system states that reach V0 in time t. For the autoland system, in
which the model is extended to several modes with different
envelopes and dynamics, V0 will represent, in each discrete mode,
the region outside the aerodynamic flight envelope. If a system’s
dynamics are influenced by inputs, these inputs may either try to
drive the state toward or away from the unsafe set; for the airplane
autopilot the inputs (� and T) will do the latter.

Computing the reachable set in a discrete system with a finite
number of states, and hence a finite number of possible transitions, is
a straightforward but possibly time consuming task of enumerating
all the states that have a path to the target set. Computing reachability
for a continuous system is a much more difficult undertaking, for
example, how should the uncountably many states in any nontrivial
unsafe set be represented?

An algorithm for computing the reachable sets of continuous
systems with nonlinear dynamics was developed based on a time-
dependent HJ PDE [3]. LetX be the continuous system’s state space,

and let _x� f�x; u� be the system’s dynamics, where the input u 2 U
tries to keep the system from reaching the unsafe set. Define a
continuous function (sometimes called an implicit surface function)
J0: X ! R such that

V 0 � fx 2 XjJ0�x�  0g

V0 is the zero sublevel set of the level set function J0�x�. In earlier
work [3] it is shown that, by solving the terminal value HJ PDE,

DtJ�x; t� �min�0; H�x;DxJ�x; t��� � 0 for x 2 X; t < 0

J�x; 0� � J0�x� for x 2 X; t� 0

(8)

where

H�x; p� �max
u2U

pT 	 f�x; u�

for the function J: X � ��1; 0� ! R. An implicit representation of
the reachable set is obtained:

V �t� � fx 2 XjJ�x;�t�  0g

The set-valued control synthesized from this calculation is

u��x; p� � argmax
u2U

pT 	 f�x; u� (9)

It is “set valued” because the argument maximum (argmax) is not
necessarily unique.

Analytically solving (8) for a general J0�x� and f�x; u� is likely to
be impossible. Computational algorithms are complicated by the fact
that, even for smooth J0�x� and f�x; u�, the solution J�x; t� can
develop discontinuities in its derivatives after finite time and hence
cease to solve (8) in a classical sense. The appropriate weak solution
of (8) in this case turns out to be the viscosity solution [7], and level
set algorithms [9] are numerical techniques developed to compute
such solutions. A set of high-resolution schemes [3] has been
developed based on novel numerical techniques [10,11] to compute
J�x; t�, and hence the reachable set, very accurately.

Computation of the Optimal Input

The optimal input u��x� at a given state x represents a choice of u
that will maximize the Hamiltonian at that point x. The physical
interpretation of u��x� is thus as follows: For a point inside the
reachable set, it is known from reachability analysis [3] that a
trajectory starting inside the reachable set will lead to the target set (7)
while maintaining the state x inside the envelope (6) provided the
optimal control u��x� is applied to the system along the trajectory.
Note, however, that it is sufficient to apply the optimal control to the
system on the boundary of the reachable set, which therefore enables
the synthesis of less restrictive controllers (thus leaving flexibility for
optimization of other flight parameters inside the reachable set). The
word “optimal” thus refers only to the maximality of the
Hamiltonian. Note that no cost functional is optimized explicitly in
the present case, though an interpretation of optimality can be given
in terms of maximization of the distance between the state and the
boundary of the envelope at any given time (see [3] for more detail).

The computation of the optimal input u��x� is, in general,
extremely expensive because it is a nonconvex optimization
problem, which therefore requires exhaustive search on the domain
of interest. In the present case it would require maximizing H over
the ��; T� space. However, for this particularmodel, the optimization
problem can be reduced to checking six points, which is
computationally tractable. The case in which the input is restricted to
�0; �max� � �0; Tmax� is investigated. The case in which negative
angles of attack are considered is obtained by slight modifications of
the method shown next [31].

Proposition 1: The optimal input u��x�≜ ���; T���
argmaxu2UpT 	 f�x; u� is never in the range ��; T� 2��min; �max���0;
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Tmax�. In otherwords, one of the two inputs ��; T� is always extremal.

(The notation �a; b�≜�a; b


� denotes the open interval between a and

b. This is sometimes denoted �a; b�, but this would lead to confusion
with other notation of this paper. Note that in the formula definingu�,
the dependency of the costate on variables has been omitted for
simplicity of the definition.)

Proposition 2: The optimal input ���; T�� is found among the six
following values: �0; 0�, �0; Tmax�, ��max; 0�, ��max; Tmax�,
��1; Tmax�, and ��2; Tmax�, where �1 and �2 solve a quadratic and a
transcendental equation, respectively, shown in the Appendix.

The proofs are presented in the Appendix.

Computation of the Controlled Envelopes

Consider the aircraft in a givenmode (e.g., in a given portion of the
landing). The numerical values of the parameters in the dynamics (1)
can be computed. Let W0 be the safe flight envelope in this mode,
and let Wc

0 be its complement. To determine the maximal
controllable subset W of W0, set V0 �Wc

0, and run a reachability
computation in which the inputs attempt to keep the system away
from V0 (or equivalently, within W0). The reachable set typically
converges to a fixed point: V�t� ! V as t ! �1. In that case, the
largest controllable subset of the envelope is the complement of the
fixed pointW � Vc. An example is shown in Fig. 4. In thisfigure, the
dark set isW for each of the correspondingmodes, and the gray set is
W0. The controlled set is the set of points which can touch the ground
safely without flying out the box while staying in that mode. As can
be seen on the left subplot, in the mode 0u (undeflected flap and
slats), this set is bounded in height, whichmeans that it is not possible
to land safely in this mode. Only three modes are represented here;
the two transition modes are omitted because the pilot has no
switching control while the system is in these modes.

Flap Deflection: Hybrid Reachability

In the preceding section, continuous reachable set computations
for each discrete state were described; in this section, a discussion is
presented to understand how mode switches should be incorporated
into the design. The difficulty here is to compute the maximal
controllable sets given that the switches (and corresponding
dynamics and envelope changes) can occur at arbitrary times. This
type of computation would be needed for automating flap deflection,
as one needs to know when it is safe to switch mode. A general
algorithm has been developed in [15,18] to solve such problems. A

variation of this algorithm suitable for successive deflections of flaps
for a landing DC9-30 is now presented.

Physical Problem and Hybrid Model

In the process of landing described in the preceding sections, the
aircraft successively deflects the flaps and slats from 0 deg (clean
wing) to the maximal deflection. The 0 deg modes are alternatively
labeled 0u (for undeflected) or 0r (for retracted). Each of these
deflection angles aswell as the transitions between them is associated
with different envelopes as well as operating conditions. Thus,
transitioning from one configuration to another might drive the
system into an unsafe state. The following question is nowof interest:
starting from a given position in space (altitude) with given flight
conditions (speed, flight-path angle, and flap deflection) and with
fixed thrust, is there a switching policy (i.e., a set of successive flap
deflections/retractions) for which there exists an input (angle of
attack) able to bring the aircraft safely to the ground?

The usual landing procedure requires the deflection of the flaps to
be increasing in angle. This is modeled with a hybrid automaton,
shown in Fig. 5. The intermediate flap deflection is 25 deg. The (slat)
retracted state is denoted with r; the (slat) deflected state is denoted
with d. There are three possible wing configurations: 0, 25, and
50 deg deflection. The lift coefficients for these modes are
represented in Fig. 2. The safe set for these three modes is generated
according to the preceding section. For the transition from one mode
to another, the lift is approximated by the mean of the two values of
the lift (in the two correspondingmodes) and the stall angle is chosen
to be the one that is the most restrictive (to have a conservative
approximation). For example, in mode 25d ! 50d, the coefficient
CL��� at a given � is the mean of CL��� for �� 25 deg and CL���
for �� 50 deg. The �max for thismode is theminimum of the �max in
mode 25d and �max in mode 50d, i.e., 16 deg (see Table 1 or Fig. 2).
The stall speed can then be computed using Eq. (5). It is assumed that
the time the system has to remain in mode 0r ! 25d or 25d ! 50d
is 10 s, which is the order of magnitude it takes to achieve half the
maximal deflection of the flaps on a DC9-30. This implies that in the
hybrid automaton of Fig. 5 the switches from mode 0r ! 25d to
mode 25d and from 25d ! 50d to mode 50d happen automatically
10 s after the switch to mode 0r ! 25d and mode 25d ! 50d,
respectively. Most of the parameters for the DC9-30 can be found in
the literature [26,27,32,33]. The previously derived model enables
the computation of the lift and drag. The values of the numerical
parameters used for the DC9-30 are m� 60; 000 kg,
Tmax � 160; 000 N, g� 9:8 m=s2, e� 0:84, S� 112 m2, and

Fig. 4 Flight envelope W0 in each mode (gray). Controlled set W within each mode (dark), with no switching allowed.

clean wing:

mode 0r

slats retracted
flaps: δ = 0 deg

mode 0r → 25d

slats deflection

flaps deflection

mode 25d

slats deflected

flaps: δ = 25 deg

mode 25d → 50d

flaps deflection

mode 50d

slats deflected

flaps: δ = 50 deg

Fig. 5 Transition diagram from clean wing, no flap/slat deflection (0r), to fully deflected wing (50d).
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�� 1:225 kg=m3. The lift and drag forces are thus (in dimensional
form)

L��; V� � 68:6�h� � 4:2��V2 N

D��; V� � �2:7� 3:08�h� � 4:2��2�V2 N
(10)

where h� � CL�0 deg� depends on the flap setting. The letter N
indicates that the units areNewtons (ifV is taken inm=s). A summary
of all constants for the DC9-30 is shown in Table 1.

Hybrid Algorithm

The modes in Fig. 5 can be divided into three classes according to
the type of their outgoing transition. The simplest ismode 50d, which
has no outgoing transition and hence is treated by solving (8) without
switches enabled. The controllable subset of the envelope is
computed by solving (8) until it converges (after about 15 s of
simulated time). A similar procedure can be run on the other two
main modes (0r and 25d) to determine what subsets of their
envelopes are controllable without mode switches. To determine the
controllable subsets with mode switches enabled, the remaining
modes are split into two classes depending on whether the switch to
the subsequent mode in the sequence is controlled by the pilot
(modes 0r and 25d) or timed (the two transition modes).

A timed mode is a mode from which the system automatically
switches at t� tf. A state �V; �; z� in a timed mode is safe if both of
two conditions hold: First, it must give rise to a trajectory that
remains within the flight envelope of the timed mode for all
t 2 �0; tf�; otherwise, the trajectory becomes unsafe before the mode
switch. Second, the state of the trajectory at t� tf must be within the
controllable envelope of the subsequent mode; otherwise, the
trajectorywill become unsafe at some time after themode switch. Let
W0 be the safe flight envelope in the timedmode, and letWnext be the
controllable envelope for the subsequent mode, which has already
been computed numerically. The reachability computation for the
timed mode then uses V0 � �W0 \Wnext�c as initial conditions.
Inputs are used to steer the system away from V0, and the
computation is run backwards only to�tf, which is typically short of
convergence. The controllable envelope for the timed mode is then
W � V�tf�c.

A controlled mode is a mode fromwhich the systemmay switch at
any time to avoid becoming unsafe. A state �V; �; z� in a controlled
mode is safe if any one of three conditions hold: First, it may give rise
to a trajectory that always remains within the safe envelope of the
controlled mode in which case it is safe without switching. Second, it
may be within the controllable envelope of the subsequent mode in
which case it is safe due to an instantaneous switch. Third, itmay give

rise to a trajectory that remains within the safe envelope of the
controlled mode until it reaches a state that lies within the
controllable envelope of the subsequent mode in which case it is safe
due to a delayed switch. Note that a statemay satisfymore than one of
these conditions.

The controllable subset of a controlled mode’s envelope is
computed using a slight modification of the reach–avoid procedure
outlined in previous work [15]. LetW0 be the safe flight envelope of
the controlledmode, and letWnext be the controllable envelope of the
subsequent mode. The first condition for safety is represented in the
reach–avoid computation by settingV0 �Wc

0, as would normally be
done. The difference in a reach–avoid computation lies in the “avoid”
or “escape” set A, which represents the other two safety conditions
that become available due to the controlled mode switch. Any
trajectories that enter this set may safely switch to the subsequent
mode and hence are deemed safe in the controlled mode. In this case,
A is set toA�Wnext \W0. For the reach–avoid computation, it is
assumed that JA�x� such thatA� fx 2 XjJA�x�  0g. Then V�t� is
computed according to (8) subject to the additional constraint that
J�x; t� � �JA�x� for all t. In the two modes of interest (0r and 25d),
the reach–avoid computation achieves a fixed point V, and the
controllable envelope for thesemodes is the complement of thisfixed
point W � Vc. For the particular sets and dynamics of these two
modes, it turns out that V �Ac, for all safe states there exists a safe
instantaneous switch to the subsequent mode, but that need not be
true in general.

Results

The results of the reachability computation are shown in Figs. 4, 6,
and 7.

Figure 4 shows the set of controllable states in modes 0u, 25d, and
50d without switching (dark), as well as the corresponding flight
envelopes (gray). This figure shows the boundary of the flight
envelope as well as the computational result for W, which is the
largest set contained inW0 such that the pilot can touch down safely.
As can be seen from Fig. 4, portions of W0 are excluded from W.
There are three reasons for this fact.

1) For low speeds, there is not enough lift/thrust to prevent the
aircraft from stalling almost immediately: In the state space �V; �; z�
a point too close to the faceV � Vmin inW0 will not be able to stay in
W0 and will exit this box through the V � Vmin face.

2) For steepflight-path angles (close to the � � �min face in theW0

box), the aircraft has too steep of a flight-path angle to maintain it in
the box: The state space exits the box through the � � �min face.

3) Too close to the ground, with steep flight-path angle, the aircraft
is not able to reach theV sin � � _z0 subset of the box and touches the
ground with too high a vertical velocity.

Table 1 Summary of flap/slat deflection specific numerical parameter values for the DC9-30

Mode Vstall Vmax �max h� �min �max

0r 79:01 m=s 83 m=s 16 deg 0.2 �3 deg 0 deg
0r ! 25d 71:58 m=s 83 m=s 16 deg 0.5 �3 deg 0 deg
25d 61:50 m=s 83 m=s 20 deg 0.8 �3 deg 0 deg
25d ! 50d 60:46 m=s 83 m=s 18 deg 1.025 �3 deg 0 deg
50d 57:75 m=s 83 m=s 18 deg 1.25 �3 deg 0 deg

Fig. 6 Flight envelope W0 in each mode (gray). Controlled set W within each mode (dark), with switching allowed.
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As can be seen, the only sets that are controllable in mode 0u are
close to the ground (the dark set does not extend higher than a few
meters). This means that states too far from the ground are not
controllable in mode 0u: It is not possible to touch the ground safely
in that mode from these states. For the other modes, some portions of
the flight envelope are excluded from the set of controllable states.

The benefit of switching thus appears in Fig. 6. Mode 0u becomes
controllable by switching to mode 25d through the transition mode
0r ! 25d. The dark set now extends vertically to the top of the
computational domain. Figure 7 compares the maximal controllable
set without switching with the maximal controllable set when
switching is enabled. The difference between the two sets in mode
25d is relatively small: switching frommode 25d leads to mode 50d
through mode 25d ! 50d. Because this transition mode has to last
for at least 10 s, the system might still exit the envelope before
achieving mode 50d in which it becomes controllable. The envelope
is not shown here. The benefit of switching is obvious from the left
subplot (the set of controllable states is bigger and allows safe
landing). The set of controllable states for the 25d mode becomes
slightly bigger as well. The mode 50d is not shown here because no
switching from that mode is available (Fig. 5) and therefore the only
relevant set in that mode is the set shown in Figs. 4 or 6 (right-hand
part).

This type of computation can be used as a design mechanism for
autopilots, to determine the times at which switches can be initiated.
For example, reducing the speed in mode 0u requires switching;
otherwise, the aircraft will most likely stall.

Current Work: Toward More Realistic Models

The model of the preceding sections assumes that the control
inputs of the aircraft are� andT. In reality the pilot has control over ��
and T. The currently available computational resources enable fast
computations of reachable sets for dimensions up to four. This
section shows how such computation could be used. It is therefore
assumed that the pilot has control over _�. _� is the input and ranges in
an interval that is known a priori and represents realistic rates of
change of �, given known acceptable values of ��:

d

dt

V
�
z
�

2
664

3
775�

1
m
�T cos� �D��; V� �mg sin ��

1
mV

�T sin�� L��; V� �mg cos ��
V sin �

u

2
664

3
775 (11)

The method presented in preceding sections applies to this new
model. In this case, the computation of the optimal input is easier: the
Hamiltonian is given by

H�x; p� � p1

m
�T cos� �D��; V� �mg sin �� � p2

mV
�T sin�

� L��; V� �mg cos �� � p3V sin � � p4u (12)

Therefore, the optimal input T� can be determined as before, and the
optimal inputu� is sgn�p4�. For the four-dimensional system (11) the

envelope is now a four-dimensional set in the �V; �; h; �� space.
Equations (6) and (7) mathematically define a three-dimensional
flight envelope in flaremode. Let us call this set E.With� now a state
variable, the flight envelope becomes E � ��min; �max�, and the task of
a controller is to maintain the state in this set. The problem can be
solved as previously, and the result is a four-dimensional set such that
if the state of the system �V; �; h; �� is initially inside the set, there
exists a control that will keep it inside the four-dimensional envelope
E � ��min; �max�.

Figures 8 and 9 show three-dimensional slices of the four-
dimensional controllable set. The four-dimensional maximal
controllable set for a single mode (mode 50d) is computed. The
numerical values are the same as in the preceding section, with
_� 2 ��0:35; 0:35� rad=s and T � 0:7 	 Tmax.
Figure 8 shows the slices for different �. These sets can be

compared with the sets of Figs. 4 for a single mode. For any given �
slice, the sets of Fig. 8would be enclosed in their counterpart with (1)
instead of (11). Equation (1) implies that the angle of attack can be
changed instantaneously, whereas (11) takes into account the
rotational inertia of the aircraft; therefore, it is harder to control the
system through (11). These subplots provide the set of �V; �; z� that
are controllable when the dynamics (1) includes � as a state variable.
As can be seen, starting from a very small � (�� 1 deg) or a very
large � (�� 17 deg) restricts the set of �V; �; z� for which the
aircraft can ultimately touch down.As can be seen for�� 1 deg, the
set does not connect to the ground: The angle of attack (and,
therefore, the lift) is too small, causing the flight-path angle to
become too steep. For �� 17 deg, the set does not connect to the
ground either because the angle of attack is too high, causing either
stall at low speed or causing the flight-path angle to become positive
at high speeds (because of the high lift). Between these two values of
� landing is possible, which seems intuitive: If � is initially set to a
reasonable value, it is possible to reach the ground safely with the
appropriate control.

Figure 9 should be interpreted as slices from a “reachability tube”
in the four-dimensional space. For a given altitude, a three-
dimensional slice gives the set of parameters for which the aircraft is
controllable. As expected, the set decreases with altitude. As the
aircraft approaches the ground, the set of states from which it is
possible to control the aircraft becomes smaller because there is less
time to rectify an approach leading to a touchdown outside the safe
set (7). As in Fig. 8, one can see that very large or very small values of
� become uncontrollable close to the ground (see the slice at
z� 2 m) because they lead to a touchdown outside the safe set (7).

Figure 9 illustrates how these results could be used for autopilot
design. The method allows checking for all z if �V; �; z; �� is in the
set of controllable parameters. This method could thus at every z
provide the appropriate input to apply to keep �V; �; z; �� inside the
maximal controllable set as z further decreases.

Conclusion

The model of the longitudinal dynamics of a commercial jet
aircraft that was presented in this paper was used to compute safety

Fig. 7 Comparison between the set of controllable states without switching (dark) and with switching (gray), from Figs. 4 and 6.
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envelopes of the aircraft in the different modes of landing. The main
outcome of this paper is the construction of an input to apply to keep
the aircraft inside a user-prescribed flight envelope. The simulations
shown demonstrate the possibility of generating such a control for an
actual aircraft. The method presented used concepts from hybrid
systems theory and was successfully applied to the successive flap
and slat deflection of a DC9-30 aircraft in final approach. Finally,
higher dimensional reachability computations were displayed,
which show the potential of the method for applications to more
accurate models.

In the future, computational resources will allow the treatment of
higher dimensional models (which would incorporate more

parameters and features of the systems). Therefore, the proofs of
safety provided by our model are valid only within the limits of this
model. They are relevant for current autopilots, as confirmed by
recent experiments realized on conflict avoidance maneuvers.
Another approach currently under investigation is the possibility of
computing guaranteed approximations of the controllable set in
higher dimension.

Appendix

Proof of Proposition 1: The Hamiltonian associated with Eq. (1)
reads

Fig. 8 Three-dimensional slices of the four-dimensional control invariant set corresponding to (11), for various values of �.

Fig. 9 Three-dimensional slices of the four-dimensional control invariant set corresponding to (11), for various values of z.
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pT 	 f�x; u� � p1

m
�T cos � �D��; V� �mg sin �� � p2

mV
�T sin�

� L��; V� �mg cos �� � p3V sin �

(A1)

where u� ��; T�. The optimality condition reads

@�pT 	 f�x; u��
@u1

� @�pT 	 f�x; u��
@�

� p1 cos�

m
� p2 sin�

mV
� 0

@�pT 	 f�x; u��
@u2

� @�pT 	 f�x; u��
@T

��Tp1 sin�

m
� p1

m

@D��; V�
@�

� p2T cos�

mV
� p2

mV

@L��; V�
@�

� 0

(A2)

From (A2), the necessary conditions on the domain interior can be
computed:

�� � �tan�1
�
p1V

p2

�
;

T� � 1��������������������������������
1� �p1V=p2�2

p �
p1V

p2

@D

@�

�
tan�1

�
�p1V

p2

�
; V

�

� @L

@�

�
tan�1

�
�p1V

p2

�
; V

��
(A3)

Using the fact that, for this particular model of lift and drag, L��; V�
is a linear function of� andD��; V� is a quadratic function of�, it can
be checked quite easily that the eigenvalues of the Hessianmatrix are
given by

��� p1

2m

8<
:@

2D

@�2
�V� �

������������������������������������������������������
@2D

@�2
�V�

�
2

�
�

2

sin����
�
2

s 9=
; (A4)

where the dependence on � has been omitted when � disappears in
the differentiation. It can be easily checked that the two eigenvalues
are of opposite sign and that therefore pT 	 f�x; u� can never be
extremal at ���; T��. The extremum of pT 	 f�x; u� is thus on the
boundary of the domain.

Proof of Proposition 2: In Eq. (A1),

h�x; p� :� p1

m
�T cos � �D��; V� �mg sin �� � p2

mV
�T sin�

� L��; V� �mg cos ��

is the only part ofH�x; p� that depends on the input. To find ���; T��,
one needs to use h instead of H. Table A1 summarizes the possible

situations and corresponding optimal inputs. The justification for
these results is as follows.

For the cases where � is fixed (the first and second rows of
Table A1), the only term of interest in h is given by
�p1 cos �� �p2=V� sin���T=m�. Clearly, for �� �max as well as
for �� 0, if �p1 cos�� �p2=V� sin���T=m�> 0, T� � Tmax;
otherwise, T� � 0.

For T � 0, one can rewrite h�x; p� as

h�x; p� � p2

mV
L0�h� � c��V2 � �D0 � ��h� � c��2�V2

which is a quadratic in �. The constants L0, D0, �, c, and h� can be
easily related to the model through Eqs. (2–4). If p1 > 0, the
maximum occurs between the two zeros of the quadratic:

�1 �
1

c

�
L0p2

Vp1�
� h�

�
(A5)

Because the parabola is upside down, if �1 < 0, �� � 0; if
�1 2 �0; �max�, �� � �1; and if �1 > �max, �

� � �max. If p1 < 0, the
situation ismuch simpler because the parabola is right-side up, and so
depending on the location of �1 in �0; �max�, �� � 0 or �� � �max.

For T � Tmax, one wants to solve for

@h

@�
��p1

m

�
T sin�� @D

@�

�
� p2

mV

�
T cos �� @L

@�

�
� 0 (A6)

There are four cases: The first case is p1 > 0 and p2 < 0. It is easy to
see that @h=@� � 0, which means that �� � �max. Conversely, if
p2 < 0 and p1 > 0, �� � 0. For the two remaining cases, it is needed
to compute

@2h

@�2
�� 1

m

 
T cos�� @2D

@�2

!
p1 �

p2

mV
T sin�

from which it can be seen that if p1 < 0 and p2 < 0, then h�x; p�
cannot have a local maximum; therefore, �� � 0, or �� � �max. The
last case,p1 > 0 andp2 > 0, is more difficult: h�x; p� can eventually
have a local maximum because @2h=@�2 < 0. In that case, @h=@� is a
decreasing function of �. Thus if @h=@�j��0 < 0, �� � 0; if
@h=@�j���max

> 0, �� � 0 as well. The remaining case is when they
have opposite sign: @h=@�j��0@h=@�j���max

< 0. In that case, one
needs to solve the transcendental Eq. (A6) numerically, and the
solution is called �2.

Corollary 1: Call p� �p1; p2; p3� the costate of the system. To
solve efficiently for the optimal input, if p1 > 0 and p2 > 0, solve
Eq. (A6) numerically for �2 and compare the six possible cases of
Proposition 2. Otherwise, compare only the five possible cases of
Proposition 2 (no �2).

Table A1 Optimal input ���;T�� given as a function of the costate �p1; p2�
� T Condition ���; T��
0 �0; Tmax� p1 > 0 �0; Tmax�

p1 < 0 �0; 0�
�max �0; Tmax� p1 cos�max � �p2=V� sin�max > 0 ��max; Tmax�

p1 cos�max � �p2=V� sin�max < 0 ��max; 0�
�0; �max� 0 p1 > 0

if ~�1 2 �0; �max� � ~�1; 0�
if ~�1 > �max ��max; 0�
if ~�1 < �max �0; 0�

p1 < 0 ��max; 0� or �0; 0�
�0; �max� Tmax p1 < 0 p2 > 0 ��max; Tmax�

p1 > 0 p2 < 0 �0; Tmax�
p1 < 0 p2 < 0 ��max; Tmax� or �0; Tmax�
p1 > 0 p2 > 0
if @H=@�j�0;Tmax� < 0 �0; Tmax�
if @H=@�j��max ;Tmax� > 0 �0; Tmax�
if @H=@�j�0;Tmax� 	 @H=@�j��max ;Tmax� < 0 � ~�2; Tmax�
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