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Abstract. A methodology for the design of dynamical observers for
hybrid plants is proposed. The hybrid observer consists of two parts:
a location observer and a continuous observer. The former identifies the
current location of the hybrid plant, while the latter produces an estimate
of the evolution of the continuous state of the hybrid plant. A synthesis
procedure is offered when a set of properties on the hybrid plant is sat-
isfied. The synthesized hybrid observer identifies the current location of
the plant after a finite number of steps and converges exponentially to
the continuous state.

1 Introduction

The state estimation problem has been the subject of intensive study by both
the computer science community in the discrete domain (see [14,6,12]), and
the control community in the continuous domain (see the pioneering work of
Luenberger [10]), but has been scantly investigated in the hybrid system domain.

The authors investigated for years the use of a hybrid formalism to solve con-
trol problems in automotive applications (see [3]). The hybrid control algorithms
developed are based on full state feedback, while only partial information about
the state of the hybrid plant is often available. This motivates this work on the
design of observers for hybrid systems. Some partial results are given in [4], where
an application to a power-train control problem is considered. In this paper, the
authors present a general procedure to synthesize hybrid observers.

The literature on observers design in the discrete and the continuous domain
is rich. Here we briefly summarize some of the results that are relevant for our
presentation. In the control literature, Ackerson first introduced in [1] the state
estimation problem for switching systems, represented as continuous systems
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subject to a known dynamics taken from a set of given ones and with no state
resets. Subsequently, state estimation was considered by several authors in a
probabilistic framework (see e.g. [17]). Gain switching observers for nonlinear
systems were studied in [8].

In the discrete systems literature, Ramadge gave in [14] the definition of
current–location observability for discrete event dynamic systems, as the prop-
erty of being able to estimate the current location of the system, after a finite
number of steps from the evolution of the input and output signals. A well–
known approach for the estimation of the current location of an automaton is
the computation of the so-called current-location tree, described in [6], that gives
the subset of locations the system can be in at the current time. Interesting re-
sults on location estimation for discrete systems are also presented in [12], where
a slightly different definition of observability is used.

In [2], Alessandri and Coletta considered the problem of observers design
for hybrid systems, whose continuous evolution is subject to linear dynamics
assuming knowledge of the discrete state at each time.

In this paper, the assumption on discrete state knowledge is removed and
the more general case where only some hybrid inputs and outputs (both either
discrete or continuous) of the hybrid plant are measurable is addressed. The
objective is to devise a hybrid observer that reconstructs the complete state from
the knowledge of the hybrid plant inputs and outputs, achieving generation of
the plant location sequence and exponential convergence of the continuous state
estimation error.

As described in Section 2, the proposed hybrid observer consists of two parts:
a location observer and a continuous observer. The former identifies the current
location of the hybrid plant, while the latter produces an estimate of the evolu-
tion of the continuous state of the hybrid plant. In Section 3, it is first tackled
the case where the current location of the given hybrid plant can be recon-
structed using the discrete input/output information only, without the need of
additional information from the evolution of the continuous part of the plant.
When the evolutions of the discrete inputs and outputs of the hybrid plant are
not sufficient to estimate the current location, the continuous plant inputs and
outputs can be used to obtain some additional information that may be use-
ful for the identification of the plant current location. This case is treated in
Section 4. Due to space limitation, some proofs are not reported. They can be
found in the extended version of the paper available at the PARADES’ web page
http://www.parades.rm.cnr.it.

2 Structure of the Hybrid Observer

Let Hp denote the model of a given hybrid plant with N locations and let (q, x),
(σ, u) and (ψ, y) stand, respectively, for the hybrid state, inputs and outputs of
the plant. Our aim is to design a hybrid observer for the plant that provides an
estimate q̃ and an estimate x̃ for its current location q and continuous state x,
respectively. We assume that the discrete evolution of q is described as follows:
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q(k + 1) ∈ ϕ (q(k), σ(k + 1)) (1)
σ(k + 1) ∈ φ (q(k), x(tk+1), u(tk+1)) (2)
ψ(k + 1) = η (q(k), σ(k + 1)) (3)

where q(k) ∈ Q and ψ(k) ∈ Ψ are, respectively, the location and the discrete
output after the k-th input event σ(k) ∈ Σ

⋃
{ε}, and tk denotes the unknown

time at which this event takes place. Q = {q1, · · · , qN} is the finite set of locations
with N = |Q|, Ψ is the finite set of discrete outputs, Σ is the finite set of input
events and internal events depending on the continuous state x and input u, and
ε is the silent event1. ϕ : Q×Σ → 2Q is the transition function, η : Q×Σ → Ψ
is the output function and φ : Q × X × U → 2Σ is the function specifying
the possible events where X ⊆ IRn, U ⊆ IRm are the continuous state and
control values domains. Moreover, we assume that the continuous evolution of x
is described by a linear time–invariant system

ẋ(t) = Ai x(t) + Bi u(t) (4)
y(t) = Ci x(t) (5)

with y(t) ∈ IRp and Ai ∈ IRn×n, Bi ∈ IRn×m, Ci ∈ IRp×n depending on the
current plant location qi. Note that the plant hybrid model does not allow con-
tinuous state resets.

In this paper we present a methodology for the design of exponentially con-
vergent hybrid observers defined as follows
Definition 1. Given the model of a hybrid plant Hp as in (1–5) and given
a maximum convergence error M0 ≥ 0 and a rate of convergence µ, a hybrid
observer is said to be exponentially convergent if its discrete state q̃ exhibits
correct identification of the plant location sequence after some steps and the
continuous observation error ζ = x̃− x converges exponentially to the set ‖ζ‖ ≤
M0 with rate of convergence greater than or equal to µ, that is

q̃(k) = q(k) ∀k > K, for some K ∈ IN+ (6)
‖ζ(t)‖ ≤ e−µt‖ζ(tK)‖ + M0 ∀t > tK . (7)

The structure of the proposed hybrid observer is illustrated in Figure 1. It is
composed of two blocks: a location observer, and a continuous observer.

The location observer receives as input the plant inputs (σ, u) and outputs
(ψ, y). Its task is to provide the estimate q̃ of the discrete location q of the
hybrid plant at the current time. This information is used by the continuous
observer to construct an estimate x̃ of the plant continuous state that converges
exponentially to x. The continuous plant input u and output y are used by the
continuous observer to this purpose.
1 This event is introduced to model different possible situations for the discrete dy-

namics. For example, if φ(q, x, u) = {ε}, then there is no discrete transition enabled
while if φ(q, x, u) = {σ1, ε}, then it is possible either to let time pass or to take the
discrete transition associated to σ1. Moreover, if φ(q, x, u) = {σ1}, then the discrete
transition associated to σ1 is forced to occur. This is useful for example to model
internal transitions due to the continuous state hitting a guard.
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Fig. 1. Observer structure: location observer Hl and continuous observer Hc .

3 Location and Continuous Observers Decoupled
Synthesis

In this section, necessary and sufficient conditions for a decoupled design of a
location observer and a continuous observer achieving exponential convergence
according to Definition 1 are given.

3.1 Location-Observer Design

Definition 2. Let us denote by M the FSM associated to the hybrid plant Hp
defined by (1),

σ(k + 1) ∈ φ̂ (q(k)) =
⋃

x∈X,u∈U

φ (q(k), x, u)

and (3). The FSM M is said to be current–location observable if there exists
an integer K such that for any unknown initial location q0 ∈ Q and for every
input sequence σ(k) the location q(i) can be determined for every i > K from
the observation sequence ψ(k) up to i.

An observer O that gives estimates of the location q(k) of M after each obser-
vation ψ(k) is the FSM

q̃(k + 1) ∈ ϕO (q̃(k), ψ(k + 1)) (8)
ψO(k + 1) = q̃(k) (9)

with QO ∈ 2Q, ΣO = Ψ , ΨO = QO. The input of the observer is the output
ψ(k) of M and the output produced by O is an estimate q̃(k) of the location
q(k), representing the subset of Q of possible locations into which M could
have been transitioned after the k-th event. The observer transition function
ϕO is constructed by inspection of the given FSM following the algorithm for
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Fig. 2. A simple FSM M (left) and its observer O (right).

the computation of the current–location observation tree as described in [6]. The
construction starts from the initial location q̃(0) of O: since the initial location
of M is unknown, then q̃(0) = Q. When the first input event ψ(1) is received,
then the observer makes a transition to the location q̃ corresponding to the set

{q | ∃s ∈ Q : q ∈ ϕ (s, σ) , with σ ∈ φ̂ (s) such that ψ(1) = η (s, σ)}

that depends on the value of ψ(1). In fact, the number of observer locations at
the second level depends on the number of possible events ψ(1). By iterating this
step, one can easily construct the third level of the tree whose nodes correspond
to the sets of possible locations into which M transitioned after the second
event. Since this procedure produces at most 2N −1 observer locations, then the
construction of the observer necessarily ends.

Consider for example the FSM M in figure 2 for which Q = {1, 2, 3, 4},
Σ = {0, 1} and Ψ = {a, b}. The observer O of this FSM has four locations, i.e.
QO = {{1, 2, 3, 4}, {2, 4}, 3, 4} (see figure 2).

The following theorem gives necessary and sufficient conditions for an FSM
to be current–location observable. The theorem has its origins in a result of [12],
where a different definition of observability was considered.

Theorem 1. An FSM M is current–location observable iff for the correspond-
ing observer O defined as in (8–9):

(i) the set Q ∩ QO is nonempty;
(ii) every primary cycle Qi

c ⊂ QO includes at least one location in Q, i.e. the
set Qi

c ∩ Q is nonempty2;
(iii) the subset Q ∩ QO is ϕO-invariant3.

Hence, if conditions (i), (ii) and (iii) of Theorem 1 are satisfied by the FSM
associated to the hybrid plant Hp , then the hybrid observer can be obtained by
a decoupled synthesis of the location observer and the continuous observer. The
location observer Hl coincides with the observer O described above and fulfils
condition (6) of Definition 1 with location observer transitions synchronous with
hybrid plant transitions.
2 This condition corresponds to that of prestability of O with respect to the set Q∩QO,

as introduced in [13].
3 Following [13], a subset S is said to be ϕ-invariant if q∈S ϕ (q, φ(q)) ⊂ S.
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Fig. 3. FSM M̃ (left) and its observers without (center) and with (right) inputs
measurements.

The following examples illustrate how Theorem 1 works. For the FSM M and
the corresponding observer O in figure 2: Q ∩ QO = {3, 4} and the only cycle
Q1

c of O is composed of locations in Q, i.e. Q1
c = {3, 4}. Moreover it is easy to

verify that the set Q∩QO is invariant. Then, M is current–location observable.
Consider next the FSM M̃ and its observer Õ in Figure 3. The observer has
three locations: QO = {{1, 2, 3, 4}, {2, 4}, 3}, Q ∩ QO = {3} and the only cycle
Q1

c of Õ includes location 3, i.e. Q1
c = {{2, 4}, 3}. However, since location 3

is not invariant, then M̃ is not current–location observable. Note that while
it is easy to check whether conditions (i) and (ii) of Theorem 1 are satisfied,
verifiying condition (iii) is more involved. An algorithm of complexity O(N) to
check ϕ-invariance can be found in [13].

Assuming measurability of the input sequence σ(k), current–location observ-
ability can be redefined by replacing in Definition 2 the sequence ψ(k) with
the sequence (σ(k), ψ(k)). The knowledgement of the input sequence may help
in the estimation process. For instance, the FSM M̃ becomes current–location
observable when both input and output sequences are considered as shown in
figure 3.

3.2 Continuous Observer Design

The continuous observer Hc is a switching system whose dynamics depend on
the current estimate q̃ of the hybrid plant location q provided by the location
observer. The scheme of the continuous observer is readily obtained using the
classical Luenberger’s approach [10]:

˙̃x(t) = Fix̃(t) + Biu(t) + Giy(t) if q̃ = qi. (10)

where Fi = (Ai−GiCi). If q = qi, the corresponding dynamics of the observation
error ζ = x̃ − x is ζ̇(t) = Fiζ(t). The gain matrix Gi is the design parameter
used to set the velocity of convergence in each location. As pointed out in [2], the
stabilization of this continuous observer is more complex than the stabilization of
a single dynamics in (10) and can be achieved using the results on hybrid systems
stabilization presented in [5] and [16]. In particular, exponential convergence of
the hybrid observer is guaranteed by the following lemma:
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Lemma 1. Assume that

– H1: for i = 1 : N , all couples (Ai, Ci) in (4–5) are observable;
– H2: the hybrid system Hp exhibits transitions with time separation greater

than or equal to some D > 0;
– H3: the location observer Hl identifies instantaneously changes in the hybrid

system location.

The proposed hybrid observer Hl –Hc is exponentially convergent, with a given
rate µ and convergence error M0 = 0, if gains Gi in (10) are chosen such that

α(Ai − GiCi) +
log[nk(Ai − GiCi)]

D
≤ −µ (11)

where α(A) is the spectral abscissa of the matrix A and k(A) = ‖T ‖ ‖T−1‖ with
T such that T−1AT is in the Jordan canonical form.

The proof of this lemma can be obtained as a simplification of that of Theorem 4
reported in Section 4.2. Notice that condition H3 is guaranteed by the current–
location observability of the FSM associated to Hp assumed in this section.

Remark 1. A solution to the problem of exponentially stabilizing switching sys-
tems can be obtained from Lemma 1, with regard to the class of systems satis-
fying: controllability of all couples (Ai, Bi) (in place of H1), the transition sepa-
ration property H2 and with either known or observable current location qi. For
such systems, the problem of exponential stabilization reduces to the existence
of state feedback gains Ki satisfying α(Ai−BiKi)+log[nk(Ai−BiKi)]/D ≤ −µ.

4 Location and Continuous Observers Interacting
Synthesis

When the evolutions of the discrete inputs and outputs of the hybrid plant are
not sufficient to estimate the current location, the continuous plant inputs and
outputs can be used to obtain some additional information that may be useful for
the identification of the plant current location. In Section 4.1, a methodology for
selecting where the continuous information should be supplied and how it should
be processed is described. The processing of the continuous signals of the plant
gives reliable discrete information only after some delay with respect to plant
location switchings. This results in a coupling between the location observer
parameters and the continuous observer parameters as described in Section 4.2.

4.1 Location-Observer Design

When the FSM describing the discrete evolution of the hybrid plant is not
current–location observable from the available input/output discrete sequences,
then, in order to estimate the current–location, it is natural to turn to the in-
formation available from the continuous evolution of the plant. In particular,
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Fig. 4. The system M̂ (left) and its observer Ô (right).

residual signals can be used to detect a change in the continuous dynamics of
the plant and the resulting signatures can be used as additional inputs to the
current–location observer described in Section 3.1.

Introduction of signatures. Consider for example the system M̃ in Fig-
ure 3 and assume that only the discrete plant output ψ is available. Assume
also that a signature r2 can be produced for detecting the continuous dynamics
associated to state 2. Then, when the system enters state 2, signal r2 is avail-
able and can be used as an input for the discrete observer. A representation
of the FSM associated to the hybrid plant plus the generator of the signature
r2 can be obtained by adding an output r2 to each arc entering location 2. By
doing this the FSM M̂ shown in Figure 4 is obtained from M̃. By the intro-
duction of signature r2, M̂ is now current–location observable. Figure 4 shows
the observer of M̂, obtained applying the synthesis described in Section 3.1.
In the general case, if the discrete representation of a given hybrid plant Hp
is not current–location observable, then one may introduce a number of signa-
tures detecting some of the different continuous dynamics of the plant to achieve
current–location observability for the combination of the hybrid plant and the
signature generator. Necessary and sufficient conditions for current–location ob-
servability of the composition hybrid plant and the signature generator are given
in Theorem 1. If dynamics parameters in (4–5) are different in each location, then
current–location observability can always be achieved in this way. The complete
scheme of the location observer is shown in Figure 5. The signatures generator is
described in the following Section. The location identification logic is a discrete
observer synthesized as described in Section 3.1.

Signatures generator. The task of the signature generator is similar to
that of a fault detection and identification algorithm (see [11] for a tutorial).
Indeed, the signatures generator has to decide whether or not the continuous
system is obeying to a particular dynamics in a set of known ones. Assuming
that the location observer has properly recognized that the hybrid plant Hp is
in location qi, i.e. q̃ = qi, then the location observer should detect a fault from
the evolution of u(t) and y(t) when the plant Hp changes the location to some
qj -= qi and should identify the new location qj . The time delay in the location
change detection and identification is critical to the convergence of the overall
hybrid observer. We denote by ∆ an upper bound for such delay.
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Fig. 5. Location observer structure.

Since, when a change of location occurs, the continuous dynamics of the
plant suddenly change, then the fault detection algorithms of interest are those
designed for abrupt faults [7]. The general scheme is composed of three cascade
blocks: the residuals generator, the decision function, and the fault decision logic,
renamed here location identification logic, see Figure 5. The signature generator
is the pair residuals generator–decision function. Assume that, in order to achieve
current–location observability for the discrete evolution of the hybrid plant Hp ,
the signature generator has to detect N ′ different continuous dynamics (4–5)
associated to a subset of states R ⊆ Q. The simplest and most reliable approach
for our application is to use a bank of N ′ Luenberger observers (see [7]), one for
each plant dynamics in R, as residual generators:

żj(t) = Hjzj(t) + Bju(t) + Ljy(t) (12)
r̃j(t) = Cjzj(t) − y(t) (13)

where Hj = Aj − LjCj and Lj are design parameters. The N ′ residual signals
r̃j are used to identify the continuous dynamics the plant is obeying to. Indeed,
no–vanishing residuals r̃j(t) correspond to j -= i. The decision function outputs
N ′ binary signals as follows:

rj(t) =
{

true if ‖r̃j(t)‖ ≤ ε
false if ‖r̃j(t)‖ > ε

for j = 1, . . . , N ′ (14)

where the threshold ε is a design parameter. In the following theorem, a sufficient
condition for ensuring ri = true in a time ∆ after a transition of the hybrid plant
Hp to a dynamics (Ai, Bi, Ci) is presented.

Theorem 2. For a given ∆ > 0, ε > 0 and a given upper bound Z0 on ‖x−zi‖,
if the estimator gains Li in (12) are chosen such that

α(Hi) ≤ − 1
∆

log
n ‖Ci‖ k(Hi)Z0

ε
(15)

then ri becomes true before a time ∆ elapses after a change in the plant dynamics
parameters to the values (Ai, Bi, Ci).

Consider the j–th residual generator and assume that there is a transition from
location qj to location qi, so that the continuous state x of Hp is governed by
dynamics defined by parameters (Ai, Bi, Ci) -= (Aj , Bj , Cj). Unfortunately, as
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shown for example by the following theorem, there are cases where we cannot
prevent the signal rj from remaining true for an unbounded time:

Theorem 3. If the matrix (Cj − Ci)Bi + Cj(Bi − Bj) is invertible, with i -= j,
then for any hybrid plant initial condition, the class of plant inputs u(t) that
achieves rj(t) = true for all t > ∆ after a change in the plant dynamics param-
eters to (Ai, Bi, Ci) is not empty.

In the general case, the set of configurations and the class of plant inputs for
which the signatures (14) fail to properly identify the continuous dynamics can
be obtained by computing the maximal safe set and the maximal controller
for dynamics (4–5) and (12-13) with respect to a safety specification defined
in an extended state space that contains an extra variable τ representing the
elapsed time after a plant transition. More precisely, the set of configurations
for which a wrong signature may be produced up to a time t′ > ∆ after a
plant location change, is given by those configurations (0, x0, z0

j ) from which
there exists a plant continuous input u(t) able to keep the trajectory inside
the set [0, t′] ×

{
(x, zj) ∈ IR2n| ‖Cj zj − Ci x ‖ ≤ ε

}
. However, since in pratical

applications the resulting maximal controller is very small, the case of non proper
identification is unlikely to occur.

4.2 Continuous Observer Design

The continuous observer4 is designed as in the previous case (see Section 3.2).
Exponential convergence of the continuous observer is analyzed considering the
complete hybrid system obtained by composing the hybrid model Hp and the
observer hybrid model Hl and Hc . The overall hybrid system has N ×N loca-
tions of type (qi, q̃j) , the former corresponding to plant locations and the latter
corresponding to observer locations. To each location (qi, q̃j), the continuous
dynamics

ẋ(t) = Aix(t) + Biu(t) (16)
ζ̇(t) = Fjζ(t) + [(Ai − Aj) − Gj(Ci − Cj)] x(t) + (Bi − Bj)u(t) (17)

is associated. By integrating (17) we have

ζ(t) = eFjtζ(0) + eFjt . v(t) (18)

where . denotes the convolution operator and v(t) = [(Ai − Aj) − K(Ci − Cj)]
x(t) + (Bi − Bj)u(t). The following notation will be used in the sequel ([15]):

‖m(t)‖∞ = max
k=1,q

sup
t≥0

|mk(t)|, the L∞–norm of q–dimensional signals m : IR→IRq;

‖M‖∞ and ‖M‖1 the L∞ and the L1–norm of a matrix M , respectively.
4 The Luenberger observers (12) contained in the residual generators, which are de-

signed to converge to the same state variable x, do not provide a satisfactory estimate
of the evolution of x since they are tuning according to (15) in order to meet the
specification of producing a residual with a transient time less than ∆. Hence, they
exhibit a large overshoot which is undesirable for feedback purpose.
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Theorem 4. Assume that

– H1: for i = 1 : N , all couples (Ai, Ci) in (4–5) are observable;
– H2: there exist X > 0 and U > 0, such that ‖x(t)‖∞ ≤ X and ‖u(t)‖∞ ≤ U ,

so that

‖v(t)‖∞ ≤ V = max
qi,qj∈R

‖ [(Ai − Aj) − Gj(Ci − Cj)] ‖1X + ‖Bi − Bj‖1U

(19)

– H3: the hybrid system Hp exhibits transitions with time separation greater
than or equal to some D > 0.

Given a µ > 0 and an M0 > 0, if the observer gains Gi are chosen such that

α(Ai − GiCi) +
log[nk(Ai − GiCi)]

β
≤ −µ (20)

for some β ∈ (0, D), and if

– H4: the location observer Hl identifies a change in the hybrid system location
within time

∆ ≤ min
{

min
qi∈R

1 − e−µβ

n
√

n k(Ai − GiCi)V
M0, D − β

}
(21)

then the proposed hybrid observer Hl –Hc is exponentially convergent with rate
µ and convergence error M0.

Proof. Consider two subsequent transitions of the hybrid plant Hp , occurring
at times tk and tk+1 respectively. By hypothesis H1, tk+1 − tk ≥ D. Since
by H4, ∆ ≤ D − β, the location observer Hl identifies the k-th and k + 1-
th state transitions at some times t′k and t′k+1, respectively, with t′k − tk ≤ ∆
and t′k+1 − tk+1 ≤ ∆. Furthermore, notice that, by H3 and H4, t′k+1 − t′k ≥
tk+1 − t′k ≥ D − ∆ ≥ β > 0. Since q̃ = q in the time interval [t′k, tk+1], then,
by condition H1 on observability of dynamics (4–5), convergence to zero of
ζ(t) at any desired velocity can be obtained by proper choice of gains Gj . In
particular, observer gains Gj satisfying inequality (20), for some β ∈ (0, D), can
be selected. However, since q̃ -= q when t ∈ [tk+1, t′k+1], ζ(t) may fail to converge
later. Hence, the convergent behavior for t ∈ [t′k, tk+1] has to compensate the
divergent behavior for t ∈ [tk+1, t′k+1]. By (18), we have

ζ(t) = eFj(t−t′k)ζ(t′k)+
∫ t−t′k

0
eFj(t−t′k−τ)v(τ + t′k) dτ ∀t ∈ (t′k, t′k+1] (22)

where v(t) = 0 for t ∈ (t′k, tk+1]. By the Lemma 2 reported in appendix, the
evolution of the transient term can be bounded as follows

‖eFj(t−t′k)ζ(t′k)‖ ≤ nk(Fj)eα(Fj)(t−t′k)‖ζ(t′k)‖ (23)
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Furthermore, for the forced term, since by H4 t − tk+1 ≤ ∆, we have
∥∥∥∥∥

∫ t−t′k

0
eFj(t−t′k−τ)v(τ + t′k) dτ

∥∥∥∥∥ ≤ nk(Fj)
∫ t−tk+1

0
eα(Fj)(t−tk+1−τ)‖v(τ + tk+1)‖ dτ

≤ nk(Fj) sup
t≥0

‖v(t)‖
∫ t−tk+1

0
eα(Fj)τ dτ ≤ n

√
nk(Fj)‖v(t)‖∞

eα(Fj)(t−tk+1) − 1
α(Fj)

≤ n
√

nk(Fj)V (t − tk+1) ≤ n
√

nk(Fj)V ∆ ∀t ∈ [tk+1, t
′
k+1] (24)

Then, using (21), by (23) and (24), equation (22) can be upper bounded as
follows

‖ζ(t)‖ ≤ nk(Fj)eα(Fj)(t−t′k)‖ζ(t′k)‖ +
(
1 − e−µβ

)
M0 ∀t ∈ (t′k, t′k+1] (25)

Hence, the evolution of the norm of the observation error ‖ζ(t)‖ is upper bounded
by the evolution of a hybrid system as described in Lemma 3 reported in ap-
pendix, with γ = α(Fj), a = nk(Fj), b =

(
1 − e−µβ

)
M0, and continuous

state resets separation greater than or equal to β.
Then, by Lemma 3, if the observer gains are chosen according to (20), the

observation error converges exponentially to the set

‖x − x̃‖ = ‖ζ(t)‖ ≤ b

(1 − e−µβ)
= M0

with velocity of convergence greater than or equal to −µ. Q.E.D.

5 Using Guards to Improve Continuous State Estimation

In some cases the detection of a discrete transition in the hybrid plant can be
used to improve the convergence of the observer continuous state x̃ to the plant
continuous state x. Indeed, as represented in (2), plant discrete transitions may
depend on the value of plant continuous state x through the guards modelled by
functions φ(·).

A simple case is when complete information on the plant continuous state x
can be obtained at some time from the detection of a plant discrete transition.
This allows the continuous observer to jump to the current value of the plant
continuous state, zeroing instantaneously the observation error. Suppose that
the plant is in location qi and that, at some time tk, the event σj that produces
a forced transition corresponding to the state x hitting a guard is identified.
Instantaneous detection of the plant continuous state can be achieved if the
following system of equation admits a unique solution for x:

Ci x = y(t−k )
σj ∈ φ

(
qi, x, u(t−k )

) (26)

A similar condition can be used to obtain open loop observers for the compo-
nents of the continuous plant state that lie on the unobservable subspace, when
condition H1 in either Lemma 1 or in Theorem 4 is not fullfilled. Instantaneous
detection of the not observable components of the continuous plant state can be
achieved if equations (26) admit a unique solution for them.
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Conclusions

A methodology for the design of exponentially convergent dynamical observers
for hybrid plants has been presented. In the proposed hybrid dynamical observer,
a location observer and a continuous observer provide, respectively, estimates of
the plant current location and continuous state. Both the case where the current
plant location can be reconstructed by using discrete input/output information
only, and the more complex case where some additional information from the
continuous evolution of the plant is needed to this purpose have been considered.
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12. C. M. Özveren and A. S. Willsky. Observability of discrete event dynamic systems.
IEEE Trans. on Automatic Control, 35:797–806, 1990.
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Appendix

Lemma 2 ([9]). Let A be a matrix in IRn×n. Then

‖eAτ‖ ≤ n k(A) eα(A)τ ∀ τ ≥ 0 (27)

where α(A) is the spectral abscissa (i.e. the maximal real part of the eigenvalues)
of matrix A and k(A) = ‖T ‖ ‖T−1‖ with T such that T−1AT is in the Jordan
canonical form.

Lemma 3. Consider a single–location hybrid system with a scalar continuous
variable x. Let x be subject to the dynamics ẋ = γx, with γ < 0, and to the
resets x(tk) := ax(t−k ) + b occuring at some unspecified sequence of times {tk},
with a ≥ 1 and b ≥ 0. The evolution of x(t) can be described as follows

x(t) = eγ(t−tk−1)x(tk−1) for t ∈ [tk−1, tk) (28)
x(tk) = ax(t−k ) + b = aeγ(tk−tk−1)x(tk−1) + b (29)

Assume that there exists a lower bound β on reset events separation, i.e. tk −
tk−1 ≥ β > 0 for all k > 1.

If x(t0) > 0 and γ+ log a
β = −µ < 0, then x(t) converges exponentially to the

set [0, b
1−e−µβ ] with rate of convergence equal to or greater than µ.

Proof. By (29), since e−µ(tk−tk−i) ≤ e−iµβ then

x(tk) ≤ e
log a

β (tk−tk−1) eγ(tk−tk−1)x(tk−1) + b = e−µ(tk−tk−1)x(tk−1) + b

≤ e−µ(tk−t0)x(t0) + b
k−1∑

i=0

e−iµβ < e−µ(tk−t0)x(t0) +
b

1 − e−µβ

This proves that, after each reset the value x(tk) of the state is upper bounded
by an exponential with rate −µ that converges to the point b

1−e−µβ . This shows
exponential convergence to the set [0, b

1−e−µβ ] at resets times tk. Readily, the
same results can be extended to the open intervals between resets times by
noting that during the continuous evolution the rate of convergence −γ is lower
than −µ. Q.E.D.


