
Weighing the Evidence:
On Relationship Types in Microservice Extraction

Lisa J. Kirby
Univ. of British Columbia,

Vancouver, Canada
lisakirby@alumni.ubc.ca

Evelien Boerstra
Univ. of British Columbia,

Vancouver, Canada
evelien.boerstra@alumni.ubc.ca

Zachary J.C. Anderson
Univ. of British Columbia,

Vancouver, Canada
zacharyjcanderson@alumni.ubc.ca

Julia Rubin
Univ. of British Columbia,

Vancouver, Canada
mjulia@ece.ubc.ca

Abstract—The microservice-based architecture – a SOA-
inspired principle of dividing systems into components that
communicate with each other using language-agnostic APIs –
has gained increased popularity in industry. Yet, migrating a
monolithic application to microservices is a challenging task. A
number of automated microservice extraction techniques have
been proposed to help developers with the migration complexity.
These techniques, at large, construct a graph-based represen-
tation of an application and cluster its elements into service
candidates. The techniques vary by their decomposition goals and,
subsequently, types of relationships between application elements
that they consider – structural, semantic term similarity, and
evolutionary – with each technique utilizing a fixed subset and
weighting of these relationship types.

In this paper, we perform a multi-method exploratory study
with 10 industrial practitioners to investigate (1) the applica-
bility and usefulness of different relationships types during the
microservice extraction process and (2) expectations practitioners
have for tools utilizing such relationships. Our results show that
practitioners often need a “what-if” analysis tool that simultane-
ously considers multiple relationship types during the extraction
process and that there is no fixed way to weight these relation-
ships. Our study also identifies organization- and application-
specific considerations that lead practitioners to prefer certain
relationship types over others, e.g., the age of the codebase
and languages spoken in the organization. It outlines possible
strategies to help developers during the extraction process, e.g.,
the ability to iteratively filter and customize relationships.

I. INTRODUCTION

The microservice-based architecture is an approach wherein
a monolithic application is divided into a distributed system of
autonomous, independently deployable services. Adopting this
approach has advantages over using a traditional monolithic
architecture, including stronger modularity at the boundaries
of each microservice, the ability to selectively scale out
and/or deploy services within a system, and the option to
develop a system with polyglot or multilingual technology
stacks. To harness these advantages, many organizations are
looking to migrate existing applications to microservice-based
architectures; however, extracting code from large monolithic
applications into microservice candidates is a challenging
task [10], [42]. The extraction process can entail manually
sorting hundreds, if not thousands of files, classes, and methods
into groups – a process requiring substantial time, effort, and
familiarity with the existing monolithic system.

A number of automated techniques have recently been pro-
posed to assist developers with microservice extraction [4], [9],

[14], [23], [31], [32], [35], [38], [44]. These techniques, at large,
attempt to analyze and capture relationships between elements
of a monolithic system and further use these relationships to
group similar elements together.

The techniques vary by the types of relations they consider.
Structural relationships, e.g., static or dynamic call dependen-
cies [14], [23], [38], [44], aim to capture architectural similarity
between application elements and group together elements
that are likely to belong to the same architectural component.
The main idea behind these techniques is that architectural
components are good candidates to become microservices as
they minimize inter-service calls and performance overhead.
Semantic relationships, e.g., identifier similarity [4], [32], aim
to capture lexical similarity between application elements and
group together elements that use the same terminology. The
idea here is that elements using similar terminology are likely
to belong to the same business domain. Finally, evolutionary re-
lationships, e.g., contributor similarity [14], [32], aim to capture
the structure of the team working on an application and group
together elements developed by the same team members. The
idea behind these techniques is to produce microservices that
can be developed by independent teams. Some of the techniques
also utilize a combination of relationships, e.g., dynamic calls
and class name similarities [23], assigning each relationship
type a fixed weight during microservice extraction process.

The techniques are typically evaluated on benchmarks and
metrics selected by the authors, demonstrating the usefulness
of the technique for a particular decomposition criteria, e.g.,
independence of development. There is also a number of reports
evaluating a technique on an industrial case study [9], [31], [35].
Yet, each such report contributes a new microservice extraction
tool variant, with its own considered relationship types and
weights. In practice, microservice extraction techniques do not
see wide adoption yet [10], [11], [17].

Motivated to understand how automated approaches can bet-
ter assist practitioners with the microservice extraction process,
in this work, we investigate the following research questions:

RQ1 (Usefulness): What is the applicability and usefulness
of different relationship types during the extraction process?

RQ2 (Tool support): What features would benefit automated
extraction tools that utilize element-to-element relationships?



To answer these research questions, we conducted a multi-
method empirical investigation, collecting opinions of 10
industrial practitioners experienced with microservice ex-
traction. Specifically, to answer RQ1, we performed semi-
structured interviews during which we evaluated the importance
practitioners assign to different relationship types during the
decomposition process. To answer RQ2, we conducted think-
aloud sessions for which we implemented a generic, “vanilla”
microservice extraction prototype capable of dealing with
multiple types of relationships, applied it on a realistic case-
study application, and used that setup to collect expectations
practitioners have for tools utilizing such relationships. We
choose this method as having a working prototype is shown to
be an effective method for identifying requirements compared
with simply asking the participants about their needs [7], [26].

Our results show that practitioners value a “what-if” analyses
tool allowing them to investigate different types of relationships
and decompositions based on these relationships. This is
because they consider multiple relationship types during the
extraction process and because there is no uniform way to
pick and weight these relationships across all applications,
organizations, and teams. Structural relationships can easily
become polluted when there are many structural dependencies
on elements that cross-cut concerns. Semantic name similarity
might not work well in aged code bases, where names used
at the beginning of development no longer have a clear
meaning, especially as people contributing to the project change.
Likewise, evolutionary data can be highly polluted in long-
living projects: data accumulated over decades of development
is likely unreliable due to transition of development between
different version control systems and commit models, changes
in design, and fluctuation of personnel.

Furthermore, our results provide several actionable sug-
gestions for future microservice candidate extraction tools.
For example, our participants indicated the need to iteratively
filter and customize relationships during the extraction process,
apply different levels of abstraction to different parts of the
application, interactively work with the tool to “fix” some
decisions and let the tool propose candidates that take these
fixed decisions into account, evaluate multiple extraction
strategies against each other, and more.

We believe the results of our study will inform and inspire
researchers and tool builders to devise novel solutions that
better address practitioners’ needs. Our results can also benefit
industrial practitioners who perform microservice extraction
and are interested in learning from each other, borrowing
successful ideas, and avoiding common mistakes. We make our
prototype tool and the experimental data we used for the study
publicly available, to facilitate future work in this area [25].

The remainder of the paper is structured as follows. Section II
describes the microservice architectural principle and the types
of relationships considered by the state-of-the-art microservice
extraction approaches. Section III presents the design of our
study, and Section IV discusses the results. We discuss the
threats to the validity of our findings in Section V. Section VI
outlines the related work, and Section VII concludes the paper.

II. FROM MONOLITHIC TO MICROSERVICE-BASED
APPLICATIONS

A. Microservices

The microservice-based architecture is a software develop-
ment paradigm in which an application is arranged as a collec-
tion of loosely coupled services that communicate with each
other using lightweight technologies such as HTTP/REST [27].
Microservice-based architectures are closely related to service-
oriented architectures (SOA), which is a style of software
design where services represent application components that
communicate over a network [33].

Microservices aim at shortening the development lifecycle
while improving the quality, availability, and scalability of
applications at runtime. Cutting one big application into small
independent pieces reinforces the component abstraction and
makes it easier for the system to maintain clear boundaries
between components: APIs specified in the service contract
are the only channel for accessing the service. Developers can
focus on small parts of an application, without the need to
reason about complex dependencies and large code bases [46].
Microservice-based applications also promote autonomous
teams working on services that are organized around business
capabilities and assume end-to-end responsibility for these
capabilities, from development to production. Another major
advantage of microservice-based architectures is independent
deployment, which reduces the coordination effort needed to
align on common application delivery cycles and also leads to
independent scaling at runtime.

Migrating legacy applications from monolithic to microser-
vice architectures is a challenging task. We now review the
landscape of the microservice extraction techniques designed
to help the developers with this endeavor.

B. Microservice Extraction Techniques

To collect the set of main principles underlying existing
microservice extraction techniques, we started from the recent
systematic literature review on the topic conducted by Ponce
et al. [36]. In January 2021, we performed a secondary search
using the same methodology, to cover more recent papers
and also performed a snowballing review on the identified
papers. We focused on automated techniques for producing
microservice candidates, omitting approaches that rely on
additional artifacts often unavailable in practice and/or taking a
considerable time to produce, e.g., entity-relationship diagrams
and use case models [21], [28]. This search resulted in more
than 10 automated techniques listed in Table I. We also list the
number of citations for each corresponding paper according to
Google Scholar as of January 2021.

At large, these techniques construct a graph representation
of the monolithic application, wherein the nodes represent
application components, e.g., packages, classes, methods, etc.,
and the edges between the nodes represent relationships be-
tween the components, as discussed next. Once the graph-based
representation of the program is extracted, the main properties
driving the decomposition are loose coupling (minimizing
inter-service connection) and high cohesion (maximizing

2



TABLE I: Considered Microservice Extraction Techniques
Paper Year #Cit. Approach
Escobar et al., “Towards the Understanding and Evolution of Monolithic
Applications as Microservices” [13]

2016 40 Structural-static (method calls, inheritance)

Baresi et al., “Microservices Identification Through Interface Analysis” [4] 2017 46 Semantic (similarity of terms)
Mazlami et al., “Extraction of Microservices from Monolithic Software
Architectures” [32]

2017 92 Semantic (similarity of terms) OR Evolutionary (artifact co-changes) OR
Evolutionary (contributors)

Eski and Buzluca, “An Automatic Extraction Approach: Transition to
Microservices Architecture from Monolithic Application” [14]

2018 8 Structural-static (method calls, inheritance) AND Evolutionary (artifact
co-changes)

Selmadji et al., “Re-architecting OO Software into Microservices A
Quality-Centred Approach” [40]

2018 5 Structural-static (method calls, data dependencies)

Ren et al., “Migrating Web Applications from Monolithic Structure to
Microservices Architecture” [38]

2018 11 Structural-static (method calls) AND Structural-dynamic (weighted
method calls)

Abdullah et al., “Unsupervised Learning Approach for Web Application
Auto-decomposition into Microservices” [3]

2019 21 Structural-dynamic (access logs, URI groups with similar resource
requirements)

Taibi et al., “From Monolithic Systems to Microservices: A
Decomposition Framework based on Process Mining” [44]

2019 16 Structural-dynamic (weighted method calls)

Jin et al., “Service Candidate Identification from Monolithic Systems
based on Execution Traces” [23]

2019 12 Structural-dynamic (weighted method calls) AND Semantic (class name
similarity)

Pigazzini et al., “Tool Support for the Migration to Microservice
Architecture: An Industrial Case Study” [35]

2019 2 Structural-static (data dependencies, inheritance, package structure) AND
Semantic (term similarity)

Carvalho et al., “On the Performance and Adoption of Search-Based
Microservice Identification with toMicroservices” [9]

2020 1 Structural-static (method calls, data dependencies) AND
Structural-dynamic (weighted method calls, data dependencies)

Matias et al., “Determining Microservice Boundaries: A Case Study Using
Static and Dynamic Software Analysis” [31]

2020 0 Structural-static (method calls, package structure) AND
Structural-dynamic (weighted method call)

Kalia et al., “Mono2Micro: An AI-based Toolchain for Evolving
Monolithic Enterprise Applications to a Microservice Architecture” [24]

2020 0 Structural-static (weighted method calls, data dependencies, inheritance)
OR Structural-dynamic (weighted method calls)

intra-service connections). For that purpose, the techniques
utilize existing clustering algorithms, such as k-Means and
Agglomerative Hierarchical Clustering [16].

The relationship types extracted by the techniques (see
the last column of Table I) determine the nature of the
decomposition and can broadly be divided into structural,
semantic, and evolutionary. We discuss these relationships and
exemplify them on a simple monolithic application in Figure 1.
We also refer to this example later in the paper, as it is a
“mini-version” of the case study app we used in our study.

The example application consists of seven classes, six of
which correspond to three conceptual domains: catalog, which
allows the user to browse items, order, for ordering from
the catalog, and shipping, which manages the shipment of
orders. Within each domain, a controller class communicates
with its corresponding persistence layer class, e.g., Shipping-
Controller and ShippingModel. The ShippingController class
also communicates with the OrderItemModel class: when a
shipment request is submitted, the controller retrieves and
updates information about the Orders being shipped.

Structural relationships are most frequently used by the
existing techniques. These relationships are obtained via static
or dynamic code analysis. This type of relationship aims to
group together architecturally-related elements, reducing inter-
service communication and minimizing performance overhead.
Static structural relationships include method calls, i.e., static
call graphs. Some techniques also use data dependencies,
inheritance, and package structure, e.g., [13], [14], [24].
Dynamic structural relationships include method calls, which
are typically weighted based on the frequency of invocations
in the dynamic execution traces [23], [24], [38], data depen-
dencies between elements [9], and dependencies on shared
resources [3].

For the example in Figure 1a, solid lines represent statically-
obtained, non-weighted method call relationships between
classes. Microservice candidates obtained by clustering based

Catalog
Controller

Order 
Controller

Shipping
Controller

Utility

CatalogItem
Model

OrderItem
Model

Shipping
Model

1

2

(a) By static calls.

Catalog
Controller

Order 
Controller

Shipping
Controller

Utility

CatalogItem
Model

OrderItem
Model

Shipping
Model

1

2

(b) By dynamic calls.

Catalog
Controller

Order 
Controller

Shipping
Controller

Utility

CatalogItem
Model

OrderItem
Model

Shipping
Model

1

2

3

(c) By class names (semantic).

A B

A B

1
A B E

E

Utility

A EB
OrderItem

Model

Catalog
Controller

CatalogItem
Model

Order 
Controller

C
Shipping
Model

D2 C
Shipping

Controller

ED

(d) By commits (evolutionary).

Fig. 1: Extraction Candidates for Different Relationship Types

on these relationships are denoted by numbered boxes enclosing
the classes. Here, classes from the Catalog domain are
combined into one service candidate as the CatalogCon-
troller and CatalogItemModel classes call each other. Classes
from the Order and Shipping domains are combined into a
separate service candidate due to the structural dependency
between classes within each of these domains and between
the ShippingController and OrderItemModel classes. Utility
was added to this service candidate as well, as its affinity with
OrderController and ShippingController is stronger than with
CatalogController only alone.

Figure 1b shows weighted dynamic method call relationships,
as well as microservice candidates produced using these
relationships. In this figure, the weight of a relationship is
indicated by the thickness of the line. At runtime, all controller

3



classes heavily rely on their respective model classes and call
the generic Utility class. Overall, classes from the Shipping
domain are called less frequently than Catalog and Order
classes. This creates coupling between Catalog and Order
domains, pulling them into service #1.
Semantic relationships are obtained via Information Retrieval
(IR) techniques. Intuitively, this type of relationship aims to
identify elements that belong to the same business domain by
relying on naming conventions followed by developers. Some
of the techniques focus on class name similarity only [23], i.e.,
the edge between the classes is weighted based on the similarity
of terms in their class names. Other techniques compute broader
term similarity, considering other terms within the class/method
body, such as variable names, method names and parameters,
comments, etc. [4], [32]. Most of the techniques exclude stop
words, i.e., programming-language-specific and technical terms.

Figure 1c shows class name similarity relationships, com-
puted by dividing the number of common words by the
total number of words in both class names, while excluding
Controller and Model terms, as done in prior work [23], [32].
In this example, classes from the Order and Catalog domains
are combined into one service candidate due to the semantic
coupling caused by the shared Item term, while classes from
the Shipping domain, as well as the Utility class, are placed in
their own service candidates.
Evolutionary relationships are obtained by mining code
repositories. These relationships aim to produce microser-
vice candidates that can be maintained and developed by
autonomous teams, grouping together code contributed by
the same developers or code frequently changed together.
More specifically, commit similarity between two elements is
calculated as the number of commits shared by these elements,
normalized by the combined number of unique commits that
involve either element [14], [32]. Contributor similarity is
defined as the number of developers who have worked on both
elements, normalized by the total number of unique developers
that have worked on either element [32].

For the example in Figure 1d, boxed letters placed at the top
of a class represent distinct commits that have changed that
class, and the edges between classes represent weighted commit
similarity relationships computed using this information. For ex-
ample, CatalogController, CatalogItemModel, OrderController,
and OrderItemModel were all changed together in both commit
A and B. These classes are placed in service #1, together with
the Utility class that has a stronger affinity with the Catalog
and Order controllers than with the single Shipping controller.

While in this example each decomposition is performed
by a single relationship type (with just the method calls for
structural relationships), several approaches consider multiple
relationships simultaneously [9], [14], [23], [31], [35], [38]. Yet,
none of these approaches allows the user to control weights,
i.e., the importance assigned to each type of relationship.

III. RESEARCH METHODOLOGY AND STUDY DESIGN

To answer our research questions introduced in Section I,
we collected input from 10 industrial practitioners experienced

with microservice extraction. We divided the data collection
process into two parts, which were performed during the
same online session. To answer RQ1, we followed the semi-
structured interviews methodology, investigating the practition-
ers’ perspectives on the applicability and usefulness of different
relationships types during the extraction process. For RQ2, we
conducted think-aloud sessions with practitioners for which
we implemented a generic microservice extraction prototype
capable of dealing with multiple types of relationships. We
used this prototype to collect expectations practitioners have
for tools utilizing such relationships. We now describe our
selection of participants, the design of both parts of the study,
and our process of analyzing the results.

A. Subjects

We recruited software developers experienced with mi-
croservices and microservice extraction approaches. To ensure
that our data is valuable and reliable, our selection criteria
were for participants to (1) have more than five years of
software development experience and (2) more than one year of
involvement with a microservice-based migration of substantial
size and complexity.

For identifying the interviewees, we reached out to develop-
ers who actively participate in microservice-related events and
meetup groups, and used the Reddit and Twitter web platforms
to recruit developers that include microservice development
in their core skills and hold active software development
positions. Our selection criteria were purposely strict to include
only participants with substantial experience decomposing
monolithic systems into microservices. Yet, we were able to
include in our study 10 who have such an experience, some
of which also authored popular books on microservices (P4,
P10) or worked with microservices even before the term was
officially coined in 2011 [12] (P8).

Table II contains detailed information about our study
practitioners, including their current position, years of general
software development experience, and years of experience
working specifically with microservice-based applications.
These practitioners are from eight companies in Canada,
Croatia, Germany, Norway, Australia, and the USA, with the
sizes of the companies ranging from small to large, according
to the corresponding EU classification [15]. For two of the
companies, we interviewed two employees each, as these
employees work in different areas/countries.

All our practitioners were involved in decomposing at least
one monolithic application into microservices. Some, e.g.,
P1, have spent a number of years on decomposing a single
monolithic system; others, e.g., P2, P4, P10, work primarily as
architecture consultants, helping different companies decom-
pose their monoliths into microservices. We believe such a
range of experiences is highly valuable for our study.

Table II also lists the size and age of the largest monolithic
application practitioner decomposed. We categorize monoliths
with up to 50 thousands of lines of code (KLOC) as small,
between 50 to 250 KLOC as medium, and over 250 KLOC
as large. P1, P2, P4, and P7 all report experience with

4



TABLE II: Interview Participants.
ID Position Development

Experience
[years]

Microservice
Experience

[years]

Largest
Decomposed

Monolith [KLOC]

Oldest
Decomposed

Monolith [years]

Company
Size

Education Country

P1 Staff Software Developer 5-10 5-10 Large 10-20 Large Bachelor Canada
P2 Architecture Consultant 10-20 1-5 Large 20+ Medium Master’s Croatia
P3 Director of Engineering 20+ 5-10 Medium 10-20 Medium Master’s Croatia
P4 Fellow, Architecture Consultant 20+ 5-10 Large 5-10 Medium Master’s Germany
P5 VP, Software Development 20+ 5-10 N/A N/A Large Bachelor Canada
P6 Architect 10-20 5-10 Small 5-10 Large Bachelor Canada
P7 Executive Architect 20+ 1-5 Large 10-20 Large PhD USA
P8 Chief Technology Officer 20+ 10+ Medium 5-10 Small Bachelor Canada
P9 Architecture Consultant 10-20 5-10 Medium 1-5 Small Bachelor Norway
P10 Chief Technology Officer 20+ 5-10 Medium 10-20 Small Bachelor Australia

decomposing a monolith with over one million lines of code.
P5 could not disclose the size and age of the largest/oldest
monoliths they have decomposed.

B. RQ1: Interview Study

We now describe the interview study we conducted to inves-
tigate the applicability and usefulness of different relationship
types during the extraction process.

We performed semi-structured interviews with a set of open-
ended questions. To identify an appropriate study protocol, we
first conducted two pilot interviews with colleagues that are
familiar with microservice-based development. We proceeded
to the main study only as the pilot interviews ran smoothly;
we discarded the data collected during the pilot study.

The interviews were conducted in English by at least two
of the authors of this paper using telecommunication software,
such as Zoom. All but one interviewee agreed to be recorded, to
avoid misunderstandings and ease the analysis of the collected
data. For the remaining interview, both researchers took notes
during the meeting. The interviews took between 60 and 90
minutes. Furthermore, we collected quantitative data about the
participants’ background, experience, their project, etc. offline,
which saved time during the interviews.

We began each interview by explaining the goal of our
study: to identify how automated tools can better assist
practitioners with microservice extraction. We then explained
that automated tools rely on different types of relationships
between entities, introduced the relationships, and discussed
the intuition behind using these relationship, similar to the
discussion in Section II-B. We structured the remaining part
of the interview around four central questions:

Q1. Which relationship types do you find useful for microser-
vice extraction and why?
Q2. If there is more than one useful relationship type, what is
the relative importance of each relationship and why?
Q3. Are there any additional relationship types you find useful?
Q4. What characteristics of an application/organization could
change how you use relationships?
We followed up with subsequent questions and in-depth
discussions based on the interviewees’ responses and encour-
aged participants to include examples from their microservice
experience in their answers. A more detailed description of
our interview protocol is available online [25].

C. RQ2: Think-Aloud Study

Following the interview study, we showed participants a
“vanilla” microservice extraction tool prototype that allows
the user to browse different types of relationships and select
the desired types and weightings of these relationships. We
implemented this prototype to evaluate practitioners’ opinions
“in vivo”, asking them to verbalize their thoughts as they
performed a microservice decomposition task. Such a protocol,
referred to as a think-aloud session [22], allows designers to
gain insight into the cognitive processes involved with solving
a problem and has been shown to be effective for eliciting user
needs and requirements [7], [26].

We used a case study monolithic application to facilitate the
discussion. We describe this application next and then briefly
outline our prototype implementation (a working version is
available online [25]) and our study protocol.

1) PartsUnlimitedMRP Case Study: We used PartsUnlim-
itedMRP [1], a Manufacturing Resource Planning (MRP)
application developed and maintained by Microsoft, as our case
study application. This application is similar to and has inspired
our motivating example in Figure 1. We selected this application
because it is a realistic, yet relatively compact example of a
system that has both a monolithic and microservice-based
version [2] available online. Having a microservice-based
version of our case study allowed us to better understand
ways in which the monolith can be decomposed.

We focus our analysis on the backend part of PartsUnlimit-
edMRP, which contains 54 classes conceptually corresponding
to different functional domains of the system: catalog, dealer,
order, quote, and shipment. The application is implemented in
Spring and uses Spring controllers, models, and repository
components to implement the presentation, business, and
persistence layers, respectively. In addition to the Spring-
based application elements, the system contains several classes
that implement secondary functionalities (i.e., application and
database configuration, error handling, utility/logging access
code, etc.). These classes are used throughout all domains, like
the Utility class in Figure 1.

The microservice-based version of PartsUnlimitedMRP
contains five services that represent the application’s five
functional domains. The decomposition itself is performed
at the class level, with each of the services containing its
corresponding controller, model, and repository classes from the
original monolithic application. As the produced microservice-

5



Fig. 2: Overview of the microservice extraction prototype.

based version is a reasonably straightforward decomposition
of the original monolithic application, we believe this is a
feasible task, which makes PartsUnlimitedMRP a suitable case
study for our analysis. Note that we did not introduce the
microservices version of the application to the study participants
as the objective of our study is to collect requirements for
a microservice extraction tool, rather than to arrive at any
particular microservice-based version of PartsUnlimitedMRP.

2) Prototype Implementation: The Graphical User Interface
(GUI) of our prototype tool [25] contains six tabs, each
corresponding to a relationship type described in Section II:
static, dynamic, class name, term, commit, and contributor
similarity. This presentation is similar to the one in Figure 1,
where the nodes represent classes of an application and the
edges represent a particular type of relationship. The user
can move the nodes around and reorganize the view in the
way most suitable for them. When the user switches between
tabs, the nodes stay in their selected location and only the
relationships between the nodes change. The GUI also includes
an edge weight slider that can hide weaker relationships
within the graph, which we introduced following a pilot study.
A clustering menu allows the user to select the types and
weights of relationships and, based on that, create a set of
service candidates extracted according to the user’s selected
relationships/weights. The user can then inspect the results,
adjust the relationship weights if needed, and repeat the
extraction process.

The underlying implementation of the tool is shown in
Figure 2 and is also available online [25]. It obtains as
input any number and type of relationships extracted from
a monolith, alongside the user’s weighting of each relationship.
For our prototype implementation, we relied on SciTool’s Un-
derstand [39] to extract static structural relationships between
classes, which included class-to-class calls, data member usages,
object references, and inheritance dependencies. For dynamic
structural relationships, we instrumented the monolithic version
of PartsUnlimitedMRP with the Kieker execution monitoring
framework [45], ran the functional test suites of the application,
and further interacted with the user interface of each application
to increase trace coverage.

For class name similarity, we collected the names of Java
classes within the application and, again, relied on SciTool’s
Understand to tokenize each class of the application into a set of

terms. We then used TF-IDF [37] to determine a term vector for
each class and used the cosine similarity between term vectors
to represent the weight of the relationship between classes.
We extracted data for both commit similarity and contributor
similarity by mining Git version control logs. All referenced
data, including the scripts used to collect and process the data,
is publicly available to ensure reproducibility [25].

Given the set of relationships and their weights provided
by the user, the tool constructs a single graph that represents
the prioritized relationship types. To this end, we normalized
structural relationships to be in the range [0,1] (semantic
and evolutionary relationships are already normalized) and
then applied the user’s prioritization to the relationship types
by multiplying the weights of each relationship type by
its corresponding prioritization. Finally, we used TurboMQ
clustering, a hill-climbing algorithm proposed by BUNCH [34]
to cluster the elements of the graph into microservice candidates.
We chose this implementation as it is very efficient in terms
of its runtime, which is critical for collecting user feedback on
extraction results during an interactive session and also because
BUNCH performed well in earlier comparative studies [19]. As
a search-based approach, Bunch may yield different results in
different runs. To mitigate non-determinism for our experiments,
we configured BUNCH to run with a very large population of
initial clusters, which can be extensively explored due to the
size of our case study.

3) Methodology: We began each session by presenting
the purpose and high-level design of PartsUnlimitedMRP
to the participants and asked them to imagine they need
to decompose this application into microservices. We then
showed participants the graphical user interface (GUI) of our
prototype tool. In the GUI, the classes of PartsUnlimitedMRP
were grouped horizontally by technical layer, e.g., controllers,
repositories, and models, and vertically by domains, e.g., orders,
catalog, shipping. To help the practitioners better understand
PartsUnlimitedMRP within the time constraints of the interview,
we used Zoom’s Annotate features to highlight and explain
the purpose of each technical layer and domain within the app.
We then identified and explained the role of four utility-based
classes used to hold common string operations, handle request
errors, switch between databases, and perform basic database
read and write operations.

6



We asked participants to complete three tasks, encouraging
them to verbalize their thoughts and to explain their actions
as they worked through each task.

T1. Use the GUI to familiarize yourself with the relationship
types of PartsUnlimitedMRP.
T2. Distribute 100 points across the relationship types ac-
cording to their importance in a microservice extraction of
PartsUnlimitedMRP.
T3. Use the clustering menu to produce a microservice
extraction of PartsUnlimitedMRP.
We answered any questions participants asked about the
implementation of PartsUnlimitedMRP. We also encouraged
them to repeat T2 and T3, if they indicated that they were
unhappy with the microservice candidates generated by their
weightings. All verbalizations and interactions with the GUI
were recorded for review.

D. Data Analysis

We used open coding – a qualitative data analysis technique
borrowed from grounded theory – to identify main ideas
expressed by our study participants [41]. To this end, we
used an automated tool to transcribe the interview recordings,
and we cross-checked the generated transcriptions against the
interview recordings to identify and correct any transcription
mistakes. Two of the paper authors then independently read
the transcriptions and interview notes to identify and name
concepts – key ideas contained in data – for relationship-
usefulness and tool-expectation categories, separately. When
looking for concepts, the authors searched for the best phrase
that describes what we believe is the idea expressed by the
participant. Then, all the authors met to discuss the identified
concepts, refine concept labeling, and merge related concepts,
if needed. The results of our study are described next.

IV. RESULTS

A. RQ1: Applicability and Usefulness of Relationship Types

We heard a range of replies about relationships practitioners
find useful for automated microservice extraction. Interestingly,
only two of the participants expressed a strong preference
for one particular relationship type: P3 for evolutionary, to
produce microservices that can be developed and maintained
by independent teams, and P7 for structural, to prioritize
architecturally-cohesive services that minimize refactoring
effort. Other participants found a combination of relationships
useful for incorporating benefits of multiple strategies.

At the same time, all participants repeatedly commented that
there is no one-size-fits-all strategy that can work across all
applications. They emphasized the importance of a “what-if”
analysis tool that can help examine and experiment with differ-
ent relationships and weights to take application-, organization-
, and domain-specific considerations into account. We now
outline such considerations provided by the participants.

1) Structural Relationships: The programming language of
a monolithic application affects its structural properties, which
influences the decomposition strategy. For example, the value
of static and dynamic data can vary depending on the type

system of a programming language: «(P5) In a statically typed
language, looking at the code would be interesting. If it is a
dynamically typed language, then you would want to put the
full [weighting] on dynamic [analysis]». The nature of function
calls between elements also influences the value of structural
relationships. For example, Ruby relies on implicit method
calls, which complicates the identification and comprehension
of structural relationships: «(P1) When [we] were looking
at the dynamic analysis and then looking at the code, we
could not even see how the two were related». Likewise,
dependency injections – a technique in which an object receives
other objects that it depends on – lead to strong structural
relationships between these classes, which is not necessarily
valuable for the decomposition purposes: «(P1) Those classes
should not be tightly coupled, but [that] was not reflected in
the [structural] analysis at all.»

Several participants, e.g., P1-P5, P8-P10, deprioritized struc-
tural relationships because they believed that these relationships
become entangled and lose their meaning as a monolith
ages and expands: «(P4) The structure of the source code
that exists often leaves something to be desired. Most often,
the architecture became messed up over time. [...] So if I
take the existing structure and use an algorithm that aims
to preserve it, I’d be pretty surprised if that brings any
benefit.» In addition, some participants, e.g., P4, P9, P10,
noted that structural relationships do not provide as much
business and organization value as other relationship types:
«(P10) doing what’s easy to refactor, isn’t necessarily going
to deliver value to the business. Usually, the business doesn’t
care about the structure of the code as much.»

Participants mentioned the difficulty of acquiring reliable
dynamic data: «(P2) Because you would have to have a really
comprehensive test suite that encompasses many different
functionalities. [...] Large monoliths [I have worked with] often
have incomplete functional test suites.» When the dynamic
data is incomplete, participants recommended complementing
it with other types of relationships: «(P7) In those types of
cases, I may use some semantic relationships to see if I can
derive relationships between classes that can be verified later.»

At the same time, two of the participants, P6 and P7,
considered structural relationships to be the most reliable
way of performing decompositions, viewing microservice
extraction primarily as a refactoring effort: «(P7) When I go for
actual monolith code refactoring/rearchitecting, [using semantic
relationships] might not produce good clusters because there
could be relationships between classes that break the code and
structural dependencies between classes. I would instead focus
on structural relationships and the partitions they produce that
can be realized with minimal code tweaking.»

Several participants, e.g., P7-P10, wanted to see database
structure and access patterns as part of the considered structural
relationships: «(P9) You look at the database first and what is
accessing it, then you work backwards [into the code], using
transactional integrity as a guide.» They noted that database
decomposition itself could be a difficult task, as it has to be
done carefully to minimize transactions that span multiple

7



services/databases. Yet, considering the database structure and
how it affects the structure of the code could be of value.

2) Semantic Relationships: Several participants, e.g., P4, P5,
and P9, prioritized class name similarities because «(P5) [...]
a lot of people put significant effort into naming their classes.»
However, while in newer applications a significant amount of
time and effort is put into class naming, as a code base ages,
class names tend to deviate from the original intention: «(P1)
We have a lot of cases where, because our application is 14
years old now, the [class] names just do not apply anymore
[...]. The older the classes and the more changes the code base
has had, the less I would trust class names. [...] It takes a lot
of effort to refactor class names and developers usually care
more about code they are adding and changing than they care
about code that is already there.»

The language spoken within an organization or team also
influences the naming of classes and terms within classes. In
these cases, semantic data can be unreliable for microservice
extraction: «(P2) Because English is not our first language,
[...] language ambiguity plays a role. For example, in Croatian,
there is a word called predmet that translates in English to
object, subject, document, etc. So when we translate this to
English, we can end up with ObjectController, Document-
Controller, or SubjectController.» Such situations increase
inconsistencies, especially in globally-distributed organizations,
where the development is carried out in multiple countries.
The usefulness of semantic data is also affected by the
team size and development practices they employ: «(P7) The
more developers you have, the more things will have potential
differences in how things are named and how things are
written.»

Participants repeatedly noted that using semantic relation-
ships can introduce false coupling between domains when
terms are re-used across bounded contexts: «(P1) Something
that exists in domain-driven design is the idea of bounded
contexts, so that a name would have a meaning in one context,
but not in the overall context of the app. [...] In one context
we might have Customer, and in another context we might
have Customer, but those classes might be completely different
customers that actually have no relationship.»

3) Evolutionary Relationships: To our surprise, even though
the majority of automated microservice extraction techniques
rely on structural and semantic relationships, several partic-
ipants, e.g., P1-P3, P4, P5, P10, gave strong preference to
evolutionary data: «(P10) Evolutionary relationships are the
most useful»; «(P3) The primary criteria we look at when
grouping classes together into microservices is how often they
change together, at once, and who is changing them.» Also,
whilst structural and semantic relationships tend to become less
reliable over time, commits/co-change relationships become
stronger over time and «(P2) capture business requirements
from the beginning [of development] to the very end»;

However, like with semantic data, older code means that
evolutionary data might be polluted, especially if development
transitioned from one code management system to another:
«(P2) I do not always have a good version control history, in

one 20-year-old code base, most of the code is pushed in an
“initial commit” and in that case, I would put more weighting
on structural similarity.»

The size of the team can also impact whether contributor
similarity is useful for microservice extraction: «(P2) I could
see contributor coupling as being useful when you have
a very large team and different members of the team are
working on different parts of the application. As we try to
split monoliths into microservices, we would also split our
large team into smaller teams.» For an organization with a
small number of developers, contributor similarity becomes
less meaningful: «(P4) Separating by contributor similarity
might not be worthwhile because developers often work on
different parts of the code simultaneously.»

Our study participants, e.g., P2 and P9, also identified
additional evolutionary data that could benefit the automated
extraction techniques. Specifically, they considered project
management and issue tracking information, such as Jira tickets
and GitHub issues, valuable to both strengthen the commit data
and to estimate the effort required to maintain certain portion
of the code, which could inform decomposition effort: «(P9) If
you look at the time that elapsed between creating a ticket and
the ticket being closed, as well as the time it took to go from
development to quality assurance and from quality assurance
to production, and then relate this to the amount of code that
was changed, then you can see the amount of friction it took
to get that feature out into production.»

4) Summary: To answer RQ1, our study showed that while
each type of relationships has its value and intended use, there
is a number of scenarios in which each particular relationship
type needs to be re-considered and customized. Programming
languages used, age of the code base, size and structure of the
team, and even the language spoken by the team members can
affect the quality of microservice candidate proposed by an
automated extraction technique. Next, we discussed some tool
extensions proposed by our study participants.

B. RQ2: Tool Support

1) Relationship Visualization: All our participants believed
that microservice extraction starts from understanding the
monolithic systems and, thus, visualizing different relationship
types in itself provides a high value to developers: «(P2)
This tool allows you to visualize what’s going on in the
application»; «(P4) It is a good way to reduce the information
and make it digestible.» They expressed difficulties trusting
fully-automated tools and believed that a tool that “explains”,
via visualization, the reasons for the proposed decomposition
would be beneficial: «(P10) A tool that actually did the
decomposition probably would not be something I would trust
for maybe a long time, but if there was a tool that I could
give an existing application and it could give me proposed
decompositions, [...] I think that would be really useful. [...]
Anything that can give me extra information about the situation
here is going to be valuable. »

At the same time, some participants noted that with bigger
applications, visualizing all elements and relationships might

8



become cumbersome. They wished to customize the level of
abstraction at which elements and relationships are presented.
Our prototype’s edge weight slider that can hide weaker
relationships between classes was a step in this direction; it
was appreciated by practitioners as it allowed them to easily
identify the strongest relationships between classes: «(P1) We
tried similar visualizations for our app [...] but we did not have
an edge weight filter. That would have been very useful.»

One of the participants suggested that the visualization of
service candidates could be further improved by highlighting
inter-candidate relationships: «(P1) It would be really inter-
esting to then only display the relationships that go between
clusters after extracting microservices, [..] to identify elements
that cross-cut domains and question why they exist.»

2) Decomposition Granularity: Besides the visualization
aspect, three participants, P2, P8, and P9, stated that they would
rather increase the abstraction level at which microservice
extraction is performed. Unlike most existing techniques
that perform decomposition at class or even method level,
these participants stated that they often perform microservice
extraction at the package and/or namespace level: «(P8) If you
take everything to a higher level of abstraction, for example with
packages instead of classes, then I think the division between
potential services becomes even clearer [...] I don’t usually
look lower than the package level during decompositions.»

This observation implies that developers should be able to
configure the abstraction level of entities within relationship
graphs. That is, tools can be extended to allow the developer
to define the notion of “components” they want to manipulate.
Such an extension would also increase the applicability
of extraction techniques, at least those based on semantic
and evolutionary relationships, across different programming
languages: «(P9) A class is a [Java-specific] way of structuring
a system – Golang, Python, and Javascript have different ways
of modularizing things [...] In a nutshell, units of code that can
be versioned together should be kept together as a component.»

3) Interactive Processes: An interesting insight was that
several participants wanted to “work with the tool” rather than
having the tool produce candidates automatically: «(P1) It
would be interesting if I could influence the clusterings so
that they make sense to me.» For example, they wanted to
fix certain decisions by drawing a circle around a group of
elements, indicating these elements should stay together. The
tool would then proceed with decomposition while respecting
this choice: «(P10) [It would be valuable] if you could just
draw where the microservices are going to be, but then have the
model somehow simulate that and, using all the connections it
has got in the graph, tell you how feasible it is for everything
to be connected in that way.»

4) Decomposition Customization: Participants wanted to
customize relationship data based on their specific needs.
For structural relationships, they wished to weight different
criteria individually, e.g., data dependency or inheritance. For
semantic relationship, practitioners mentioned that beyond
custom dictionaries, the relationships are missing domain-
specific concepts, e.g., bounded contexts: «(P9) The definition

[of semantic relationships] is missing the concept of bounded
contexts – what “rock” means depends on whether you’re in
the mountains or in a concert. Context means everything.»
Developers also wanted to manually weight different parts
of class/variable names: «(P1) [For us] the first part of the
name would be some kind of namespacing and defining the
context, and then the second part would have to be weighted
differently for it to work. In this case, the parts should have
different weightings depending on their position in the name.»
For evolutionary relationships, commits need to be filtered by
the type of the change they make: «(P1) It would be ideal if
we could filter commits by feature, bug, and/or project.»

Similarly, as suggested by our findings in RQ1, the applica-
bility and usefulness of different relationship types is highly
dependent on the application scenario. This implies that tools
need the ability to allow the developer to select and prioritize
different types of relationships according to their preferences:
«(P1) The weightings are useful.»

5) Examples and Recommendations: Some of the par-
ticipants, i.e., P9 and P10, wanted tools to offer multiple
decomposition alternatives, allowing the user to browse and
select the desired one. P10 envisioned an iterative genetic
algorithm-inspired process, where the developer selects the
most fitting alternative, further customizes and fine-tunes it,
and lets the tool propose improved variants based on that
feedback: «(P10) I would like to have [the tool] consider a
million [relationship type] configurations, run them through
a simulation to discard some of them, and then present me
with a small number of options [displayed] in a grid. Then
I choose the options that map best to what I hope would be
good configurations, [...] and then fine-tune the weights.»

Participants also wished tools would analyze the structure
of the application and provide recommendations about the
feasibility and necessity of migration: «(P6) It would be good
to look for indicators of when you should not [transition to
microservices].» «(P3) If changes are made across all classes
by very few people, then it makes the most sense to keep the
application as one service that one team handles.»

Moreover, tools could assist with exploring whether there
is a configuration of relationships that results in a highly-
modular decomposition, or check the modularity of relationship
types prioritized by the developer and suggest changes that
lead to better modularity. Finally, tools could generate metrics
capturing the quality of the decomposition suggested by the
developer: «(P10) You can come up with a bunch of potential
configurations for microservices and if nothing else that would
be a useful thing to be able to take to management: these are
the types of structures that I am considering, you know? Or
you could take it to the development team and you could ask
the development team, is this a good structure? Can you think
of why this would not work? So it would just be really cool
as a modeling and communication tool.»

6) Summary: To answer RQ2, our study identified several
features practitioners want to see in microservice extraction
tools, such as the ability to visualize and investigate relation-
ships and possible microservice candidates obtained by utilizing

9



these relationships, to customize elements and relationships
considered by the extraction tool, to perform “what-if” analyses
of possible decompositions, and to interactively work with the
tool by “fixing” some decisions and letting the tool work with
this setup. Notably, all study participants found this direction
productive and beneficial for their needs, and we obtained
comments, such as: «(P3) It makes sense for architects to use
a tool like this to figure out how to [cluster]»; «(P2) If this
tool becomes open source, I would be interested in taking a
look at it and running it on my own applications.»; «(P5) I
always imagined having a tool like this – I would love to try
it out on my code.»

V. THREATS TO VALIDITY

For external validity, our results may be affected by the
selection of our interview study participants. We attempted to
mitigate this threat by reaching out to experienced software
engineers from companies of different sizes and geographic
locations. For the think-aloud protocol, the participants could be
influenced by the case study application we experimented with.
We attempted to mitigate this threat by selecting a representative
third-party application, which was already successfully decom-
posed into microservices. We also made sure to emphasize
during the interviews that we use the application as an example
and are interested in the practitioners’ opinions based on their
broader experience. We believe that our selection of experienced
software engineers with substantial microservice extraction
experience helped to mitigate both threats.

For internal validity, we might have misinterpreted par-
ticipants’ answers or misidentified concepts. To mitigate this
threat, we made sure at least two authors of this paper attended
each interview and recorded all but one interview for further
detailed analysis. Moreover, our data analysis was performed
independently by two authors of the paper and all divergences
were discussed and resolved by all the authors.

VI. RELATED WORK

We discuss the related work along two main dimensions:
migration to microservices and broader studies on architectural
recovery techniques.

1) Migration to Microservices: Existing automated microser-
vice extraction approaches are extensively discussed in Sec-
tion II. A number of studies have also recently surveyed indus-
trial practitioners, collecting challenges related to the migration
from monolithic to microservice-based architectures [11], [43].
They observed that finding a proper service granularity and
setting up an initial infrastructure for microservices are some
of the migration challenges that developers face. Carvalho et
al. [10] interviewed 15 microservice migration specialists, in-
vestigating the usefulness of criteria for microservice extraction,
such as coupling, cohesion, communication overhead, reuse
potential, database schema, and more. The results suggest
that practitioners often need to consider multiple criteria
simultaneously as well as their trade-offs to support their
decisions. The participants also stated that existing tools are
insufficient to support their microservice extraction decisions,

which is also confirmed in additional studies [11], [17], [20],
[47] Yet, unlike our work, these studies do not provide exact
reasons for the lack of adoption of the tools and do not detail
suggestions for support practitioners need to employ tools in
their work environment.

Gysel et al. [21] also investigated service decomposition
based on a number of coupling criteria distilled from the
literature. Yet, this work focuses on design artifacts, such as use
cases and Entity-Relationship Models, while our work considers
development artifacts. Fritzsch et al. [18] proposed a decision
guide recommending a certain tool based on developers’
decomposition goal and available data. Unlike us, the study
did not focus on factors affecting the availability of that data
and did not provide suggestions for improving the tools.

2) Architectural Recovery: Microservice extraction is
closely related to the field of architectural recovery, as both
activities aim to extract architectural information from existing
systems by grouping software entities into clusters. Abreu and
Goulao [6], Bavota et al. [5], as well as Candela et al. [8]
investigated how class coupling, as captured by structural,
dynamic, semantic, and logical coupling measures, aligns
with developers’ perception of coupling. Similarly, Lutellier et
al. [29], [30] explored the impact of relationships on architec-
tural recovery approaches, focusing on structural relationships
alone. Garcia et al. [19] performed a comprehensive analysis of
software architecture recovery technique showing a relatively
low accuracy for most of the analyzed approaches.

The authors of these works observed that none of the
decomposition principles exclusively dominate the modularity
of the studied systems. Our study confirms this finding. Yet,
our focus is specifically on the microservice extraction pro-
cess, which requires additional considerations when compared
with architectural decomposition in general, e.g., the need
to maintain independence of teams and their deployment
schedules. To the best of our knowledge, our work is the
first to investigate the impact and usefulness of a wide range
of code relationships on the microservice extraction process in
the context of practitioners’ development practices.

VII. CONCLUSION

In this paper, we investigated the usefulness of relationships
extracted from a monolithic application for the microservice
extraction process. We also collected expectations practitioners
have for tools utilizing such relationships. Our study involved
10 practitioners with substantial hands-on microservice extrac-
tion experience. Our results show that practitioners often need
a “what-if” analysis tool that simultaneously considers multiple
relationship types. This is because the relevance of some
relationship types is influenced by the choice of programming
language, the age of the code base, language(s) spoken by the
team, and more. We also extract suggestions for improving
current extraction tools, e.g., with the ability to iteratively
select, filter, and customize relationships, as well as to fix
some decisions during the extraction process.
Acknowledgments: The work has been partially supported by
IBM CAS Canada.

10



REFERENCES

[1] “PartsUnlimitedMRP,” https://github.com/microsoft/PartsUnlimitedMRP.
[2] “PartsUnlimitedMRP Microservices,” https://github.com/microsoft/

partsunlimitedMRPmicro.
[3] M. Abdullah, W. Iqbal, and A. Erradi, “Unsupervised Learning Approach

for Web Application Auto-Decomposition into Microservices,” Journal
of Systems and Software (JSS), vol. 151, pp. 243–257, 2019.

[4] L. Baresi, M. Garriga, and A. De Renzis, “Microservices Identification
Through Interface Analysis,” in European Concerence on Service-
Oriented and Cloud Computing (ESOCC), 2017, pp. 19–33.

[5] G. Bavota, B. Dit, R. Oliveto, M. D. Penta, D. Poshyvanyk, and
A. D. Lucia, “An Empirical Study on the Developers’ Perception of
Software Coupling,” in ACM/IEEE International Conference on Software
Engineering (ICSE), 2013, pp. 692–701.

[6] F. Brito e Abreu and M. Goulao, “Coupling and Cohesion as Modulariza-
tion Drivers: Are We Being Over-Persuaded?” in European Conference
on Software Maintenance and Reengineering (CSMR), 2001, pp. 47–57.

[7] B. Camburn, V. Viswanathan, J. Linsey, D. Anderson, D. Jensen,
R. Crawford, K. Otto, and K. Wood, “Design Prototyping Methods:
State of the Art in Strategies, Techniques, and Guidelines,” Design
Science, 2017.

[8] I. Candela, G. Bavota, B. Russo, and R. Oliveto, “Using Cohesion
and Coupling for Software Remodularization: Is It Enough?” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 25, no. 3, 2016.

[9] L. Carvalho, A. Garcia, T. E. Colanzi, W. K. G. Assunção, J. A. Pereira,
B. Fonseca, M. Ribeiro, M. J. de Lima, and C. Lucena, “On the
Performance and Adoption of Search-Based Microservice Identification
with toMicroservices,” in IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2020, pp. 569–580.

[10] L. Carvalho, A. Garcia, W. K. G. Assunção, R. de Mello, and M. Julia
de Lima, “Analysis of the Criteria Adopted in Industry to Extract
Microservices,” in Workshops of the IEEE/ACM International Conference
on Software Engineering, 2019, pp. 22–29.

[11] P. Di Francesco, P. Lago, and I. Malavolta, “Migrating Towards
Microservice Architectures: an Industrial Survey,” in Proceedings of
IEEE International Conference on Software Architecture (ICSA), 2018,
pp. 29–38.

[12] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, Microservices: Yesterday, Today, and
Tomorrow. Cham: Springer International Publishing, 2017, pp. 195–216.

[13] D. Escobar, D. Cárdenas, R. Amarillo, E. Castro, K. Garcés, C. Parra, and
R. Casallas, “Towards the Understanding and Evolution of Monolithic
Applications as Microservices,” in XLII Latin American Computing
Conference (CLEI), 2016, pp. 1–11.

[14] S. Eski and F. Buzluca, “An Automatic Extraction Approach: Transition to
Microservices Architecture from Monolithic Application,” in Workshops
of the International Conference on Agile Software Development, 2018,
pp. 1–6.

[15] European Commission, “Internal Market, Industry, Entrepreneurship
and SMEs – SME Definition,” https://ec.europa.eu/growth/smes/sme-
definition_en.

[16] B. S. Everitt, S. Landau, and M. Leese, Cluster Analysis, 4th ed. Wiley,
2009.

[17] J. Fritzsch, J. Bogner, S. Wagner, and A. Zimmermann, “Microservices
Migration in Industry: Intentions, Strategies, and Challenges,” in IEEE
International Conference on Software Maintenance and Evolution
(ICSME), 2019, pp. 481–490.

[18] J. Fritzsch, J. Bogner, A. Zimmermann, and S. Wagner, “From Monolith
to Microservices: A Classification of Refactoring Approaches,” in
DEVOPS Workshop, 2018, pp. 128–141.

[19] J. Garcia, I. Ivkovic, and N. Medvidovic, “A Comparative Analysis
of Software Architecture Recovery Techniques,” in ACM International
Conference on Automated Software Engineering (ASE), 2013, pp. 486–
496.

[20] J. Ghofrani and A. Bozorgmehr, “Migration to Microservices: Barriers
and Solutions,” in Applied Informatics, 2019, pp. 269–281.

[21] M. Gysel, L. Kölbener, W. Giersche, and O. Zimmermann, “Service
Cutter: A Systematic Approach to Service Decomposition,” in European
Conference on Service-Oriented and Cloud Computing (ESOCC), 2016,
pp. 185–200.

[22] M. W. Jaspers, T. Steen, C. van den Bos, and M. Geenen, “The Think
Aloud Method: A Guide to User Interface Design,” International Journal
of Medical Informatics, vol. 73, no. 11, pp. 781–795, 2004.

[23] W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, and Q. Zheng, “Service
Candidate Identification from Monolithic Systems Based on Execution
Traces,” IEEE Transactions on Software Engineering (TSE), 2019.

[24] A. K. Kalia, J. Xiao, C. Lin, S. Sinha, J. J. Rofrano, M. Vukovic,
and D. Banerjee, “Mono2Micro: An AI-based Toolchain for Evolving
Monolithic Enterprise Applications to a Microservice Architecture,” in
Tool Demos of ESEC/FSE, 2020, pp. 1606–1610.

[25] L. J. Kirby, E. Boerstra, Z. J. C. Anderson, and J. Rubin, “Supplementary
Materials,” https://doi.org/10.17605/OSF.IO/Y82G9.

[26] C. Lewis and J. Rieman, “Task-Centered User Interface Design: A
Practical Introduction,” University of Colorado, Boulder, Department of
Computer Science, 1993.

[27] J. Lewis and M. Fowler, “Microservices: a Definition of This New
Architectural Term,” https://www.martinfowler.com/articles/microservices.
html, 2014.

[28] S. Li, H. Zhang, Z. Jia, Z. Li, C. Zhang, J. Li, Q. Gao, J. Ge, and
Z. Shan, “A Dataflow-driven Approach to Identifying Microservices
from Monolithic Applications,” Journal of Systems and Software (JSS),
2019.

[29] T. Lutellier, D. Chollak, J. Garcia, L. Tan, D. Rayside, N. Medvidovic,
and R. Kroeger, “Comparing Software Architecture Recovery Techniques
Using Accurate Dependencies,” in ACM/IEEE International Conference
on Software Engineering (ICSE), Industrial Track, 2015, pp. 69–78.

[30] ——, “Measuring the Impact of Code Dependencies on Software
Architecture Recovery Techniques,” IEEE Transactions on Software
Engineering (TSE), vol. 44, pp. 159–181, 2017.

[31] T. Matias, F. F. Correia, J. Fritzsch, J. Bogner, H. S. Ferreira, and
A. Restivo, “Determining Microservice Boundaries: A Case Study Using
Static and Dynamic Software Analysis,” in Software Architecture, 2020,
pp. 315–332.

[32] G. Mazlami, J. Cito, and P. Leitner, “Extraction of Microservices from
Monolithic Software Architectures,” in International Conference on Web
Services (ICWS), pp. 524–531.

[33] Microsoft, “Chapter 1: Service Oriented Architecture (SOA),”
https://web.archive.org/web/20160206132542/https://msdn.microsoft.
com/en-us/library/bb833022.aspx, 2016.

[34] B. S. Mitchell and S. Mancoridis, “On the Automatic Modularization of
Software Systems using the Bunch Tool,” IEEE Transactions on Software
Engineering (TSE), vol. 32, no. 3, pp. 193–208, 2006.

[35] I. Pigazzini, F. A. Fontana, and A. Maggioni, “Tool Support for the
Migration to Microservice Architecture: An Industrial Case Study,” in
Software Architecture, 2019, pp. 247–263.

[36] F. Ponce, G. Márquez, and H. Astudillo, “Migrating from Monolithic
Architecture to Microservices: A Rapid Review,” in International
Conference of the Chilean Computer Science Society, 2019, pp. 1–7.

[37] J. Ramos, “Using TF-IDF to Determine Word Relevance in Document
Queries,” in Instructional Conference on Machine Learning, 2003.

[38] Z. Ren, W. Wang, G. Wu, C. Gao, W. Chen, J. Wei, and T. Huang,
“Migrating Web Applications from Monolithic Structure to Microservices
Architecture,” in Asia-Pacific Symp. on Internetware, 2018, pp. 1–10.

[39] Scientific Toolworks, “Understand,” https://scitools.com/.
[40] A. Selmadji, A. Seriai, H. L. Bouziane, C. Dony, and R. O. Mahamane,

“Re-architecting OO Software into Microservices,” in European Concer-
ence on Service-Oriented and Cloud Computing (ESOCC), 2018, pp.
65–73.

[41] A. Strauss and J. Corbin, Basics of Qualitative Research: Techniques
and Procedures for Developing Grounded Theory. Sage, 1998.

[42] D. Taibi and V. Lenarduzzi, “On the Definition of Microservice Bad
Smells,” IEEE Software, vol. 35, no. 3, pp. 56–62, 2018.

[43] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, Motivations, and Issues
for Migrating to Microservices Architectures: An Empirical Investigation,”
IEEE Cloud Computing, vol. 4, no. 5, pp. 22–32, 2017.

[44] D. Taibi and K. Systä, “From Monolithic Systems to Microservices: a
Decomposition Framework Based on Process Mining,” in International
Conference on Cloud Computing and Services Science (CLOSER), 2019.

[45] A. van Hoorn, J. Waller, and W. Hasselbring, “Kieker: A Framework for
Application Performance Monitoring and Dynamic Software Analysis,”
in ACM/SPEC International Conference on Performance Engineering
(ICPE), 2012, pp. 247–248.

[46] Y. Wang, H. Kadyala, and J. Rubin, Journal of Empirical Software
Engineering (EMSE), 2021.

[47] H. Zhang, S. Li, Z. Jia, C. Zhong, and C. Zhang, “Microservice
Architecture in Reality: An Industrial Inquiry,” in IEEE International
Conference on Software Architecture (ICSA), 2019, pp. 51–60.

11

https://github.com/microsoft/PartsUnlimitedMRP
https://github.com/microsoft/partsunlimitedMRPmicro
https://github.com/microsoft/partsunlimitedMRPmicro
https://ec.europa.eu/growth/smes/sme-definition_en
https://ec.europa.eu/growth/smes/sme-definition_en
https://doi.org/10.17605/OSF.IO/Y82G9
https://www.martinfowler.com/articles/microservices.html
https://www.martinfowler.com/articles/microservices.html
https://web.archive.org/web/20160206132542/https://msdn.microsoft.com/en-us/library/bb833022.aspx
https://web.archive.org/web/20160206132542/https://msdn.microsoft.com/en-us/library/bb833022.aspx
https://scitools.com/

	Introduction
	From Monolithic to Microservice-based Applications
	Microservices
	Microservice Extraction Techniques

	Research Methodology and Study Design
	Subjects
	RQ1: Interview Study
	RQ2: Think-Aloud Study
	PartsUnlimitedMRP Case Study
	Prototype Implementation
	Methodology

	Data Analysis

	Results
	RQ1: Applicability and Usefulness of Relationship Types
	Structural Relationships
	Semantic Relationships
	Evolutionary Relationships
	Summary

	RQ2: Tool Support
	Relationship Visualization
	Decomposition Granularity
	Interactive Processes
	Decomposition Customization
	Examples and Recommendations
	Summary


	Threats to Validity
	Related work
	Migration to Microservices
	Architectural Recovery


	Conclusion
	References

