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Abstract— Engineered systems which are safety-critical, high- We show how to synthesize, in a single computation,
risk, or expensive must often meet multiple objectives. In @ switched controllers which simultaneously satisfy two-sep
dition to guarantees of safe and reliable operation, other gals, arate objectives: 1) envelope protection, and 2) stabitiza
such as stability, tracking, or optimality are also important. . . L . .
Indeed, a system which is guaranteed to be “safe” may not be under input saturation. While in previous work [1] .smgIeT
implementable in practice unless it is also guaranteed to ne¢ Mode controllers were computed, in general, choosing a sin-
other performance objectives. In previous work, the problen  gle controller may be restrictive. Switching between npléti
of control design to meet multiple objectives was addressed controllers may significantly increase the region of ogerat
through reachability analysis. For a feedback linearizable system for the system as well as improve its overall performance.

subject to bounded control input and nonlinear state con- . o

straints, we synthesized a single controller guaranteed td) In this paper, we choose a s_et of stab_lllzmg controllers,

stabilize the nonlinear system despite input saturation, ad 2) ~€ach parameterized by a continuous variable, and compute

prevent violation of the state constraints. how to optimally switch between them to reach the origin
However, a single controller may be restrictive. Switchinoe-  in minimal time. As in [1], the reachability computation

tween multiple controllers may increase the region of operion s ysed as a controller synthesis to aid in the design of

for the system as well as improve its overall performance. We R . . .
focus here on recent developments to synthesize a switched multi-objective controllers. The main contribution of ghi

multi-objective controller through reachability analysis. The Paper is in extending these techniques to now synthesize a
result provides a mathematical guarantee that for all state  hybrid controller — in addition to the continuous component
within the computed reachable set, there exists a switched computed as in the previous work, a discrete switching
contrlol law th?t vt\{ill si?mltar_leloij_sly sefttisn;yttwo septarattte ;;)ar:; scheme is also simultaneously synthesized.
envelope protection (no violation of state constraints), : '
stabilizgtioﬁ despite saturation. This is accomplished ttough To address thg_problem Of enyelppe protection, We_defl_ne
a reachability calculation, in which the state is extendeda Safety as the ability to remain within a set of constraints in
incorporate input parameters for the switched system. the continuous state-space, despite bounded controlrétytho
Keywords: hybrid systems, constrained control, switched We can compute, through standard reachability analysis and
systems, saturation, reachability, optimal switching, miimal  controller synthesis, the subset of those states in which we
time-to-reach, feedback linearization. can guarantee the state of the system can always remain:
this is theinvariant set, which determines the “safe” region
of operation [2]. States outside of this set comprise the

New methods and tools in reachability analysis can prd€achable set, those states which can “reach” constraint vio-
vide an alternative framework for control design in safetylation. This technique, computationally based on a Hamilto
critical systems such as civil jet aircraft. These method$acobi partial differential equation, also synthesizee@ s
provide a mathematical guarantee of the modeled systenygluéd control law which enforces safety by preventing the
behavior, in the presence of state and input constraintate of the system from entering the reachable set [3],
Physical constraints arising from aerodynamic envelope prl4]- An alternative approach, using viability theory [S]can
tection, such as the speed at which an aircraft can staflumerical algorithms [6] has been developed to compute
can be incorporated as constraints on the continuous sta¥&Dility kernels and capture basins for continuous andridyb
space. Actuator saturation can be incorporated as an ingistems [7], [8]. These are computationally based on a
constraint resulting in bounded control authority. Wheimept Minimum-time-to-reach formulation [9]. _
goals, such as trajectory tracking, are incorporated i@t 10 addr(_ass st_a_b|l|zat|on under saturation, we parameteriz
analysis, multiple objectives can be simultaneously sbrvéeedback linearizing control laws subject to bounded antr
through a single computational synthesis. This paper egplo NPUL, such that the parameters reflect system performa_mce
the synthesis of stable, switched control laws that will no80als (e.g. damping, overshoot). We formulate constraints

saturate and will not violate state constraints, in order t§1at input saturation and stability place on the input pa-
increase the controllable range of the state-space. rameters. Feedback linearization is a popular technique fo
differentially flat systems [10], [11], but can generatelitgp

This work was supported by an NSERC Discovery Grant. with high-magnitude. Synthesizing non-saturating feetba

|. INTRODUCTION



linearizing control laws is a non-trivial problem [12], [13 the equilibriumz* = 0 € C is contained in the constraint set.
[14] for stabilization [15] as well as for tracking [16]. We compute the reachable set and its complement, known
Trajectory generation for differentially flat systems ofte as the invariant set, through Hamilton-Jacobi techniques.
involves saturation and rate constraints [17], [18]. Other We wish to satisfy two goals with a single controller:
common techniques to incorporate state and input congrairl) envelope protection, and 2) stabilization under saitmat
are model predictive control [19], [20], [21], and contrgld-  Further, we wish to determine the largest set of states from
punov functions [22], [23], however finding such functionswhich this controller is guaranteed to fulfill these goals.
is often difficult and done heuristically. For linear sysem  Statement of Problem 1: Given the dynamical system (1),
quadratic Lyapunov functions can be synthesized [24],.[25With state constraints (2), and with a switched feedback lin
A variety of techniques have been investigated to contr@arizing control lawu(x, 3,) (3) parameterized by a constant
linear systems with constraints [26], [27], [28], [29]. vector 5 € R"™, determine 1) the invariant s&¥, which
In this paper, after formulating the switched controlleiis the largest set of states for a switched non-saturating
synthesis problem, we provide a brief description of theontrolleru(z, 3,) that will reach the origin without violating
reachability computation and the resultant invariant$bts  the state constraints € C, 2) 3, such that the feedback
method is demonstrated on the double integrator. Lastlinearizing control law in each mode € @ is both non-
directions for future work are discussed. saturating (6) and stable (4), and 3) the optimal stateebase
switching scheme required to minimize the time to reach a
ll. PROBLEM FORMULATION small-radius ballB,, around the equilibrium point.

Consider the input-output full-state feedback linearieab

System IIl. METHOD
i = fl@)+g@)u,ze X CR,ueR Assume that there are controllers. We first append the
y = h(z),yeR 1) parameter vectof = [(1,- - , O] € R™™ to the state such

. _ _ thatz = [z, 5] € R*"™+1), The extended dynamics

with bounded inputu € U = [umin, Umax], @nd constraint

setC C R™ which encodes the set of states which satisfy thei = f(z) + g(z) (—L}“lh — TR it ﬁq[z’]x(l’l))

constraints on the system (e.g., speeds above the aiscraft; _

stall speed). We express the state constraints through the (7)

inequality ensure tha3 remains constant in the reachability computa-

C={z|c(x) =0} ) tion.

Consider a switched feedback linearizing control law Note that special mode structures can allow simplification
u(z,B8,) : R x Ry x Q — R to stabilize (1) around the of the switched stability constraints. For example, for e®d
s Mq) -

with first- and second-order continuous dynamics, the re-

equilibrium 2z* = 0. The control law in mode € Q is - - o e
quirements for stability (4) within each mode simplify to

1 - o (e .
u(w, b)) = 7 (—L;& Yh= " Byl ”) 3 Byli] > 0 (8)
9 i—

) ) o oh 12 5 while for higher-order systems, (4) can be represented as a
W|th1L|e de”Vat'VSSth = gz f(@), Lih = 52(Lsh), -+, set of inequalities irf, [i]. For switched systems with exactly
Ly 'h = Z(L}?h), andz( theith time derivative ofr.  two modes and stable dynamics within each mode, sufficient
Constant coefficients, = [ 8,[1] 3,[2] -+ Sqln] }T conditions for exponential stability under arbitrary sshiing
are chosen such that the polynomialsin can be reduced to checking whether the product of the two

" matrices contain any negative real eigenvalues.

n 1 oi—1

S+ D Blils 4) eig(A1As) & R_ )
i=1

This can be determined prior to the calculation [30]. De-
pending on the switched system structure, other techniques
to find a common Lyapunov function can also be used [31].

. Through reachability analysis and controller synthesis we
§= A4 (5) can determine théackwards reachable set W (t) and its
complement, thecontrolled invariant set W(¢). Given a
dynamically evolving system (7) and a constraint &gtve
define the backwards reachable set as the set of all states
which will exit the constraint se€ in the time [0,]. The

Umin < u(z, By) < Umax (6) controlled invariant set is simply the complement of this
result. To calculate the backwards reachable set, define a
continuous function/p : X x R™" — R such that

is Hurwitz, assuring stability within each mode. Additidlga
to assure stability despite arbitrary switching, the reésgl
switched closed-loop system

must have a common Lyapunov function.
To prevent saturation, the contrelz, 3,) must remain
within its allowable boundg/ for all z € X, ¢ € Q.

Define the reachable set as the set of state€ ifor
which all values of a measurable functier-) in ¢/ drive }
the system state out of the constraintGetWe presume that C={zxeX,BeR™|Jy(x,0) > 0}. (10)



The backwards reachable 38t(¢) can be found by solving a simple double integrator with two modese {1,2}, 5 €
the terminal value Hamilton-Jacobi (HJ) partial diffeieht R?. If we assume both modes are parameterized byR,
equation (PDE) [32], [2], [3] with 31 = [2n,7%], B2 = [21,2n?%], the computation can
proceed in[z,n] € R* and therefore is reduced from 6 to 3

0J(z,t) +min |0, H | Z, BJ(%’ ) =0 fort <0;  dimensions.
ot oT
J(2,0) = Jo(z) for t = 0; V. EXAMPLE

(11)
As shown in [3], the implicit representation of the backward - _
reachable set BY({) = { € X, 3 € R™|J(z,—t) < 0}. With statex = 21, 22] € C Tj A = @2 T x @é’ 72),
If (11) converges a$ — —oc, thenJ(i, —t) — J(&) and iNput u € U = [tmin, umax], and outputh = z,. We design

the reachable set converges to a fixed pOWE) — . a switchgd feedback linearizing control Iaw(:v,ﬁq)_ =
g poltr) —G1x, with 3, € R%, such that the resultant switched

We mcorporatg_ the state_ bqunds, no_n_-saturatpn Cngosed-loop system is stable. The two modes are chosen
straints, and stability constraints into the initial cashétion such that the closed-loop eigenvalues in mqde 1 occur
Jo(z, B) = maxgeq {min { J§**(z, B,), J§&* ™ (z, 8,), co-located on the negative real line, and in made- 2
Jgat—min(x’ By), Jgtabi“W(x, B,) occur as a complex _cc_mjugate pair W.Ith damping rdtie:
(12 1/+/2. By parameterizing?; and 3, with the same value
n, the dimension of the extended state= [z,7] € R3 is
significantly reduced.

d To demonstrate this method, consider the sysiem u,

for which we define the functions
Jgtte(z, By) = c(x)

)
Jgatimax(l',ﬁq) =  Umax — u(x,ﬁq) = Ax A = |: 0 ! :| Ay = |: ) )
Jgatimin(xa By) = ul(x,By) — tUmin 13) ! ~2n - ~2 -2

stability o .

Jo (@.0) = Fali] With these two matrices, (9) holds fof > 0, assuring
such that they are positive in those regions where thstability under arbitrary switching.
constraints are satisfied. We then define the Hamiltonian ~ The saturation constraints (6), state constraints, and sta

- T n— bility constraints are formulated in each mode as
H (3, 32) = maxgeque (22)" (F@) +9() (-27 "0 P

T J5t(x, By) = min{umax — BLz, BT — Umin}
n . i— oJ 0 s Mq max q Mg min
~Lh i Balilat 1))) + (3_5) 0, Jote(x, By) = min{T1 — 21,21 — 21,Ta — T2,Ta — Lo}
(A4) g (@, B,) = n.
maximized over the set of “valid” modes at any given state (17)
z For the reachability computation, we combine the above
Qv(T) = {q € Q| [J5**(z, By), Jgat—maX(Lﬁq), three functions into one initial cost function
T, B,), I (2, B,)] > 0} Jo(w, () = max {minf 5 (@, 8,), T3 (@), I3 (8,)} |
(15) 4 (18)

The control law used in (14) will stabilize (1), ensurey, yayimize the area of the state-space in which at least one
envelope protection, and will not saturate. non-saturating, stabilizing controller is feasible.
The result of the reachability computation is the largest Figure 1 represents the invariant set[in, z,] for four
set of statesr for a given input paramete for which gifferent values of the control parameter Under any
trajectories that begin in this set and are controlled thhou switching scheme, the closed-loop system will be stable.
(3) will reach the origin in minimal time without violating Notice that each value of results in a different switching
any state constraints (2) or saturating the input (6). scheme, as indicated by the color of each grid cell. The dark
The advantage of this framework is that the computefted, blue) colored regions are the set of initial condision
result inherently meets the required constraints for botfor which the state will be driven to the equilibrium in
switched stability and non-saturation, while maintaining minimal time without saturating the input or violating the
variance within the constraint set. As there are generally rstate constraints, presuming the switching scheme iraticat
analytic ways to synthesize such controllers, this contmuta is implemented exactly as shown.
provides an alternative to simply picking various and
various switching schemes and checking whether they fulffill V. CONCLUSION AND FUTURE WORK

the conditions for stability and non-saturation. We presented a method to determine, through a Hamilton-
At first glance, solving (11), (14) involves a reachabilityJacobi reachability computation, the set of states in gafet
calculation inn(m+1) dimensions — no small feat due to thecritical systems which will reach the desired equilibrium
complexity of the calculation)(4™("™+1)) with d grid points  without saturating the input or violating the state con-
in n(m + 1) dimensions. However, by exploiting structurestraints. Thus both envelope protection and stabilization
in the pole placement, we can reduce the computation tonder saturation are simultaneously achieved. This imslv
O(d™+1), with d grid points inn + 1 dimensions. Consider a reachability analysis on an extended state space which
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Fig. 1. Invariant selVgs, plotted inz for n € {0.08,0.28,0.58,0.74}. [16]

Dark (blue) indicatesy = 1, medium (red) indicategy = 2, and light

(green) indicates states in the reachable set. [17]

incorporates a parameter from the feedback linearizingtinp
By incorporating the input saturation, stability, and stat 18]
constraints simultaneously in the initial cost functiohe t
resultant invariant set will be the largest set of stategergi [19]
bounded input, which will stabilize the system and always
remain within a given constraint set. [20]
The method and two examples presented contribute to
the difficult problem of determining stabilizing contraiée [21]
for safety-critical systems under nonlinear state and tinpu
constraints. Future work includes 1) determining solwgion
for the computed switching surfaces, 2) switched contro} sy (22]
thesis for open-loop hybrid systems with different coristra
sets and control bounds in each mode, and 3) identification
of unstable dynamics which can result in an optimal anf!
stable closed-loop switched system, 4) exploitation ofithe |24
dynamics to reduce computational effort.
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