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Abstract— We extend techniques for a reachability-based
abstraction to continuous systems under shared control, that is,
systems which have both inputs controlled by the automation
and inputs controlled by the human, to account for potential
interactions between the human and the automation that
affect safety. We broadly classify human input as assisting the
automated input, neutral, or fighting against the automated
input, resulting in three types of invariance. Using standard
reachability tools to calculate invariant, user-invariant, and
user-assisted-invariant sets, regions in the state-space are asso-
ciated with three levels of safety: 1) safe, 2) marginally safe, and
3) recoverably safe. By partitioning the state-space according
to intersections of the invariant sets, we create an abstraction
to a discrete event system of minimal cardinality which can
inform the information content of a discrete user-interface that
preserves information about the safety levels of the system. We
apply the reachable set calculation and abstraction method to
an aircraft landing under shared control.

Index Terms— reachability analysis, nonlinear systems,
mixed-initiative, user-interface, discrete event systems, shared
control, flight management systems, invariance.

I. INTRODUCTION

Computational techniques for verification can create a new

level of confidence and reliability in safety-critical systems,

such as aircraft autopilots, by predicting where failures

might occur, and how human operators can predict them

[1], [2], [3], [4]. However, when the human can affect the

system’s behavior (e.g. by selecting a mode of operation,

providing a reference input), and consequently, its safety,

verification techniques must be adapted to explicitly incor-

porate human-automation interaction. This paper focuses on

applying Hamilton-Jacobi techniques [5], [6] for reachability

analysis and controller synthesis to verification of continuous

dynamical systems with continuous human input. The Level

Set Toolbox [7] is used because of its sub grid accuracy

and success in previous aircraft applications, although other

techniques [8], [9], [10], [11], [12] could be implemented.

While verification techniques have been successfully ap-

plied to human-automation systems modeled as discrete

event systems (DES) [13], [14], [15], [2], [16], [17], less

work has been done on verification of continuous or hy-

brid human-automation systems [18], [1], [19]. In [20], an
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invariance-preserving abstraction was formulated for super-

visory hybrid systems: that is, the human input was limited to

discrete inputs. Human input was incorporated into the reach-

ability analysis by simply isolating parts of the system which

were autonomous, and then applying standard reachability

tools to the autonomous subsystems. However, this strategy

is not feasible for systems with continuous human input. In

[21], we considered the effect of continuous human input on

safety for a specific system. This paper aims to generalize

that result to continuous time systems with continuous human

input and continuous controlled input.

In [21], we considered an incident that occurred during an

attempted manual landing of a passenger aircraft [22]. The

flight crew accidentally switched the aircraft into a semi-

automatic mode, that, combined with the pilot’s continuous

input, led to an unsafe aircraft configuration. Unbeknownst

to the pilots, this configuration imposed restrictions on

the pilots’ input: when they attempted to manually abort

the landing by applying a pitch-up command, the aircraft

climbed too quickly and stalled. Based on previous work

[20], we calculated multiple reachable sets, by 1) treating

the pilot input as a disturbance input, 2) assuming the pilot

was “hands off” the control, and 3) treating the pilot input

as a controlled input. The reachable sets were used to inform

the design of a discrete user-interface, through the creation

of a DES of minimal cardinality.

In this paper, we formalize the approach in [21] for

generic nonlinear continuous systems under both automation-

controlled and human-controlled input: shared control sys-

tems. We create multiple levels of safety by imposing dif-

ferent bounds on the human’s control authority, and relate

those levels of safety to invariant sets computed using

standard reachability tools. By choosing increasingly looser

assumptions about the human’s behavior, we create three

broad classes of safety levels: safe, marginally safe, and

recoverably safe. Each level of safety places different re-

strictions on human input to preserve system safety. Hence,

user-interface content must be designed through a particu-

lar reachability-based abstraction to be “safety-informative”,

e.g., to succinctly provide information required by the user

to ascertain the effect of their actions on system safety. Our

main contributions are 1) formal definitions of invariance,

user-invariance, and user-assisted invariance for shared con-

trol systems, and their relationship to computed reachable

sets, and 2) a method to abstract the resulting reachable sets

to a DES that contains relevant information regarding the

effect of continuous human input on safety.

The paper is organized as follows: In Section II, we first
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model a generic continuous system under shared control,

and introduce a simple example to motivate the effect of

human input on safety. In Section III, standard reachability

tools are applied to compute reachable sets of differing levels

of safety. Section IV presents a general abstraction method

for multiple safety levels. This method is applied to an

aircraft landing under shared control [21] in Section V to

create a safety-informative discrete user-interface. Section VI

provides conclusions and directions for future work.

II. SAFETY IN HUMAN-AUTOMATION SYSTEMS UNDER

SHARED CONTROL

A. Modeling

Consider a continuous system under shared control

ẋ = f(x, uc, uh) (1)

with states x ∈ X ⊆ R
n, automation-controlled continuous

input uc ∈ Uc = [uc, uc], human-controlled continuous input

uh ∈ Uh = [uh, uh], with uh < 0, uh > 0. We assume that

the automation input uc = uc(x) is strictly a function of the

state, whereas the human input uh = uh(r) is a function of

a human-controlled reference input r ∈ R = [rmin, rmax].

Example 1: Consider the double integrator system

ẋ = Ax + B(uc(x) + uh(r))

A =

[

0 1
0 0

]

, B =
[

0 1
]T

uc(x) = −3 · sign(x2), uh(r) = r

(2)

with state x ∈ X ⊆ R
2, automatic control input uc ∈ [−3, 3],

human control input uh ∈ [−3, 3] and constraint set C =
[−5, 5] × [−5, 5].

Consider trajectories starting from x(0) = [4, 3]T under

different human inputs (Figure 1). 1) The human input

r = − 2
3uc(x) drives the state out of the constraint set (⋄),

effectively acting as a disturbance, leading to safety failure.

2) The human is “hands off” the controls (r = 0), but

the resulting trajectory (◦) also exits the constraint set C.

If system safety is to be preserved the human must assist the

automation. 3) The human input r = uc(x) co-operates with

the automation input to preserve system safety. The resulting

trajectory (△) remains within the constraint set C. Hence for

the specific value x(0) chosen here, safety is maintained only

when the human co-operates with the automation.

B. Invariance under Shared Control

To perform reachability analysis on a system under shared

control, we take into account how interactions between the

human input and the automation input effect system safety.

Our approach is to broadly classify the human’s input as:

1) a disturbance, driving the system to unsafety, 2) neutral

(“hands-off”), implying uh(r) = 0, or 3) a controlled input,

assisting the automation in preserving safety. Consider the

following three types of invariant sets.

Definition 1: For a set WI ⊆ X to be invariant with

respect to a constraint set C, all trajectories x(t) which start
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Fig. 1. Trajectories for Example 1 starting from x(0) = [4, 3]T for which:
1) (⋄) the user acts as a disturbance 2) (◦) the user is “hands-off” and 3)
(△) the user acts as a control input. The constraint set C is drawn with a
solid red line.

in WI must remain within C for all t ≥ 0 for all continuous

human input uh ∈ Uh.

WI = {x(0) ∈ C | ∀uh ∈ Uh ∃uc ∈ Uc

such that x(t) ∈ C ∀t ≥ 0}
(3)

Definition 2: For a set WUI ⊆ X to be user-invariant

with respect to a constraint set C, all trajectories x(t) which

start in WUI must remain within C for all t ≥ 0 for all

uh ∈ UUI ⊆ Uh.

WUI = {x(0) ∈ C | ∀uh ∈ UUI ∃uc ∈ Uc

such that x(t) ∈ C ∀t ≥ 0}
(4)

Definition 3: For a set WUAI ⊆ X to be user-assisted-

invariant with respect to a constraint set C, there must exist

a control input pair (uh, uc) ∈ UUAI × Uc such that all

trajectories x(t) which start in WUI will remain within C
for all t ≥ 0. Here, UUAI ⊆ Uh.

WUAI = {x(0) ∈ C | ∃(uh, uc) ∈ UUAI × Uc

such that x(t) ∈ C ∀t ≥ 0}
(5)

Invariant sets are computed by effectively treating the

human input as a disturbance input. Often, this very con-

servative assumption leads to WI = {∅}. In many systems,

treating the operator as a disturbance is not realistic or nec-

essary. By bounding the control authority given to the user

when they are acting as a disturbance, a less conservative

and possibly more useful result can be obtained.

User-invariant sets are effectively computed by ignoring

the human input (assuming uh = 0), hence some human

inputs (outside the allowable range) may cause the state to

exit the constraint set. The guarantee of safety is weaker than

for invariant sets.

A user-assisted-invariant set represents the portion of the

state space in which it is possible for the human to apply a

prescribed input which maintains system safety.

The important distinction between user-invariant and user-

assisted-invariant sets is that there are portions of user-

assisted-invariant sets in which the human must apply an

input to preserve system safety, as the automation is unable

to prevent failure on its own. By contrast, in a user-invariant

set, the human may apply an input to assist the automation to

keep the system safe, but does not have to. In user-invariant

sets, bounds on the human input can be interpreted as a

recommendation – remaining within these bounds guarantees
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Fig. 2. The safe, marginally safe and recoverably safe sets W
−1, W0 and

W1 (Example 1), computed by treating the user as a disturbance, “hands
off” and as a controlled input, respectively.

safety, but exceeding them will not cause failure. In user-

assisted-invariant sets, the constraints are much stricter –

an input must be applied to preserve system safety, and

failing to do so will eventually lead to a violation of the

safety constraints. The relationship between these sets will

be described in Section III.

C. Using Invariant Sets to Create a User-Interface

The algorithm in [20] for user-interface design for super-

visory hybrid systems to preserve system safety involves

three steps: 1) separation of the hybrid system into sub-

systems which contain no human-initiated discrete inputs,

2) calculation of the reachable set for each subsystem,

and 3) abstraction to a discrete event system based on the

reachability result. The reachability result partitions the state-

space into intersections of “safe” or “unsafe” regions in

each subsystem. Our aim is to abstract (1) to a discrete

event system that conveys the safety information of multi-

ple invariant, user-invariant and user-assisted-invariant sets,

Wi, i ∈ {1, ..., n}, to the user. Having this information

allows the user to determine if the current state is in an

invariant, user-invariant or user-assisted-invariant subset of

the state space, and consequently, whether or not there are

safety restrictions on the human input. To accomplish this,

1) compute the invariant, user-invariant and user-assisted-

invariant sets of (1) with respect to the constraint set C, and

2) abstract the computed invariant, user-invariant and user-

assisted-invariant sets to a DES. This DES conveys the safety

information contained in these sets to the user.

III. CALCULATING REACHABLE SETS

Computing the reachable set involves representing all of

the states which have a path to a target set. As in [6], for

ẋ = f(x, u, d), with control input u ∈ U , disturbance input

d ∈ D, and constraint set C, the “target” is encoded implicitly

as a level set function W0 = Cc = {x ∈ X | J0(x) < 0},

J0 : X → R. The boundary of the target set is propa-

gated backwards in time according to the system dynamics.

Finding the backwards reachable set W(t) requires solving

the terminal value time-dependent modified Hamilton-Jacobi

partial differential equation

0 = ∂J(x,t)
∂t

+ min
[

0,H
(

x, ∂J(x,t)
∂x

)]

H
(

x, ∂J(x,t)
∂x

)

= max
u∈U

min
d∈D

∂J(x,t)
∂x

T
f(x, u, d)

(6)

with J(x, 0) = J0(x) for t = 0 such that the invariant set is

W(t) = {x ∈ X | J(x, t) ≥ 0}.

Although the user typically acts to preserve system safety,

it is extremely difficult and often non-generalizable to ex-

plicitly model a user’s control actions. Instead, we compute

an arbitrary number of reachable sets that encompass the full

range of possible user behaviors. Define the set Ui ⊆ Uh as

a reduced set of inputs

Ui = αiUh, αi ∈ [0, 1], i ∈ {−N, ..., 0, ...M} (7)

where N and M are the arbitrarily chosen number of safe

sets and recoverably safe sets, respectively.

A. Safe Sets

Let i = −N, ...,−1, with N the number of safe sets Wi

to be calculated by solving (6) with the Hamiltonian

Hi

(

x, ∂J(x,t)
∂x

)

= max
uc∈Uc

min
uh∈Ui

∂J(x,t)
∂x

T
f(x, uc, uh) (8)

and Ui = αiUh, αi ∈ (0, 1] αi+1 < αi such that Ui+1 ⊂ Ui.

Note that the following property holds [23]:

W−N ⊂ W−N+1 ⊂ . . . ⊂ W−1 (9)

The sets Wi, i ∈ {−N, ...,−1} are “safe” because they

represent portions of the state-space in which the user can

apply any input uh ∈ Ui without violating the constraints

for safety. The invariance preserving control law is not

enforced along the boundaries of the sets, allowing the user

to transition between sets by choosing inputs uh /∈ Ui.

Example 1: The safe set W−1, calculated with

H−1

(

x, ∂J(x,t)
∂x

)

= max
uc∈Uc

min
uh∈U−1

∂J(x,t)
∂x

T
f(x, uc, uh)

= ∂J(x,t)
∂x1

x2 + |∂J(x,t)
∂x2

|
(10)

and U−1 = 2
3Uh is shown in Figure 2. As expected, the initial

condition x(0) = [4, 3]T , lies outside of W−1.

B. Marginally Safe Sets

Let i = 0, and U0 = 0 to calculate the marginally safe set

W0 by solving (6) with Hamiltonian

H0

(

x, ∂J(x,t)
∂x

)

= max
uc∈Uc

∂J(x,t)
∂x

T
f(x, uc, 0) (11)

The set W0 is “marginally safe” because it represents the

portion of the state-space in which the automation is capable

of maintaining system safety without user interference or

assistance. As long as the user remains neutral, or “hands-

off” the controls, safety is guaranteed.
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Example 1: W0 (shown in Figure 2) is calculated with

H0

(

x, ∂J(x,t)
∂x

)

= max
uc∈Uc

∂J(x,t)
∂x

T
f(x, uc, 0)

= ∂J(x,t)
∂x1

x2 + 3|∂J(x,t)
∂x2

|
(12)

As expected, x(0) = [4, 3]T /∈ W0.

Lemma 1: Safe sets and marginally safe sets are user-

invariant.

Proof: By construction: For Wi, i ∈ {−N, ...,−1}
computed with uh ∈ Ui ⊆ Uh, for all x(0) ∈ Wi, x(t) ∈ C
for all t ≥ 0 as long as uh ∈ Ui. Thus Wi, i ∈ {−N, ...,−1}
are user-invariant by definition. Similarly, for W0 computed

with uh ∈ U0 = 0 ⊂ Uh, for all x(0) ∈ Wi, x(t) ∈ C for

all t ≥ 0 as long as uh ∈ U0. Thus W0 is user-invariant.

C. Recoverably Safe Sets

Let i = 1, ...,M , with M the number of recoverably safe

sets Wi to be calculated by solving (6) with the Hamiltonian

Hi

(

x, ∂J(x,t)
∂x

)

= max
uc∈Uc

max
uh∈Ui

∂J(x,t)
∂x

T
f(x, uc, uh) (13)

with Ui = αiUh, αi ∈ (0, 1] and αi < αi+1 such that Ui ⊂
Ui+1. Note that the following property holds [23]:

W1 ⊂ W2 ⊂ ... ⊂ WM (14)

The sets Wi, i ∈ {1, ...,M} are “recoverably safe” because

they contain portions of the state space in which there always

exists a control pair (uh, uc) ∈ Ui × Uc which maintains

system safety. As with safe sets, the invariance preserving

control law is not enforced along the boundaries of the

sets. The recoverably safe sets provide information about

what the user must do in order to preserve system safety, in

case a disturbance input (external or user-applied) pushes the

system into a configuration that the automation is unable to

recover from on its own (i.e. states outside of W0).

Example 1: The recoverably safe set W1 is calculated with

H1

(

x, ∂J(x,t)
∂x

)

= max
uc∈Uc

max
uh∈U1

∂J(x,t)
∂x

T
f(x, uc, uh)

= ∂J(x,t)
∂x1

x2 + 6|∂J(x,t)
∂x2

|
(15)

and U1 = Uh. Since x(0) = [4, 3]T ∈ W1, with appropriate

user assistance, a trajectory starting at x(0) will remain safe.

Lemma 2: Recoverably safe sets are user-assisted-

invariant.

Proof: By construction: For Wi, i ∈ {1, ...,M}
computed with uh ∈ Ui ⊆ Uh, for all x(0) ∈ Wi, there

exists a control pair (uh, uc) ∈ Ui × Uc such that x(t) ∈ C
for all t ≥ 0. Thus Wi, i ∈ {1, ...,M} are user-assisted-

invariant by definition.

To summarize, we constructed N +M +1 sets to encom-

pass all possible human input. Combining (9) and (14),

W−N ⊂ W−N+1 ⊂ ... ⊂ W0 ⊂ W1 ⊂ ... ⊂ WM (16)

The set W0 acts as a reference – if the system is in a

state outside of W0, a human input must be applied to

prevent failure, as the automation is unable to preserve

safety unassisted. The set WM corresponds to the standard

“safe” invariant set [20]; its complement WM corresponds

to the unsafe subset of the state-space. A controller could be

synthesized to ensure that the set WM is never exited and

safety is preserved.

IV. ABSTRACTION TO A DES

Definition 4: Let the index i denote the safety level of the

invariant set Wi, where safety level decreases as i increases.

Let the safety level of a point x ∈ X ⊆ R
n be given by

the smallest i such that x ∈ Wi. A region of the state space

M ⊆ C has a homogeneous safety level i if all x ∈ M have

the same safety level i.
Definition 5: A DES abstraction of a continuous system

under shared control (1) is considered safety informative if

1) each mode corresponds to a region of the state space

which has homogeneous safety level and 2) the DES conveys

whether the system is in a user-invariant or user-assisted-

invariant subset of the state space.

A. Generation of modes

Let i = −N, . . . , 0, . . . ,M , where N is the number of safe

sets, and M is the number of recoverably safe sets. Define

a map from the continuous state-space to the discrete state-

space, based on a partition that divides X into N + M + 2
disjoint regions qi as follows:

1) W−N → q−N

2) Wi ∩Wi−1 → qi, for i = −N + 1, ..., 0, ...,M ,

3) WM → qunsafe

Lemma 3: Modes defined by the above mapping represent

cells of the state-space with homogeneous safety level.

Proof: By construction: For W−N → q−N , the cell

defined by W−N is of homogeneous safety level −N . For

modes Wi ∩Wi−1 → qi, i ∈ {−N +1, ..., 0, ...,M}, recall

that by (16), Wi−1 ⊂ Wi. Therefore the cells Wi ∩ Wi−1

are by definition of homogeneous safety level i. Thus the

modes qi, i ∈ {−N, . . . , 0, . . . ,M} correspond to cells of

the state-space that have homogeneous safety level.

Example 1: The cells in Figure 2 map to modes q−1, q0, q1

and qunsafe, as shown in Figure 4.

B. Transition function

Define the set of events Σ = {σup, σdown}, corresponding

to an increase or decrease in safety level, respectively. These

events are state-based transitions that occur when the state

crosses into a neighboring cell:

σup : x(t−) ∈ Wi ∩Wi−1 → x(t+) ∈ Wi−1

σdown : x(t−) ∈ Wi−1 ∩Wi → x(t+) ∈ Wi−1 ∩Wi

(17)

An important consequence of (16) for this mapping is

that transitions can only occur between neighboring modes.

Hence the transition function R is defined as

R(qi, σup) = qi−1, i ∈ {−N + 1, ..., 0, ...,M}
R(qi, σdown) = qi+1, i ∈ {−N, ..., 0, ...,M − 1}

R(qM , σdown) = qunsafe

(18)

Note that in general, σup may not exist.
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qunsafeq
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Fig. 3. DES G = (Q, Σ, R), an abstraction of (1), constructed using
(16) and reachability calculated with Hamiltonians (8), (11) and (13). The
dashed transitions indicate a repeated pattern of transitions for a generic
system with N + M + 1 modes, eventually passing through q0.

C. Construction of the DES

The discrete event system G = (Q,Σ, R) is constructed

as illustrated in Figure 3. Since the designer decides how

many modes to generate, G is of minimal mode cardinality.

Details of the abstraction (and proof of its determinism) are

presented in [20].

Lemma 4: The discrete event system G = (Q,Σ, R) as

defined in Figure 3 is safety informative.

Proof: The first condition is satisfied by Lemma 3.

The second condition is satisfied by construction: modes

qi, i ∈ {−N, ..., 0} correspond to user-invariant subsets of

the state-space by Lemma 1, and modes qi, i ∈ {1, ...,M}
correspond to user-assisted-invariant subsets of the state-

space by Lemma 2. The transition R(q0, σdown) = q1 from

(18) corresponds to a transition from a user-invariant to a

user-assisted-invariant subset of the state-space.

The main advantage is that this abstraction provides the

user with a warning that their actions may lead to unsafety.

When in a user-invariant mode (i.e. qi, i ∈ {−N, ..., 0}),
the user is informed of safety restrictions on their input, but

also free to violate these restrictions if they choose to. Is

the user input violates safety restrictions, the system simply

transitions to a user-assisted-invariant mode (i.e. qi, i ∈
{1, ...,M}), indicating what input the user must apply in

order to maintain system safety. Essentially, the user-assisted-

invariant modes act as a buffer, allowing the user to “recover”

to a higher safety level before the system enters the unsafe

region of the state-space. Having multiple user-assistant-

invariant modes provides more opportunities for correction.

As the mode index i increases, so does the necessity for

control action - a designer may choose to have increasing

levels of alerts corresponding to increasing level of unsafety.

For Example 1, this algorithm results in the DES in Figure

4. In q−1, the user is free to apply any input |r| ≤ 2
without risking transitioning to a lower safety level. If the

user violates these constraints, the system may transition into

q0. In this case, if the user is “hands-off” the controls (r = 0),

the automation will still be able to maintain system safety.

Once again, the user is free to apply inputs that drive the

system to a lower safety level. However, once in q1, the user

must apply an input r = 3 · sign(x2) to maintain that safety.

V. EXAMPLE: AIRCRAFT IN MANUAL MODE

Consider manual control mode of the aircraft longitudinal

dynamics introduced in [21], in which the flight crew sets the

qunsafeq0q−1 q1

σup σup σup

σdown σdown σdown

Fig. 4. DES G = (Q, Σ, R) for Example 1. Note that q
−1 represents

a region in the continuous state-space that is safe, q0 represents a region
that is marginally safe, q1 represents a region that is recoverably safe, and
qunsafe represents a region that is unsafe.

reference flight path angle, while the automation performs

low level control tasks. Using the short period approximation,

the state x = [α, θ̇, γ] consists of angle of attack α, pitch rate

θ̇, and flight path angle γ [24]. The reference input r ∈ R
consists of the reference flight path angle for γ. Elevator

deflection δe is used to implement a static full-state feedback

controller, yielding the closed loop dynamics [21]:

fMAN(x, r) = Ax + B(uc(x) + uh(r))
= Aclx + Bclr

(19)

with uc(x) = −Kx, uh(r) = Nrr and

Acl =





−0.6486 0.9376 −0.0963
−2.6226 −3.0477 −3.0803

0.6486 0.0624 0.0963





Bcl = −2.3
[

−0.0418 −1.3391 0.0418
]T

(20)

where K is a state feedback matrix such that Acl has

eigenvalues at −1.2,−1.2 ± 0.12j, and Nr = −2.3.

State constraints (due to the flight envelope) and control

constraints (due to feedback under saturation) define

J0(x) = minx{J
state
0 (x), J sat

0 (x)}, with

J state
0 (x) = minx {x − xmin, xmax − x}
J sat

0 (x) = minx {umax − maxr∈R δe(x, r),
minr∈R δe(x, r) − umax}

(21)

with state bounds xmin ≤ x ≤ xmax, xmin =
[−11.5◦,−15◦,−13.3◦], xmax = −xmin, umax = 50◦, and

r ∈ R = [−13.3◦, 13.3◦].

Choosing N = M = 1, invariant sets W−1,W0 and

W1 are calculated as shown in Figure 5 (dark green solid,

light yellow transparent, and red mesh, respectively). Safe set

W−1 is computed by bounding the pilot’s input to 25% of

R, a reasonable estimate of pilot behavior under normal op-

erating conditions, with α−1 = .25|N |rmax

umax
, U−1 = α−1Uh,

and Hamiltonian as defined in (8). Marginally safe set W0 is

calculated as in (11). Recoverably safe set W1 is calculated

with α1 = |N |(rmax)
umax

= (2.3)(13.3◦)
50◦

, and U1 = α1Uh – we

assume the pilot has full control authority, as per (13).

The state space is partitioned into four disjoint regions:

W−1 → q−1, W0∩W−1 → q0, W1∩W0 → q1, and W1 →
qunsafe. The transition function R and DES G are shown

in Figure 4 (the same DES as in Example 1, although the
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Fig. 5. The solid green (dark), transparent yellow (light) and red mesh
sets represent, respectively, safe set W

−1, marginally safe set W0, and
recoverably safe set W1. W

−1 is user-invariant (the user can apply any
input uh ∈ U

−1 without affecting system safety). W0, although also user-
invariant, is computed assuming uh(r) = 0 (the automation can preserve
safety without interference or assistance from the user). W1 is user-assisted-
invariant – for states within this set but not contained in W0, the user must

apply an input to preserve system safety.

events σup and σdown correspond to state-based transitions

defined in Figure 5).

The DES can be used as a user-interface, whose main

benefit is that the flight crew knows at all times 1) what

inputs can be applied without affecting system safety, 2)

what inputs can be applied that reduce system system safety

without causing failure and 3) what inputs must be applied

to preserve system safety.

VI. CONCLUSION

We extended techniques for a reachability-based abstrac-

tion to continuous systems under shared control. To ac-

commodate interactions between the human input and the

automation input, we defined three invariance properties: in-

variance, user-invariance and user-assisted-invariance. These

invariance properties were related to three levels of safety –

1) safe, 2) marginally safe and 3) recoverably safe – each

determined by different assumptions on user behavior. We

computed reachable sets for each of these safety levels by

relating assumptions on user intent to the effect of user input

on the Hamiltonian. We implemented an algorithm to create a

reachability-based abstraction to a DES, by partitioning the

state-space according to the computed invariant sets. This

DES can be used to inform the design of a user-interface

which conveys safety restrictions on the user’s input. Finally,

the utility of our method is demonstrated on an aircraft

scenario under manual control.

We aim to develop a general theory to identify problems

in human-automation interaction early in the design process.

Future work includes extensions of the method presented

here to generic hybrid systems under shared control, with

both continuous and discrete human inputs.
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