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Abstract—Parkinson’s disease (PD) is a neurodegenerative this may improve cognitive inflexbility, it may result in
disorder that impairs motor skills, speech, and other voluntary  enhanced impulsivity [1].
movement, and may be associated with cognitive inflexibility. The motor cortex of the brain, which ultimately drives

Fourteen PD subjects (both on and off medication) and 10 th | ia th inal d d ioheral .
normal subjects performed a manual pursuit tracking task, in € muscies via the spinal cord and peripneral nerves, 1S

which the dynamics of the task suddenly change without explicit Modualted by two major systems: the basal ganglia and
enunciation. The task dynamics have three modes, in which the cerebellum [2]. While Parkinson’s disease has been consid-
error (the difference between the target and the user's curs)  ered a classic basal ganglia disease, connectivity between
is attenuated, exaggerated, or unchanged — hence we mOdelthese two systems imply that both systems are affected.
the subject performing the tracking task as a hybrid system . .
with arbitrary switching. Second-order stochastic LTI models of These two systems are critical in feedforward and feedba_ck
tracking performance in each mode are first obtained through ~Processes that enable dextrous motor control, adaptation
system identification. We then use a multiple model adaptive to changing environments, and effective executive fumctio
estimation (MMAE) algorithm to determine a) whether each  QOptimal control and state estimation via a Kalman filter
subject successfully adapted to the sudden change in tracking have been proposed to model the feedforward and feedback
dynamics, and if so, b) the delay in switching to the new . . . .
mode. These parameters were analyzed for all subjects, and processes in the brain, such that discrepancies be_twemi act
found to be statistically significant across groups. While normal and expected sensory consequences of motor actions are used
subjects consistently detected the change in task dynamics, to improve motor performance [3], [4], [5], [6]. While com-
PD subjects show considerably more difficulty in detecting the mon measures of motor performance (e.g., average speed,
switch (especially off medication), and did not switch into the maximum speed, root mean square error, delay in tracking
new mode as quickly as normal subjects. Our results suggest ’ L .
that PD subjects have considerable impairment in adapting to ta;ks [7]_' (81, 9], [10]_’ [11]) and of executive function. (g,
changing motor environments. Wisconsin Card Sorting Task [12], [13]) often show poorer
Keywords: hybrid systems, mode detection, MMAE, Kalmanperformance in Parkinson’s disease, the exact mechanisms
filter, Parkinson's disease, LTI systems, second-order systemgesponsible are not well known.
system identification Our work focuses on the use of control theoretic measures
to help elucidate mechanisms in the brain in Parkinson’s

disease. Our approach builds on an input-output view of

Parkinson’s disease (PD) is a common neuro-degeneratif@cking tasks to create dynamical models in which the hu-
disorder of the central nervous system, and is characteriz&an is essentially a black-box [14], [15], [4], [16]. In ouep
pathologically by premature loss of cells that produce thgious work [17], alternative measures of motor performance
chemical dopamine. Clinically, tremor, rigidity, bradyleisia (based on second-order linear dynamical models of manual
(slowness of movement) and postural instability, can all bursuit tracking) provided some insight into compensatory
seen. While early descriptions empasized that the mind wagechanisms used in PD to overcome the faulty feedback
spared, as people are living longer with the disease, it Raths through the basal ganglia and the cerebellum. Gross
becoming increasingly recognized that cognitive aspeetg mmeasures such as root mean square error were not sensitive
be affected. For example, cognitive “inflexibility” wheneb €enough to distinguish overall performance across groups.
subjects have difficulty flexibly changing strategies dgrin While RMS tracking error in PD was similar to that of
performance of a task. Early in the disease, motor symptori@rmal subjectshow the two groups accomplished tracking
can be markedly improved by L-dopa medication, and whil&as quite different. We found that PD subjects’ tracking

error was significantly overdamped as compared to normal
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I. INTRODUCTION

for Computing, Information and Cognitive Systems (ICICS) at@JB but fOCUS_ on the problem of detection of a sudden change in
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and Computer Engineering, University of British Columbianvauver, BC, Researchers have investigated a variety of methods to
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mmtkeown@ nt er change. ubc. ca scale effects, such as fine motor control [22], [23], [24].



Some researchers have focused on modeling and analys
at the neuronal level [3], [5], [25]. Beyond mere analysis,| [ AT
the main goal of work at each of these physical scales i JError
often to identify biomarkers or improve measures of disease———— = - ———————- I
severity for use by clinicians [23]. Target Glass rod’
The issue of flexibility, or adaptation to sudden change, has
been investigated in a variety of experiments [26], inabgdi
the widely-used Wisconsin Card Sorting Task (WCST). In
the WCST, the player receives a reward for correctly sorting
cards according to criterion that can be learned as the game
is played. However, at some point during the task, the rulesg. 1. Experimental setup. The target trajectoryuig) = sin(f1t) +
for sorting change (without enunciation to the subjecty ansin(fz2t). Users are instructed to keep th‘e cur@?ﬁ) level with the t‘arget. ’
the player must learn the new rules in order to maximizé\r:)%srrgrzz(ﬁ)nghgg) s scalec by 0.3 In Better mode, by 2.0 In ‘Worse
y gea in ormal’ moae.
their reward. PD subjects often have difficulty re-learning
the rules, and continue to play by the old rules even though
they may incur a loss for doing so. Similar ideas have
been explored in other discrete task experiments [27], [28] ) T
through the use of cues that prime the subject to evaluate the Experiment Description
relative merit of internally generated information as oggb Fourteen PD subjects (on and off L-dopa medication) with
to observed information. In continuous tracking tasksya&is clinically diagnosed, mild to moderate PD and ten healthy,
or proprioceptive feedback is skewed for an entire task frorage-matched subjects without active neurological digsrde
what would normally be expected [9], [11]. were recruited for this study at the Pacific Parkinson’s
We explore the idea of sudden change in manual pursuResearch Centre at the University of British Columbia at
tracking because continuous-time models can providelihsigVancouver, Canada, after first providing informed consent
into compensatory mechanisms in PD. There are three pos@&:- full description of the experimental setup can be found
ble “modes” of pursuit tracking in our experiment, based om [17]). Subjects were asked to perform a tracking task
whether the visual feedback of the actual tracking errot-is aby using a joystick in response to visual stimuli displayed
tenuated, exaggerated, or unchanged. Each mode is modadeda computer screen, as shown in Figure 1. A horizontal
as a second-order continuous system with white noise. Hentidass rod” connecting two boxes (each 60mim45mm)
with sudden mode changes, the problem of pursuit trackingas shown on the display, where the box on the left (Target)
can be modeled as one of hybrid estimation and control. Thescillated in the vertical direction at a linear combinatio
human must regulate an error trajectory whose dynamics may two frequencies f; and f5), thus giving it a smooth but
suddenly change. Since the mode change is not explicitfgirly complex appearing motion. Subjects were instructed
announced to the subject, the subject must also estimate tbemove the box on the right (Cursor) by using the joystick
current mode in order to maximize tracking performanceso that the glass rod remained horizontal at all times. All
We draw upon multiple model adaptive estimation (MMAE)subjects practiced for 5 - 10 minutes, during which tiffje
[29], [30], [31] to identify a) whether the subject can adaptnd f, were determined for each subject’'s hand to maintain
to the sudden change in dynamics, and b) the time it take® error rate between 60 — 70% of the time. The individually
to do so — that is, to identify a) the current mode, and b) theetermined frequencieg; and f,, were then held constant
delay in detecting the correct mode after a mode change. Ttiwoughout the rest of the study.
perceived unpredictability of the continuous-time tracki PD subjects performed the task once after an overnight
target is handled through the use of a Kalman filter, as iwithdrawal (minimum of 12 hours since their last dose of L-
[32], [4], [6]. dopa, minimum of 18 hours since the last dose of dopamine
The novelty of our work relates to a) the application ofagonists) of their anti-Parkinson drugs and again one hour
hybrid estimation techniques to a manual pursuit trackingfter admission of L-dopa.
task with multiple modes, and b) a statistically significant Part 1: Over a single 90-second interval, a sequence of
assessment of the presence and delay of mode detecttbree separate tracking tasks was performed, with a short
in PD compared to normal subjects. In Section Il thelelay (5-10 seconds) between each task to mark its end. In
experiment is described in detail. Three second-order LHach task, the visual feedback of the actual tracking errors
models are numerically identified using Matlab’s Systemvas either amplified, attenuated or unaltered (but did not
Identification Toolbox [33] for each subject, one for each obwitch between the three options). In the ‘Normal’ task, the
the three tasks. Section Ill describes the creation of Kalmavertical distance between the target and cursor displayed o
filters and implementation of the MMAE algorithm for eachthe monitor reflected the true error generated by the subject
subject. Results of this analysis are presented in Section In the ‘Better’ task, this distance was artificially reducad
along with discussion of their biological significance. tlgs the computer screen to 30% of the true error. In practice,
Section V provides conclusions and directions for futur¢he attenuation essentially made the tracking error better
work. than expected. Finally, in the ‘Worse’ task, the the distanc

f1 f2 Cursor

Il. EXPERIMENTAL SETUP AND MODEL CREATION



between the target and the cursor was artificially doubled, [1l. DETECTING MODE CHANGES

making the tracking error worse than expected. Subjects\ye reverse engineer the “best’ switching sequence be-

performed eight sets of the 90-second intervals (e.g.,a@ totween modes, that most accurately reconstructs the experi-

of 8 x 3 tasks). Our previous work [17] focused solely ONmental data. That iggiven the hybrid system with dynamics

this part of the experiment. (1), and a known input/output sequence, we wish to deter-
Part 2: The same sequences of three different tasksine the switching sequence which maximizes the likelihood

was again performed over a single 90-second interval, btf{at the estimated mode is the actual mode.
withouta delay between tasks. The subject was not provided

with any additional signal that might indicate that the task: MMAE Algorithm

had changed. In effect, two unenunciated mode switchesMany variations of the multiple model adaptive estimation
occurred in every 90-second interval. With a 10-seconMMAE) algorithm exist [29], [37], [38]; we apply one
pause at the start of each interval, the first task lasteshose detection best matches reasonable switching times in
20 seconds, and the remaining two tasks each lasted 80rmal subjects [39]. Residuals in each made

seconds. This pattern was repeated eight times, resutting i " T

a total of8 x 2 mode switches. A total of 4 sequences were ralk] = ylk] — gglk],  Sglk] = E{rglk]ry K]} (2)
each tested twice: ‘Normal-Better-Worse’, ‘Worse-Normalare weighted adaptively to create a mode-dependent likeli-
Better’, ‘Better-Worse-Normal’, and ‘Better-Normal-W&&'.  hood function. The predicted output

Gq[k] = C24[k] + Dyulk] 3)

Consider a discrete-time Markov jump linear system witfS calculated according to a standard time-varying Kalman
three modes: ‘Better, ‘Normal’, ‘Worse’. In mode the filter in modeq, with prediction and update components.

B. Model Creation

dynamics are given by Prediction:
i, klk—1] = Ayiglk—1]+ Bulk—1
et 1] = Aqzlk] + Byulk] + wik] ) }L;q{k}k - 1} - Aqugq[[k - 1]]ZT quucg [k ! 1]
ylk] = Culk] + Dqulk] + v[K] date: e S
a Update: @)
with statez € R?, input v € R, outputy € R, and Sqlk] = CFy[klk - 1]gTj1‘ Rqk]
zero mean white Gaussian noise processes R? v € R [fq[k] - {quk — 1O 5, " [k]
with covariances),, R,, respectively. We model the subject Tqlk] = Zqlklk — 1] + Kq[k]re[k]
as a second-order LTI system in observer canonical form, Pylk] = (I = Kq[k]C) Py[k|k — 1]
consistent with previous work in manual pursuit tracking A posterior probability evaluator (PPE) generates a likeli
[15], [16]. hood function
Deterministic ARX models calculated in [17] via black- r2[k]
box LTI system identification were used to first estimate the Nk] = ———=== ¢ {— . } 5)
measurement noise varianfg, by computing the difference V2w S (K] 25,[H]

between predicted and actual outputs. Then grey-box ide@mich is used to determine the probability[%] that modey

tification was used to estimate constant matridgsB,, Dy s the true modeu[k]. Since the true mode does not change
and process noise covarian@g from the experimental data yery frequently, we choose

gk —1]

Aq

3

for each mode [33], [34]¢ = [ 1 0 ]). Each model
was generated from Part 1 of the experiment, in which each Volk] = W. ) 1 .
task is completed separately. Four sets of input-outpla dat Wolk] = & ©6)
ARV (K]

were used to create the model, then the remaining four sets =
of input-output data were used to validate the model [35Wwith final probability W, [k] of mode ¢, where W,[0] = %
For all subjects, the average model accuracy (evaluated \gince there are 3 modes of equal likelihood). Finally, the
Matlab’s conpar e function [35]) was 80.91%+ 9.54%. mode estimate
Numerical issues due to the limited spectrum of the input
signal are mitigated by the amount of data gathered.

A number of modeling frameworks were consideredis the mode with the highest likelihood’, [k].
however the chosen formulation has several advantages. ]
1) Previous work has established the Kalman filter as B- Implementing the MMAE
reasonable model of the cerebellum [5]. 2) Previous work For each subject, three discrete modes correspond to the
has established second-order linear systems as reasondbiee sets of dynamics identified in Section II-B. The above
models of manual pursuit tracking [15], [16], [36]. 3) UsingMMAE algorithm was applied separately to each of the eight
higher-order LTI systems or nonlinear systems with extdndeénput/output sequences, resulting in 8 switching sequence
Kalman filters improves model accuracy only marginally. 4)i[k] for each subject.
The computational cost of switching becomes much higher One potential issue arose in considering the noise covari-
with higher-order LTI systems or nonlinear systems. ance ofw[k] and v[k] in the Kalman filter (4). Normally,

Alk] = arg max Wy[k] @)



the noise covariance is determined by heuristic, ad hoc
approaches, which leads to the classical “tuning of thefilte 300
problem. In the identifying system matrices (1), reprodgci = 20
the output with a measurement noise of known covariance £

tends to create a large process noise. This in turn create:z '
residuals (2) that are incapable of representing how weh ea

model represents the actual output. Hence, we initialized
the Kalman filters with noise variances approximately five
orders of magnitude lower than originally calculated, idear ~200r/
to accommodate higher magnitude measurement noise. Thi:  _s
significantly improved detection of the mode changes. i

Normal

itiol

-100

Target and cursor posi

. . . -400
Finally, we note that since all dynamics were represented ,° 10 2 % “ 5 % 0 8
in observer canonical form, without process and measure- £z Beter Worse 1
ment noise, it would be impossible to uniquely reconstruct o I P % - - o 70 %0

Time [seconds]

the state trajectory for the autonomous system. Since for al

mode pairsp, Q.E_Qv ?ank([op O,]) < 2n, any two modes Fig. 2. Typical normal subject; the solid blue line represeatget position,

may not be distinguishable [40]. However, as the discretad the dashed red line represents cursor position. Thetsngt delay is

state jumps from modg to modeyg, the variance of the state very small in comparison to the time scale of the entire ‘Normett&-
. o . Worse’ sequence. The subject detects both mode changes.

will change, and hence so will the variance of the output.

IV. RESULTS ANDDISCUSSION

= Normal Better
\

Amongst the four switching sequences (‘Normal-Better-  *®
Worse’, ‘Worse-Normal-Better’, ‘Better-Worse-Normal’, 200
‘Better-Normal-Worse’), switching between ‘Better’ and
‘Worse’ tasks was the most obvious across all subjects.
While switching between ‘Better’ and ‘Normal’ or between
‘Normal’ and ‘Worse’ was also evident in some subjects, we
focus on switching that occurred from ‘Better’ to ‘Worse’
modes. Typical tracking performance for the ‘Normal-
Better-Worse’ sequence is shown for a normal subject in _y
Figure 2, for a PD subject off medication in Figure 3,
and for a PD subject on medication in Figure 4. The top ‘ ‘ : ‘ : : ‘
part of each of these figures shows the target position anc §{ e eter Beter 1
cursor position (e.g., input and outputy), and the bottom o I = - = & - - 0
part of each of these figures shows the switching sequence Time [oeconds]

EStim_ated accor_ding t(_) (7). When _switching occurs, Iargﬁg. 3. Typical PD subject off medication; the solid blue lirepresents
tracking errors immediately result in the new mode. Thigarget position, and the dashed red line represents cumsitiqn. The
can be seen at = 20 andt+ = 50 in Figures 2, 3, and 4. subject is unable to detect either mode change.

System matrices used to estimate the current mode for the

particular subjects in these figures are listed in Table I.

-100

Target and cursor position [mm]
=)

-200

-400

and post-medication may be due in part to fatigue [41], since

A. Switching detection more subjects improve after medication in the sequence in
The switch between ‘Better’ and ‘Worse’ tasks in thewhich the ‘Better’ to ‘Worse’ transition occurs earlier inet

‘Normal-Better-Worse’ sequence was detected by 10 out &fvitching sequence.
10 normal subjects (Table Il). However, only 5 out of 14 These results are consistent with the previous studies [12]
PD subjects off medication detected the switch, while 7 odfL3], [9], [11] that demonstrate difficulty for PD subjects
of same 14 PD subjects on medication detected the switdh. adapting to sudden change. This difficulty may be at-
As expected, proportionally far fewer PD subjects detecteltibuted to the basal ganglia, which plays a significant role
the switch than did normal subjects. Further, the effect dfi switching from one task to another [12]. We also note
L-dopa is to increase the ability subjects to detect a switcimany normal and PD subjects failed to detect mode changes
and hence make their performance slightly more similar tbetween ‘Normal’ and ‘Better’ and between ‘Normal’ and

that of normal subjects. ‘Worse’ tasks, perhaps because these tasks are more similar
Again, in ‘Better-Worse-Normal’ sequence, 10 out of 1@han ‘Better’ is to ‘Worse’.
normal subjects detected the switch. Similarly, the ‘Bétte To determine whether the failure to detect switching was

‘Worse’ mode transition was detected by only 4 out of 14 PRIue to biological phenomenon or merely to poorly tuned
subjects off medication, and 9 PD subjects on medicatioswitching algorithms, we implemented higher-order (and
The variation in PD subjects who detected the switch prdience higher accuracy) models for subjects that did nottlete



TABLE |
DYNAMICS FOR SUBJECTS SHOWN INFIGURES 2, 3,AND 4, WITH Q4 = DIAG(ayg, 0).

Subject type| Fig Matrices for mode prediction
1.998 1 0.002
ABetter = \‘ —~0.999 0 J 7BBetter = I —0.003 7DBetter = 0.006, aBetter = 2.2€T7, RBetter =1.1ed
1.994 1 0.005
Normal 2 ANormal = |: —-0.994 0 :| s BNormal = —0.006 » DNormal = 0.004, aNormal = 7.1€7, RNormal = 2.8€3
[ 1917 1 T 0.039 ] . .
AWorse = ~0.925 0 7BWorse = —0.031 7DWorse = 00557 OWorse — 15697 RWorse = 3.9e3
1.959 1 0.018
ABetter = I —0.960 O ] 7BBetter = I —0.017 Dgetter = 00187 OBetter — 2-8687 Rpetter = 3.7€3
1.967 1 —0.044 |
PD 3 ANormal = |: —0.969 0 :| :BNormal = 0.046 7DNormal = 0.060, aNormal = 1.2€6, RNormal = 2.6e3
[ 1.874 1 ] 0.115 ~
off med Aworse = —0.874 0 , Bworse = —0.114 “ » Dworse = 0.134, aworse = 4.3€7, Rworse = 1.9€3
1.991 1 —0.015
ABcttcr = I —~0.993 0 ] Bgetter = 0.017 Dgetter = _0-0017 OBetter — 7-1677 Rpetter = 5.2€3
1.991 1 —0.004
PD 4 ANormal = |: —~0.992 0 :| 7BNormal = 0.005 1DNormal = —0.005, aNormal = 2.9€8, RNormal = 1.8e3
[ 1907 1 0.056
on med Aworse = —0914 0 “ » Bworse = ’V —0.050 “ s Dworse = 0.055, aworse = 2.2€8, Rworse = 1.4€3
400 ; : ! : TABLE I
Bette SWITCHING DETECTION AND DELAYS BETWEEN‘BETTER AND
300
‘WORSE MODES IN THE ‘NORMAL-BETTER-WORSE SEQUENCE
T 200
£ a Normal PD PD Statistical
g 100 A off med | on med | Significance
3 S Number of subjects
| 0 | who detected the | 10/10 5/14 7/14
2 ! mode change
g ' Mean delay in
L | switching detection| 3.77 5 4.14 p = 0.07,
! [sampling units] ANOVA
a0l N \ Variance of delay in p = 0.88,
R switching detection| 0.83 0.70 0.89 VARTEST
_4020 10 20 % 2 50 % 70 80
% 2r Better Better Worse —
=
00 10 20 30 40 50

. . ) appeared, although not statistically significant (p = 01335
ANOVA). For normal subjects, the mean delay wa$+1.41

Tvoical PD sublect dication: the sofid blue | . time steps, while for PD subjects on medication the mean

ypical subject on medication; the soli ue liepresents . H

target position, and the dashed red line represents cussitign. This de'a}’ W_aS4'14 +1.34 time steps, and f.or PD subjects off

subject does detect the switchtat= 50s from ‘Better to ‘Worse’. medication the mean delay wés +3.69 time steps. So, the

delays have been more homogenized (having less variance)

after medication. The delay variance was significant across
switching. However, although the MMAE algorithm shouldgroups in this sequence (p = 0.05, variance test), whichdcoul

be more likely to differentiate between these models, nbe related to the homogenizing effect of the medication.
additional switches were detected. Hence we conclude thatin [42], [43], reaction time was shown to be delayed in PD
the failure to detect switching is as legitimate portrayhl osubjects during switching experiments. One interpretaiso
biological phenomenon. that PD subjects have a deficit in the ability to manipulate
motor responses. Our results are consistent with this findin
B. Delay in switching detection for those subjects to detect switching at all — however, a key
Latencies for the subjects capable of detecting switcHeSUlt Of this work is that mode switching simply does not

ing between ‘Better' and ‘Worse' in the ‘Normal-Better- occur for many PD subjects, especially those off medication
Worse’ sequence approached statistical significant across

three groups (p = 0.07, ANOVA) as shown in Figure 5. For V. CONCLUSION
normal subjects, the delay had a mean valug.of + 0.83

Time [seconds]

Fig. 4.

This paper described the application of second-order
time steps, while for PD subjects on medication the meastochastic LTI models and an MMAE algorithm to the prob-

delay was4.14 = 0.89 time steps, and for PD subjects off lem of mode estimation in a hybrid tracking task. A total of

medication the mean delay was) &= 0.70 time steps (see 24 subjects performed the task (10 normals, and 14 subjects

Table I1). As expected, L-dopa decreased the amount of timith Parkinson’s disease, both on and off medication). o th

required for PD patients to detect a mode change. best of our knowledge, this is the first application of hybrid
In the ‘Better-Worse-Normal' sequence a similar patterestimation techniques to characterize tracking perfonman
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Nor‘mal PD on—m‘edication PD off—m‘edication [12]
Fig. 5. The delay in switching detection for different graup ‘Normal- [13]
Better-Worse’ block. Each time step is 0.03 seconds.
(14]

in PD. We found statistical significance across groups in
mode detection between ‘Better’ and ‘Worse’ tasks, and
found significantly fewer mode detections in PD subjectgs
off medication than the PD subjects on medication, and
near perfect detection in normal subjects. In addition, for
subjects that did detect switching, PD subjects were slow%]
to detect a mode change than normal subjects. Our results are
consistent with related experiments in pursuit tracking an
in flexibility. We believe that mode detection and switching,;
delay provide more precise ways to quantify performance
differences between PD and normals, with potential use as
a marker for biological interpretation of mechanisms in th 8]
basal ganglia and cerebellum responsible for feedforwadd a
feedback in motor control.
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