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Abstract— We consider feedback linearizable systems subject
to bounded control input and nonlinear state constraints. In a
single computation, we synthesize 1) parameterized nonlinear
controllers based on feedback linearization, and 2) the set of
states over which this controller is valid. This is accomplished
through a reachability calculation, in which the state is extended
to incorporate input parameters. While we use a Hamilton-
Jacobi formulation, a viability approach is also feasible. The
result provides a mathematical guarantee that for all states
within the computed set, there exists a control law that will
simultaneously satisfy two separate goals: envelope protection
(no violation of state constraints), and stabilization despite
saturation. We apply this technique to two real-world systems:
the longitudinal dynamics of a civil jet aircraft, and a two-
aircraft, planar collision avoidance scenario. The result, in both
cases, is a feasible range of input parameters for the nonlinear
control law, and a corresponding controlled invariant set.

I. INTRODUCTION

Aircraft flight management systems blend a pilot’s or
autopilot’s control input with a variety of state and input
constraints, in order to achieve goals such as management
of control saturation, trajectory generation and tracking, and
envelope protection. In complex systems such as aircraft,
many of these control goals must be achieved simultaneously.
Blindly implementing control schemes for multiple goals
(e.g. envelope protection and stabilization) can result in chat-
tering, instability, and other counterintuitive phenomenon,
when the controller switches between multiple, indepen-
dently designed control laws. Existing flight management
systems are designed mostly through ad-hoc rules to avoid
these types of problems. While the resultant systems are
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extensively tested through costly simulations to help identify
unanticipated problems, it is physically impossible to test all
possible initial conditions. Problems which go undetected
through this design and simulation process can result in
“automation surprises” [1] and other problematic behaviors
in actual aircraft operation.

As an example, consider an incident in Paris-Orly, France,
in which the pilot unknowingly activated envelope protection
control laws during the aircraft’s final approach to landing.
Upon reaching a speed excessive for the aircraft’s aero-
dynamic configuration, the autopilot initiated an altitude-
change maneuver, in order to avoid structural damage to the
wing. This initially caused the aircraft to climb steeply. The
autothrottles increased thrust, and the pilots attempted to use
the aircraft’s control surfaces to make the aircraft descend.
However, the envelope protection control laws overrode the
pilot’s actions, commanding a high angle of attack, and
eventually reaching a stall. The flight crew managed to regain
control of the aircraft, then successfully completed a manual
landing [2], [3].

New methods and tools in reachability analysis can pro-
vide an alternative framework for control design in safety-
critical systems such as civil jet aircraft. These methods
provide a mathematical guarantee of the modeled system’s
behavior, in the presence of state and input constraints.
Physical constraints arising from aerodynamic envelope pro-
tection, such as the speed at which an aircraft can stall,
can be incorporated as constraints on the continuous state-
space. Actuator saturation can be incorporated as an input
constraint resulting in bounded control authority. When other
goals, such as trajectory tracking, are incorporated into this
analysis, multiple objectives can be simultaneously served
through a single computational synthesis.

We show how to synthesize, in a single computation,
controllers which simultaneously satisfy two separate objec-
tives: 1) envelope protection, and 2) stabilization under input
saturation.

To address the problem of envelope protection, we define
safety as the ability to remain within a set of constraints in
the continuous state-space, despite bounded control authority.
We seek to determine the controlled invariant set: the subset
of safe states in which we can guarantee the state of the
system can always remain. We find this set by computing
its converse: the set of states which are themselves unsafe
or which give rise to trajectories which become unsafe [4].
This converse is simply the backwards reachable set of the
unsafe states, and we can compute backwards reachable



sets using existing techniques based on Hamilton-Jacobi
partial differential equations (HJ PDEs). In addition to the
backwards reachable set, these techniques also provide set-
valued control laws, so by taking set complements we
can find both the controlled invariant set and the control
signals which make it invariant. We draw on the Hamilton-
Jacobi techniques here because of their sub-grid accuracy
and success in previous aircraft applications [5], [6], [7],
however viability techniques could also be used. Viability
theory [8] and numerical algorithms [9] have been developed
to compute viability kernels and capture basins for contin-
uous systems, and also extended to hybrid systems [10],
[11]. These are computationally based on a minimum-time-
to-reach formulation [12].

To address stabilization under saturation, we parameterize
feedback linearizing control laws subject to bounded control
input, such that the parameters reflect system performance
goals (e.g. damping, overshoot). We formulate constraints
that input saturation and stability place on the input pa-
rameters. Feedback linearization is a popular technique for
differentially flat systems [13], [14], but can generate inputs
with high-magnitude. Synthesizing non-saturating feedback
linearizing control laws is a non-trivial problem [15], [16],
[17] for stabilization [18] as well as for tracking [19].
Trajectory generation for differentially flat systems often
involves saturation and rate constraints [20], [21]. Other
common techniques to incorporate state and input constraints
are model predictive control [22], [23], [24], and control Lya-
punov functions [25], [26], however finding such functions
is often difficult and done heuristically. For linear systems,
quadratic Lyapunov functions can be synthesized [27], [28].
A variety of techniques have been investigated to control
linear systems with constraints [29], [30], [31], [32].

Our method is novel in its use of reachability analysis
to perform multiobjective controller synthesis which assures
stabilization, envelope protection, and input non-saturation.
While a standard reachability analysis guarantees envelope
protection and input non-saturation, the resultant control law
would not guarantee stability and may not be implementable
— it could be bang-bang or cause chattering. Therefore,
our approach uses a reachability calculation with additional
constraints to ensure that the resultant control law meets
all the desired objectives and is implementable, as well.
By extending the state to include the input parameters, we
can include constraints for stability, saturation, and envelope
protection in a single reachability analysis. Hence in a single
step, we find non-saturating feedback linearizing controllers
through application of reachability techniques which guaran-
tee envelope protection.

The paper is organized as follows: We first formulate the
problem we wish to solve and provide a brief description
of the reachability computation and the resultant invariant
set. We demonstrate this method on three examples: a
double integrator, a nonlinear model of a two-input, two-
state system representing the longitudinal dynamics of a civil
jet aircraft, and a two-aircraft, three-dimensional cooperative
collision avoidance model. For each example, we design

a parameterized feedback linearizing controller designed to
stabilize despite input saturation. We formulate the initial
cost function for an extended-state reachability computation,
and discuss the computed results: 1) controllers which are
guaranteed to stabilize the system without violating state
constraints or saturating the input, and 2) the set of states
from which any given controller can be applied. Our current
efforts involve synthesis of switched controllers by choosing
from a set of the computed controllers to minimize the time
to reach the origin. We end with conclusions and directions
for future work.

II. PROBLEM FORMULATION

We begin with the simplest case. Consider the input-output
full-state feedback linearizable system

by fx)+g(@)u,z € ¥ CR"uekR
y = h(z)yeR
with bounded input v € U, and constraint set C C R™ which
encodes the set of states which satisfy the constraints on

the system (e.g., speeds above the aircraft’s stall speed). We
express the state constraints through the inequality

C={z|c(x) =0} )

ey

The feedback linearizing control law to stabilize (1) around
the equilibrium z* = 0 is

1 n—1 )
u(@ f8) = <—L}Hh -3 @-x“’) 3)
g

=0

with Lie derivatives Lyh = S f(x), L3h = 2 (Lyh), ---,
Ly 'h = Z(L%?h), and 2 the ith time derivative of
2. Constant coefficients 5 = [5y, 51, - , Bn—1] are chosen
such that the polynomial in s

n—1
ST s’ (4)
i=0

is Hurwitz. With this control law, the resultant closed-loop
system will be linear and stable. However, in order to
prevent saturation, the control u(x,3) must remain within
its allowable bounds U/ for a constant § for x € X.

Umin S ’U,(l'7ﬁ) S Umax (5)

Define the reachable set as the set of states in C for
which all values of a measurable function w(-) in U drive
the system state out of the constraint set C. We presume that
the equilibrium z* = 0 € C is contained in the constraint set.
We compute the reachable set and its complement, known
as the invariant set, through Hamilton-Jacobi techniques.

We wish to satisfy two goals with a single controller:
1) envelope protection, and 2) stabilization under saturation.
Further, we wish to determine the largest set of states from
which this controller is guaranteed to fulfill these goals.

Statement of Problem 1: Given the dynamical system (1),
with state constraints (2), and with a feedback linearizing
control law u(x,3) (3) parameterized by a constant vector
(B € R", determine 1) the invariant set YV, which is the



largest set of states x for a given non-saturating controller
u(x, B) that will reach the origin without violating the state
constraints z € C, 2) [ such that the feedback linearizing
control law is both non-saturating (5) and stable (4).

III. METHOD

We first append the parameter vector (3 to the state such
that & = [z, 3] € R*". The extended dynamics

f@)+ g(@) (~Ly'h = £ X0 al?)
g3 =0

j’: =

(6)
ensure that 5 remains a constant in the reachability compu-
tation. For first and second-order systems, the requirements
for stability (4) simplify to

pi >0 (N

while for higher-order systems, (4) can be represented as a
set of inequalities in ;.

Through reachability analysis and controller synthesis we
can determine the backwards reachable set W(t) and its
complement, the controlled invariant set W(t). Given a
dynamically evolving system (6) and a constraint set C, we
define the backwards reachable set as the set of all states
which will exit the constraint set C in the time [0,t]. The
controlled invariant set is simply the complement of this
result. To calculate the backwards reachable set, define a
continuous function Jp : X x R™ — R such that

C:{meXﬁeR"UO(:v,ﬁ)zO}. 8

The backwards reachable set JV/(¢) can be found by solving
the terminal value Hamilton-Jacobi (HJ) partial differential
equation (PDE) [33], [4], [6]

8J(5E,) aJ(z,t)\] )
5 ot (5] i<
J(Z,0) = Jo(Z) for t = 0;

C)

As shown in [6], the implicit representation of the backwards
reachable set is W(t) = {z € X, 5 € R"|J(&,—t) < 0}. If
(9) converges as t — —oo, then J(Z, —t) — J(Z) and the
reachable set converges to a fixed point W(t) — W.

In order to solve Problem 1, we incorporate the state
bounds, non-saturation constraints, and stability constraints
into the initial cost function

Jo(z,f) = min {J§™(z, B), J5" " (x, ),
Jsat—min(x7ﬁ)7 Jgtablhty(l',ﬁ)}
(10)
for which we define the functions
Je(@,8) = o)

TR0 5) =t — (e, )

Jsat mln( ) — ’U,(.Z‘,,())) — Upin (11)

Jstablhty ( ) — ,6)1

such that they are positive in those regions where the

constraints are satisfied. We then define the Hamiltonian as
N T n—
H(5,82) = (2)" (f@) +g(@) (~L7"h
T
1 n—1 i aJ
o S ) )+ (8) -0,

as opposed to the standard formulation in which

T
(.57 ) = ma (% <f<sc>+g<m>u>>. a3

The control law which results from (13) will provide en-
velope protection and prevent input saturation, however it
may be bang-bang, and because it is a measurable function,
may not be implementable. However, by construction, the
control law used in (12) will be smooth, stabilize (1), ensure
envelope protection, and will not saturate. The invariant set
computed using (13) will contain the invariant set computed
using (12).

By appending (3 to the state and prescribing zero dynamics
to it, we have assured that ( is constant. This is required to
guarantee stability. The result of the reachability computation
is the largest set of states = for a given input parameter (3
for which trajectories that begin in this set and are controlled
through (3) will reach the origin without violating any state
constraints (2) or saturating the input (5).

Remark: We have solved Problem 1 through the above
formulation of constraints into the reachability calcula-
tion with initial conditions (10),(11) and Hamilton-Jacobi
PDE (12). The feedback linearizable system (1) with control
input (3) parameterized by a constant § which satisfies (5)
and (4), will result in a system locally stable around = = 0.
This control law will not saturate for states in the invariant
set z € W. ]

12)

The advantage of this framework is that the computed
result inherently meets the required constraints for both
stability and non-saturation, while maintaining invariance
within the constraint set. For a given value of [, the com-
puted result in x is the region of the state-space for which the
specified controller will stabilize, will not saturate, and will
not violate any of the state bounds. As there are generally no
analytic ways to synthesize such (3, this computation provides
an alternative to simply picking various 3 and checking
whether they fulfill the conditions for stability and non-
saturation.

While we have presented our method for the simplest case,
a SISO system with full-state feedback, this method also
generalizes to MIMO systems which are full-state feedback
linearizable or which can be transformed into full-state
feedback linearizable form.

At first glance, solving (9), (12) involves a reachability
calculation in 2n dimensions — no small feat due to the
complexity of the calculation, O(d?") with d grid points in
2n dimensions. However, by exploiting structure in the pole
placement, we can reduce the computation to O(d"*1), with
d grid points in 7+ 1 dimensions. Consider a simple double
integrator, 8 € Ri. If we collocate poles on the real line with
B1 = n?, Ba = 2n, the computation is reduced from 4 to 3
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Fig. 1.  Invariant set WWg plot-
ted in [x1,z2,n] for n = 0.35,
corresponding to two real poles at
—0.35.

Fig. 2. Invariant set WWg plot-
ted in [x1,z2,n] for n = 0.30,
corresponding to a complex pair at
—0.15 £ 0.52684.

dimensions. In addition, because ﬁ does not depend on z, the
reachable set can be computed for various (5 independently,
e.g. on parallel computers to sweep through 3-space. This
parallelization is generally not possible for reachable sets
with coupled dynamics.

IV. EXAMPLES
A. Double Integrator

To demonstrate this method, consider the system & = wu,
with state © = [z1,22] € C = X = [z1,T1] X [z4, T2], input
u € U = [Umin, Umax), and output h = x2. We design a
feedback linearizing control law, u(zx, 3) = —f121 — Paxa,
with 31, B2 € RT, such that the resultant closed-loop system
is stable.

. 0 1
x—[_ﬂl _/62]96 14)

As state dimensionality is at a premium in the reachability
calculation, we consider two cases: 1) two real poles when
B1 = 12, B2 = n, and 2) two complex poles when 3; =
B2 = n. For these two cases, the reachability computation
will proceed in 3, as opposed to 4, dimensions. The constraint
set C C X x RT incorporates both the state constraint x € C
as well as the input constraint u(z, 3) € U.

The saturation constraints (5), state constraints, and sta-
bility constraints are formulated as

Jgat (z,8) = min{umax — 171 — Baz,
—f121 — P22 — Umin}
J§te () = min{T1 — x1, 21 — 2y, T2 — T2, T2 — Xo}

Jgtability (B) =n. (15)

For the reachability computation, we combine the above
three functions into one initial cost function

JO(%ﬂ) — min{JSat(:c,ﬂ), Jgtatc(x)7 Stability(ﬂ)} (16)

Each horizontal slice in Figures 1 and 2 represents the
invariant set in [z7,x2] for a given control parameter 7.
It is the set of initial conditions for which the state will
be driven to the equilibrium without saturating the input or
violating the state constraints. While for this trivial system,
non-saturating, stabilizing controllers can be calculated by
hand, for general nonlinear systems, this is not possible.
Figures 3 and 4 show the largest invariant sets, maximized
over [ through a simple post-processing calculation. By
contrast, while the controlled invariant set calculated for

Maximum area with n = 0.42

Fig. 3. Largest invariant set with
two real poles, plotted in (z1,z2)
for 7 = 0.42. The region contained
the dotted lines is the initial con-

Maximum area with | = 0.46

-5 0 5
><1

Fig. 4. Largest invariant set with
an imaginary pair of poles, plotted
in (z1,z2) for n = 0.46. The
region contained by the dotted lines
is the initial constraint set for which

straint set for which Jo(z,3) > 0. Jo(z, 3) > 0.

T = u, measurable v € U (without a feedback linearizing
control law specified) will contain both of these invariant
sets, the input signal required may not be implementable
and will not stabilize the system.

B. Aerodynamic Envelope Protection

We model the longitudinal dynamics of a conventional
aircraft as a nonlinear system

mV = T —D(a,V)—mgsin~y

mV4y = L(a,V)—mgcosy 7

with state © = [V,7] € X = RT x R (corresponding to
speed V' and flight path angle +) and input v = [T,a] €
U = [Twin, Tmax] X[Qmin, @max] (corresponding to thrust
T and angle of attack «). The state constraints are given
by 2 € C = [Vinin, Vmax) X [Ymin, Ymax] € X. Physical
constants are mass m = 200000 kg, gravitational constant
g = 9.81m/s?, and the sets X = [63.79,97.74] x [—6,6],U =
[0,686700] x [—5,17] are determined by standard aircraft
operating conditions. Drag and lift are given by

D, V) = V¥(a+ber(a)?)

L(a,V) = cVicp(a) (%)

with coefficient of lift ¢y (o) = ¢r, + ¢, @, and positive
constants a = 6.5106, b = 12.6585, ¢ = 262.0275, ¢, =
0.4225, and ¢y, = 5.105 as in the Flaps-20 configuration of
the large civil jet aircraft with its landing gear up [5]. The
aircraft should track a reference speed V,, = 90 m/s and a
reference flight path angle v, = 0°.

We rewrite (17) in feedback linearizable form as

mV [ —mgsiny —aV? n 1 0 [t
mVy | —mg cosy 0 cV? s
(19)

by defining a new input through an invertible transformation

o) = [ —bV2c ()2 +T ] .

c(e)
With outputs y = [V, ~], equation (19) has relative degree 1
for each output. In order to track a desired reference state
xr = [V4,7], define an auxiliary input v = [—(1(V —

2 (20)

u
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Fig. 5. Horizontal slices of Figure 6 show the invariant set in (V,~) at

various 1) which correspond to stabilizing and non-saturating control laws.

V), —B2(y — )], with 31, B2 € R*. The control law

u(z,f) = ¢ * ({ mgsiny +aV? —mp(V - V,.)

= (mgcosy —mV Ba(y — )

](21)
results in linear dynamics, stable around z,..
Assuming that 31 = (32 = 1, we incorporate the state
constraints, input constraints, and stability constraints into
the initial cost function:

Jo(z, B) = min{J§*"(, 3), J§™ (), B} (22)

with J§*(z, ) = min{umax — u(z, 3),u(z,3) — Umin}
JStatC (I, ﬂ) = min{vmax_‘/y V_Vmin7 Ymax — 7 ’Y_’Ymin}-

The result of the reachability calculation is shown in
Figure 6 for combinations of [V,~,n]. For clarity, cross-
sections of [V,~] for various 1 are shown in Figure 5. As
the control parameter increases, less of the aerodynamic
flight envelope (V,~) is controllable, due mainly to input
saturation. The uncontrollable portions of the (V,~y) envelope
at all n in the lower right quadrant correspond to descent at
high speeds — this is a well-known issue for landing aircraft,
in which the aircraft is very close to a stall condition.

As with the double integrator example, we numerically
evaluate the computational result to determine the control
parameter 1 which generates the largest invariant set. For
each 7, we count the number of grid points which have a
positive value. For this scenario, the maximum number of
positive-valued grid points occurs at n = 0.045. This result
could be useful for maximizing the controllable portion of
the aircraft’s aerodynamic envelope. The envelope with the
largest area in (V,~y)-space will allow for operation in more
combinations of speed and flight path angle than any other
envelope in the computed set W.

In situations in which it is imperative to have a larger con-
trollable set in regions of high speed and high descent rate,
unstable controllers might be useful. An unstable controller

0.2-
=0.1 6
T 4
=2
0
0.1 e 0
’ T 10 20 i
0 ‘\“,\_v/’/////’ 80 0 e 10
- - 0
v [rad] -0.1 60 V [mis] y, Inmi] 20 -10 x, [nmi
Fig. 6. Invariant set in [V,~, 7).

For a given 7, states inside the
shaded region will reach (V;.,~,)
without saturating the input or vio-
lating the aerodynamic envelope.

Fig. 7. Invariant set in [z, yr, O]
for 3 = 1.10 x 10~3 for the
collision avoidance scenario.

in this region of the aerodynamic flight envelope would
need to be combined with stabilizing controllers in other
regions of the aerodynamic flight envelope in a carefully
defined switching scheme. While the practicalities of aircraft
certification and pilot training would likely prevent unstable
controllers from implementation onboard civil jet aircraft,
other platforms which require agility in all areas of the
aerodynamic envelope (such as fighter aircraft or helicopters)
might benefit from such a strategy.

C. Cooperative Collision Avoidance

We model the relative dynamics of two aircraft traveling
at a constant speed V = 0.125 nmi/s,

Ty cos(f, —0r) — 1 v yr O
U | =V sin(6, — Or) —— | =z, 0 |u
6, 0 g1 -1 1

(23)
with relative position x,, y,, relative heading 6,., turn rates
uy, ug € [—tan(27/9), tan(27/9)], and constant g = 5.3 x
1073 nmi/s2. As opposed to the competitive model presented
in [34], we assume cooperative, centralized control over both
aircraft. For ease of notation, we write (23) as & = F(z) +
G(z)u, with F(z) € R® and G(z) € R3*2. The aircraft
must remain at least R = 5 nmi apart at all times, so the

state is constrained by
Jerdivs () = 22 442 — R2 >0 24)

Assuming cooperation between the two aircraft and full-state
output y = [z, yr, 0,], the feedback linearizing control

_1 ler
uz, 8) = (G'G) ~GT By — F()
B3(0r — Or)
(25)
tracks a desired relative heading 6r, subject to saturation

constraints J*(z,8) = Umax — u(z, 3), JP(z,8) =
u(x, ) — Umax. The resultant dynamics are

Yr V(cos(, —Or) — 1)
5o % “w |+ | Vsin(0,—6r) | ©6)
S —P3(6 — Or)



with p(z) = —y,(cos(0, — Or) — 1) + z, sin(f, — Or). We
parameterize 5 by 51 = P2 = 0.183 = n, resulting in the
additional constraint Jj = 7.

The initial cost function for the reachability calculation is

Jo(w, ) = min{ T (), J™ (, 8), Sy (x, 8), T3 (5)}

27
Figure 7 shows the the resultant reachable set for n =
1.10 x 1073, As opposed to the two previous examples, the
safe region lies outside of the shaded region. For clarity, the
invariant set calculated with dynamics (23) and initial cost
function (24) is also displayed in Figure 7, and contains the
invariant set calculated with the prescribed controller (26)
and initial cost function (27).

V. SWITCHED CONTROL LAWS

We are currently exploring synthesis of stable, switched
control laws that will not saturate and will not violate state
constraints, in order to increase the controllable range of the
state-space. We present the initial results of this work.

The result of the reachability calculation demonstrated in
the previous three examples is 1) a discrete set of input
parameters 3, and 2) the invariant sets in x corresponding to
a given input u(x, 3). An immediate question arises: How
can we determine which [ is “best”? In the double integrator
and in the aircraft example, we chose a single value for j3,
which corresponded to the largest invariant set. However,
there is no reason to be restricted to a single value of 3: a
reasonable alternative is to choose a set of 3, and to optimally
switch between them. This might be particularly useful in
systems for which the invariant sets are drastically different
for various (3, since enabling switching results in a larger
invariant set than any of that of the individual systems alone.

Statement of Problem 2: Find the optimal state-based
switching control law required to minimize the time to reach
a small-radius B,, around the desired equilibrium point,
given a finite set of p non-saturating feedback linearizing
controllers parameterized by 31, ..., 3.

For this computation, while either Hamilton-Jacobi or
viability techniques could be implemented, we apply via-
bility techniques that are well-tested in switched systems to
compute the minimum-time-to-reach function [12].

For an impulse dynamical system described by the differ-
ential inclusion

z € F(x(t), F(z) = {f(z) + g()u(z, B),u U} (28)

with no state reset map, define the target set 7 C C as
a subset of the constraint set C. Consider the problem of
reaching 7 without leaving C. The viability kernel with target
Viabp(C,7T) C C is the largest set of initial conditions in
C from which at least one trajectory governed by (28) will
remain in the constraint set C until it reaches the target 7,
which we assume here is a small-radius ball /3,, around the
equilibrium point.
Consider the minimum-time-to-reach value function

V(zo) = Ioeinf 17 (2()) (29)

SF(I())

5|

Fig. 8. In the lightest (red)
regions, /1 = [0.1225,0.70] is
invoked. In the darkest (black)
regions, B2 = [0.30,0.30] is in-

Fig. 9.
minimum-time-to-reach compu-
tation for a switched system
with dynamics corresponding to

Level sets of the

voked; and 'in the med_ium—shad.e B = [0.1225,0.70], B2 =
(green) regions, B3 = [0,0] is [0.30,0.30], and 3 = [0, 0).
invoked. ’ ’ ’

for initial state ¢ in the solution map Sr(zo), in which the
time cost
TT (2()) = { inf{t:z(t) €T and Vs < t,x(s) € C}
¢ +o0 if the constraint condition fails
(30)
is the first time the system reaches the target when following
the trajectory x(-). We know that the epigraph of V, defined
as Epi(V) := {(z,y) € CxR*' : V(z) < y}, coincides with
a viability kernel with target associated with an extended
dynamical system

Epi(V) = Viabz(K x RT, 7 x RY) (31

in which F(x,y) = F(z) x {—1} and the state = has been
augmented to include a dimension for time [35]. The viable
set is the domain of the function V' (z).

For the double integrator problem, we choose three pa-
rameters to represent three qualitatively different closed-loop
systems (14). The parameter 5; = [0.1225,0.7000] generates
non-oscillatory trajectories that asymptotically approach the
origin, 82 = [0.30,0.30] results in damped oscillatory
trajectories, and 33 = [0, 0] results stationary trajectories.

Figure 9 shows level sets of the minimum-time-to-reach
function. The resulting control law, shown in Figure 8
demarcates regions in W in which the different 3 should
be used in order to reach 5,, in minimal time.

VI. CONCLUSION

We presented a method to determine, through a Hamilton-
Jacobi reachability computation, the set of states in safety-
critical systems which will reach the desired equilibrium
without saturating the input or violating the state con-
straints. Thus both envelope protection and stabilization
under saturation are simultaneously achieved. This involves
a reachability analysis on an extended state space which
incorporates a parameter from the feedback linearizing input.
By incorporating the input saturation, stability, and state
constraints simultaneously in the initial cost function, the
resultant invariant set will be the largest set of states, given
bounded input, which will stabilize the system and always



remain within a given constraint set.

We presented two real-world examples to illustrate the
method. We synthesized non-saturating feedback linearizing
controllers, and determined where in the state-space these
controllers could be used to guarantee not only stability and
non-saturation of the input, but also invariance with respect
to state constraints.

The method and three examples presented contribute to
the difficult problem of determining stabilizing controllers
for safety-critical systems under nonlinear state and input
constraints. Many future directions of work are possible,
including 1) minimization of the number of switched, non-
saturating controllers when multiple solutions to the control
parameterization problem are possible, 2) alternative, less
computationally exhaustive formulations to sample the pa-
rameter space [ and 3) one-step synthesis of a minimal
number and optimal selection of input parameters 3 for
switched, non-saturating, feedback linearizing controllers.
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