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Abstract— Engineered systems which are safety-critical, high-
risk, or expensive must often meet multiple objectives. In ad-
dition to guarantees of safe and reliable operation, other goals,
such as stability, tracking, or optimality are also important.
Indeed, a system which is guaranteed to be “safe” may not be
implementable in practice unless it is also guaranteed to meet
other performance objectives. In previous work, the problem
of control design to meet multiple objectives was addressed
through reachability analysis. For a feedback linearizable system
subject to bounded control input and nonlinear state con-
straints, we synthesized a single controller guaranteed to1)
stabilize the nonlinear system despite input saturation, and 2)
prevent violation of the state constraints.

However, a single controller may be restrictive. Switchingbe-
tween multiple controllers may increase the region of operation
for the system as well as improve its overall performance. We
focus here on recent developments to synthesize a switched
multi-objective controller through reachability analysi s. The
result provides a mathematical guarantee that for all states
within the computed reachable set, there exists a switched
control law that will simultaneously satisfy two separate goals:
envelope protection (no violation of state constraints), and
stabilization despite saturation. This is accomplished through
a reachability calculation, in which the state is extended to
incorporate input parameters for the switched system.

Keywords: hybrid systems, constrained control, switched
systems, saturation, reachability, optimal switching, minimal
time-to-reach, feedback linearization.

I. I NTRODUCTION

New methods and tools in reachability analysis can pro-
vide an alternative framework for control design in safety-
critical systems such as civil jet aircraft. These methods
provide a mathematical guarantee of the modeled system’s
behavior, in the presence of state and input constraints.
Physical constraints arising from aerodynamic envelope pro-
tection, such as the speed at which an aircraft can stall,
can be incorporated as constraints on the continuous state-
space. Actuator saturation can be incorporated as an input
constraint resulting in bounded control authority. When other
goals, such as trajectory tracking, are incorporated into this
analysis, multiple objectives can be simultaneously served
through a single computational synthesis. This paper explores
the synthesis of stable, switched control laws that will not
saturate and will not violate state constraints, in order to
increase the controllable range of the state-space.
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We show how to synthesize, in a single computation,
switched controllers which simultaneously satisfy two sep-
arate objectives: 1) envelope protection, and 2) stabilization
under input saturation. While in previous work [1] single-
mode controllers were computed, in general, choosing a sin-
gle controller may be restrictive. Switching between multiple
controllers may significantly increase the region of operation
for the system as well as improve its overall performance.
In this paper, we choose a set of stabilizing controllers,
each parameterized by a continuous variable, and compute
how to optimally switch between them to reach the origin
in minimal time. As in [1], the reachability computation
is used as a controller synthesis to aid in the design of
multi-objective controllers. The main contribution of this
paper is in extending these techniques to now synthesize a
hybrid controller – in addition to the continuous component,
computed as in the previous work, a discrete switching
scheme is also simultaneously synthesized.

To address the problem of envelope protection, we define
safety as the ability to remain within a set of constraints in
the continuous state-space, despite bounded control authority.
We can compute, through standard reachability analysis and
controller synthesis, the subset of those states in which we
can guarantee the state of the system can always remain:
this is theinvariant set, which determines the “safe” region
of operation [2]. States outside of this set comprise the
reachable set, those states which can “reach” constraint vio-
lation. This technique, computationally based on a Hamilton-
Jacobi partial differential equation, also synthesizes a set-
valued control law which enforces safety by preventing the
state of the system from entering the reachable set [3],
[4]. An alternative approach, using viability theory [5] and
numerical algorithms [6] has been developed to compute
viability kernels and capture basins for continuous and hybrid
systems [7], [8]. These are computationally based on a
minimum-time-to-reach formulation [9].

To address stabilization under saturation, we parameterize
feedback linearizing control laws subject to bounded control
input, such that the parameters reflect system performance
goals (e.g. damping, overshoot). We formulate constraints
that input saturation and stability place on the input pa-
rameters. Feedback linearization is a popular technique for
differentially flat systems [10], [11], but can generate inputs
with high-magnitude. Synthesizing non-saturating feedback



linearizing control laws is a non-trivial problem [12], [13],
[14] for stabilization [15] as well as for tracking [16].
Trajectory generation for differentially flat systems often
involves saturation and rate constraints [17], [18]. Other
common techniques to incorporate state and input constraints
are model predictive control [19], [20], [21], and control Lya-
punov functions [22], [23], however finding such functions
is often difficult and done heuristically. For linear systems,
quadratic Lyapunov functions can be synthesized [24], [25].
A variety of techniques have been investigated to control
linear systems with constraints [26], [27], [28], [29].

In this paper, after formulating the switched controller
synthesis problem, we provide a brief description of the
reachability computation and the resultant invariant set.This
method is demonstrated on the double integrator. Lastly
directions for future work are discussed.

II. PROBLEM FORMULATION

Consider the input-output full-state feedback linearizable
system

ẋ = f(x) + g(x)u, x ∈ X ⊆ R
n, u ∈ R

y = h(x), y ∈ R
(1)

with bounded inputu ∈ U = [umin, umax], and constraint
setC ⊂ R

n which encodes the set of states which satisfy the
constraints on the system (e.g., speeds above the aircraft’s
stall speed). We express the state constraints through the
inequality

C = {x | c(x) ≥ 0}. (2)

Consider a switched feedback linearizing control law
u(x, βq) : R × R+ × Q → R to stabilize (1) around the
equilibrium x∗ = 0. The control law in modeq ∈ Q is

u(x, βq) =
1

Lgh

(

−Ln−1
f h −

n
∑

i=1

βq[i]x
(i−1)

)

(3)

with Lie derivativesLfh = ∂h
∂x

f(x), L2
fh = ∂

∂x
(Lfh), · · · ,

Ln−1
f h = ∂

∂x
(Ln−2

f h), andx(i) the ith time derivative ofx.

Constant coefficientsβq =
[

βq[1] βq[2] · · · βq[n]
]T

are chosen such that the polynomial ins

sn +

n
∑

i=1

βq[i]s
i−1 (4)

is Hurwitz, assuring stability within each mode. Additionally,
to assure stability despite arbitrary switching, the resulting
switched closed-loop system

ξ̇ = Aqξ (5)

must have a common Lyapunov function.
To prevent saturation, the controlu(x, βq) must remain

within its allowable boundsU for all x ∈ X , q ∈ Q.

umin ≤ u(x, βq) ≤ umax (6)

Define the reachable set as the set of states inC for
which all values of a measurable functionu(·) in U drive
the system state out of the constraint setC. We presume that

the equilibriumx∗ = 0 ∈ C is contained in the constraint set.
We compute the reachable set and its complement, known
as the invariant set, through Hamilton-Jacobi techniques.

We wish to satisfy two goals with a single controller:
1) envelope protection, and 2) stabilization under saturation.
Further, we wish to determine the largest set of states from
which this controller is guaranteed to fulfill these goals.

Statement of Problem 1: Given the dynamical system (1),
with state constraints (2), and with a switched feedback lin-
earizing control lawu(x, βq) (3) parameterized by a constant
vector β ∈ R

nm, determine 1) the invariant setW , which
is the largest set of statesx for a switched non-saturating
controlleru(x, βq) that will reach the origin without violating
the state constraintsx ∈ C, 2) βq such that the feedback
linearizing control law in each modeq ∈ Q is both non-
saturating (6) and stable (4), and 3) the optimal state-based
switching scheme required to minimize the time to reach a
small-radius ballBn around the equilibrium point.

III. M ETHOD

Assume that there arem controllers. We first append the
parameter vectorβ = [β1, · · · , βm] ∈ R

nm to the state such
that x̃ = [x, β] ∈ R

n(m+1). The extended dynamics

ẋ = f(x) + g(x)
(

−Ln−1
f h − 1

Lgh

∑n

i=1 βq[i]x
(i−1)

)

β̇ = 0
(7)

ensure thatβ remains constant in the reachability computa-
tion.

Note that special mode structures can allow simplification
of the switched stability constraints. For example, for modes
with first- and second-order continuous dynamics, the re-
quirements for stability (4) within each mode simplify to

βq[i] > 0 (8)

while for higher-order systems, (4) can be represented as a
set of inequalities inβq[i]. For switched systems with exactly
two modes and stable dynamics within each mode, sufficient
conditions for exponential stability under arbitrary switching
can be reduced to checking whether the product of the two
matrices contain any negative real eigenvalues.

eig(A1A2) /∈ R− (9)

This can be determined prior to the calculation [30]. De-
pending on the switched system structure, other techniques
to find a common Lyapunov function can also be used [31].

Through reachability analysis and controller synthesis we
can determine thebackwards reachable set W(t) and its
complement, thecontrolled invariant set W(t). Given a
dynamically evolving system (7) and a constraint setC̃, we
define the backwards reachable set as the set of all states
which will exit the constraint set̃C in the time [0, t]. The
controlled invariant set is simply the complement of this
result. To calculate the backwards reachable set, define a
continuous functionJ0 : X × R

mn → R such that

C̃ = {x ∈ X , β ∈ R
mn | J0(x, β) ≥ 0}. (10)



The backwards reachable setW(t) can be found by solving
the terminal value Hamilton-Jacobi (HJ) partial differential
equation (PDE) [32], [2], [3]

∂J(x̃, t)

∂t
+ min

[

0, H

(

x̃,
∂J(x̃, t)

∂x̃

)]

= 0 for t < 0;

J(x̃, 0) = J0(x̃) for t = 0;
(11)

As shown in [3], the implicit representation of the backwards
reachable set isW(t) = {x ∈ X , β ∈ R

mn|J(x̃,−t) ≤ 0}.
If (11) converges ast → −∞, thenJ(x̃,−t) → J(x̃) and
the reachable set converges to a fixed pointW(t) → W .

We incorporate the state bounds, non-saturation con-
straints, and stability constraints into the initial cost function

J0(x, β) = maxq∈Q

{

min
{

J state
0 (x, βq), J

sat−max
0 (x, βq),

J sat−min
0 (x, βq), J

stability
0 (x, βq)

}}

(12)
for which we define the functions

J state
0 (x, βq) = c(x)

J sat−max
0 (x, βq) = umax − u(x, βq)

J sat−min
0 (x, βq) = u(x, βq) − umin

J stability
0 (x, βq) = βq[i]

(13)

such that they are positive in those regions where the
constraints are satisfied. We then define the Hamiltonian

H
(

x̃, ∂J
∂x̃

)

= maxq∈QV (x)

(

∂J
∂x

)T
(

f(x) + g(x)
(

−Ln−1
f h

− 1
Lgh

∑n

i=1 βq[i]x
(i−1)

))

+
(

∂J
∂β

)T

· 0,

(14)
maximized over the set of “valid” modes at any given state
x̃

QV (x̃) =
{

q ∈ Q | [J state
0 (x, βq), J

sat−max
0 (x, βq),

J sat−min
0 (x, βq), J

stability
0 (x, βq)] > 0

}

.

(15)
The control law used in (14) will stabilize (1), ensure
envelope protection, and will not saturate.

The result of the reachability computation is the largest
set of statesx for a given input parameterβ for which
trajectories that begin in this set and are controlled through
(3) will reach the origin in minimal time without violating
any state constraints (2) or saturating the input (6).

The advantage of this framework is that the computed
result inherently meets the required constraints for both
switched stability and non-saturation, while maintainingin-
variance within the constraint set. As there are generally no
analytic ways to synthesize such controllers, this computation
provides an alternative to simply picking variousβ and
various switching schemes and checking whether they fulfill
the conditions for stability and non-saturation.

At first glance, solving (11), (14) involves a reachability
calculation inn(m+1) dimensions – no small feat due to the
complexity of the calculation,O(dn(m+1)) with d grid points
in n(m + 1) dimensions. However, by exploiting structure
in the pole placement, we can reduce the computation to
O(dn+1), with d grid points inn + 1 dimensions. Consider

a simple double integrator with two modes,q ∈ {1, 2}, β ∈
R

4
+. If we assume both modes are parameterized byη ∈ R,

with β1 = [2η, η2], β2 = [2η, 2η2], the computation can
proceed in[x, η] ∈ R

3 and therefore is reduced from 6 to 3
dimensions.

IV. EXAMPLE

To demonstrate this method, consider the systemẍ = u,
with statex = [x1, x2] ∈ C = X = [x1, x1] × [x2, x2],
input u ∈ U = [umin, umax], and outputh = x2. We design
a switched feedback linearizing control law,u(x, βq) =
−βT

q x, with βq ∈ R
2
+, such that the resultant switched

closed-loop system is stable. The two modes are chosen
such that the closed-loop eigenvalues in modeq = 1 occur
co-located on the negative real line, and in modeq = 2
occur as a complex conjugate pair with damping ratioζ =
1/

√
2. By parameterizingβ1 and β2 with the same value

η, the dimension of the extended statex̃ = [x, η] ∈ R
3 is

significantly reduced.

ẋ = Aqx, A1 =

[

0 1
−2η −η2

]

, A2 =

[

0 1
−2η −2η2

]

(16)
With these two matrices, (9) holds forη > 0, assuring
stability under arbitrary switching.

The saturation constraints (6), state constraints, and sta-
bility constraints are formulated in each mode as

J sat
0 (x, βq) = min{umax − βT

q x, βT
q x − umin}

J state
0 (x, βq) = min{x1 − x1, x1 − x1, x2 − x2, x2 − x2}

J stability
0 (x, βq) = η.

(17)
For the reachability computation, we combine the above
three functions into one initial cost function

J0(x, βq) = max
q∈Q

{

min{J sat
0 (x, βq), J

state
0 (x), J stability

0 (βq)}
}

(18)
to maximize the area of the state-space in which at least one
non-saturating, stabilizing controller is feasible.

Figure 1 represents the invariant set in[x1, x2] for four
different values of the control parameterη. Under any
switching scheme, the closed-loop system will be stable.
Notice that each value ofη results in a different switching
scheme, as indicated by the color of each grid cell. The dark
(red, blue) colored regions are the set of initial conditions
for which the state will be driven to the equilibrium in
minimal time without saturating the input or violating the
state constraints, presuming the switching scheme indicated
is implemented exactly as shown.

V. CONCLUSION AND FUTURE WORK

We presented a method to determine, through a Hamilton-
Jacobi reachability computation, the set of states in safety-
critical systems which will reach the desired equilibrium
without saturating the input or violating the state con-
straints. Thus both envelope protection and stabilization
under saturation are simultaneously achieved. This involves
a reachability analysis on an extended state space which



Fig. 1. Invariant setWβq
plotted inx for η ∈ {0.08, 0.28, 0.58, 0.74}.

Dark (blue) indicatesq = 1, medium (red) indicatesq = 2, and light
(green) indicates states in the reachable set.

incorporates a parameter from the feedback linearizing input.
By incorporating the input saturation, stability, and state
constraints simultaneously in the initial cost function, the
resultant invariant set will be the largest set of states, given
bounded input, which will stabilize the system and always
remain within a given constraint set.

The method and two examples presented contribute to
the difficult problem of determining stabilizing controllers
for safety-critical systems under nonlinear state and input
constraints. Future work includes 1) determining solutions
for the computed switching surfaces, 2) switched control syn-
thesis for open-loop hybrid systems with different constraint
sets and control bounds in each mode, and 3) identification
of unstable dynamics which can result in an optimal and
stable closed-loop switched system, 4) exploitation of theη
dynamics to reduce computational effort.
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