
Slicer4D: A Slicing-based Debugger for Java
Sahar Badihi

Univ. of British Columbia, Canada
shrbadihi@ece.ubc.ca

Sami Nourji
Univ. of British Columbia, Canada

saminourji23@gmail.com

Julia Rubin
Univ. of British Columbia, Canada

mjulia@ece.ubc.ca

Abstract

Debugging software failures often demands significant time and
effort. Program slicing is a technique that can help developers fast
track the debugging process by allowing them to focus only on
the code relevant to the failure. However, despite the effectiveness
of slicing, these techniques are not integrated into modern IDEs.
Instead, most, if not all, current slicing tools are launched from
the command line and produce log files as output. Developers thus
have to switch between the IDE and command line tools, manually
correlating the log file results with their source code, which hinders
the adoption of the slicing-based debugging approaches in practice.

To address this challenge, we developed a plugin extending the
debugger of IntelliJ IDEA – one of the most popular IDEs – with
slicing capabilities. We named our slicing-based debugger extension
Slicer4D. Slicer4D offers a user-friendly interface for developers
to perform dynamic slicing and further enhances the debugging ex-
perience by focusing the developers’ attention only on the parts of
the code relevant to the failure. Additionally, Slicer4D is designed
in an extensible way, to support integration of a variety of slicing
techniques. We hope our tool will pave the way to enhancing de-
veloper productivity by seamlessly incorporating dynamic slicing
into a familiar development environment.
Tool implementation and evaluation package is online [16].

Keywords

Program analysis, dynamic slicing, Java, debugging, IntelliJ plugin

ACM Reference Format:

Sahar Badihi, Sami Nourji, and Julia Rubin. 2024. Slicer4D: A Slicing-based
Debugger for Java. In 39th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE’24), October 27-November 1, 2024, Sacra-
mento, CA, USA. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3691620.3695363

1 Introduction

In modern software development, debugging is crucial in identify-
ing and rectifying failures. However, debugging complex programs
can be a challenging task, often requiring developers to navigate
through a vast code base. To recover reasons for a failure, it is es-
timated that developers spend up to 50% of their debugging time
building mental models of control and data flow dependencies of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1248-7/24/10
https://doi.org/10.1145/3691620.3695363

b = a – 1
if(a > 3)
 b = b – a
 c = b * a
else
 b = b + a
 c = b / a
a = a + 1
if(b < 0)
 bug()

Execute with
a = 4

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

b = a – 1
if(a > 3)
 b = b – a
 c = b * a
else
 b = b + a
 c = b / a
a = a + 1
if(b < 0)
 bug()

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

Slice with
line 10

b = a – 1
if(a > 3)
 b = b – a
 c = b * a
else
 b = b + a
 c = b / a
a = a + 1
if(b < 0)
 bug()

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

(a) Source code. (b) Executed code. (c) Sliced code.

Figure 1: Dynamic slicing example.

the code leading to the failure [15]. This process is often time-
consuming and error-prone.

Dynamic program slicing [11] is a technique positioned to make
debugging tasks more efficient. Through automatically extracting
control and data flow dependencies of a particular variable or state-
ment of interest, it allows developers to focus only on the executed
statements relevant to the failures, minimizing the amount of code
developers need to inspect [2].

For example, consider the code snippet in Figure 1a, which has a
bug in line 10. This code gets the variable “a” as input in line 1 and
then performs a set of calculations based on this variable. Figure 1b
shows the subset of statements executed when a = 4, omitting
the non-executed statements in lines 5-7. Figure 1c further grays
out executed statements that are not in the slice and thus are not
relevant to the bug (lines 4 and 8). In this case, only the calculations
related to the variable “b” affect the “if” statement in line 9, which,
in turn, determines whether the buggy line is executed or not. See
Section 2.2 for a more formal definition of dynamic slicing.

A number of existing implementations of the classic dynamic
slicing algorithm optimize for different trade-offs between accuracy
and performance. JavaSlicer [6] and Slicer4J [3] are examples of
publicly available implementations for Java. In addition to the clas-
sic slicing implementations, a number of slicing variants, such as
chopping [9], dicing [18], barrier slicings [13], and thin slicing [17],
aim to minimize the size of the slice while ensuring it still contains
the information relevant to the failure. Some of these techniques
require extra input(s) from developers. For example, barrier slicing
asks for a set of statements, called barriers, which are assumed to
be bug-free. When computing the slice, this technique excludes
from the slice the barriers and all statements affecting the barriers
to make the slice more focused.

While these techniques are effective in selecting trace statements
related to the fault, most, if not all of them, provide only a command-
line interface and log-file outputs. This hinders the adoption of
slicing in practice, as developers rather need the slice-based support
to be integrated into their current workflows, to debug their code
“natively” and consistently with their working practices.

ASE’24, October 27-November 1, 2024, Sacramento, CA, USA Sahar Badihi, Sami Nourji, and Julia Rubin

To bridge the gap between slicing research and practical usage,
we contribute a plugin named Slicer4D. The plugin extends one of
the most popular contemporary IDEs, IntelliJ IDEA [7]. Slicer4D
allows IDE users to perform slicing using the GUI and further inte-
grates the slice output into the development workflow. Specifically,
it grays-out those code sections in the IDE that are not included
in the slice, augments the debugger to only focus on statements
in the slice when stepping, and shows only variables relevant to
the slice in the variable inspection window. To support a variety
of different slicing techniques, Slicer4D is designed in a modular
way; it provides an extendability interface which can be leveraged
by third-party slicing techniques in order to integrate their slicing
output into the IDE. Its out-of-the-box version also includes an
integration with Slicer4J [3]. The implementation and evaluation
package of Slicer4D are available online [16].

2 Background

Wenowprovide an overview of debugging capabilities implemented
in typical IDEs and formally define dynamic slicing.

2.1 IDE Support for Debugging

Most IDEs, such as IntelliJ, Visual Studio Code, and Eclipse, have
integrated debugging support, where a developer can (1) specify
points in the program where the execution should be suspended,
called breakpoints, (2) step through the code and method invoca-
tions, and (3) inspect variables and expressions. This exploration
process helps developers gain knowledge about the causes of fail-
ures, facilitating their fixes.

2.2 Dynamic Slicing

When a program runs, each statement can be triggered multiple
times during the execution, e.g., in multiple iterations of a loop
or in different instances of a thread. We refer to each individual
execution of a statement as a statement instance and denote the 𝑘 th
execution of a statement 𝑠𝑖 as 𝑠𝑘𝑖 . We refer to the full sequence of
statement instances from a particular app run as an execution trace.
For the example in Figure 1, we refer to a statement in line 𝑖 as 𝑠𝑖 ,
e.g., the if statement in line 2 is denoted by 𝑠2. The execution trace
for this example thus contains statement instances 𝑠11 , 𝑠

1
2 , 𝑠

1
3 , 𝑠

1
4 , 𝑠

1
8 ,

𝑠19 , and 𝑠
1
10 (Figure 1b).

A statement instance 𝑠𝑚
𝑗
is control-dependent on 𝑠𝑘

𝑖
if 𝑠𝑘

𝑖
can alter

the program’s control and determines whether 𝑠𝑚
𝑗

executes [5].
In Figure 1, 𝑠13 is control-dependent on 𝑠12 , as the outcome of the
if determines whether the control reaches 𝑠13 or not. A statement
instance 𝑠𝑚

𝑗
is data-flow-dependent on 𝑠𝑘

𝑖
w.r.t. the variable 𝑣 used

in 𝑠𝑚
𝑗
if and only if 𝑠𝑘

𝑖
defines 𝑣 and no other statement redefines

𝑣 between 𝑠𝑘
𝑖
and 𝑠𝑚

𝑗
in the trace [1]. In Figure 1, 𝑠13 is data-flow-

dependent on 𝑠11 w.r.t. b, as the statement in line 1 defines the
variable b used in line 3.

A slicing criterion for an execution trace is a statement instance
and all variables of interest used in this statement instance [11].
A backward dynamic slice [11] is a set of statement instances on
which the slicing criterion is control- or data-flow-dependent, either
directly or transitively. For the example in Figure 1, the backward
slice from 𝑠110 consist of statement instances 𝑠19 , 𝑠

1
3 , 𝑠

1
2 , and 𝑠

1
1 .

3 Slicer4D Design

Figure 2 shows an overview of Slicer4D. The plugin is designed to
be modular and extensible: it decouples the slicing logic, the UI, and
the debugging modifications so that it can handle implementations
of multiple different slicers. At a high level, it includes our IDE
extensions to support the integration of new slicers, their setup,
and the debugging functionality itself. The API Layer specifies a
set of interfaces that Slicer Providers should realize. Integration of
slicers is supported via a wrapper that serves as a liaison between
the slicing tool and our IDE extensions. We now describe these
parts in more detail.
IDE extensions serve as the primary interface for both slicer providers
and users. They have three key parts, each tailored to a specific
task:
• Extendability allows a slicer provider to integrate a new slicing
technique, enabling the addition of custom slicers to the IDE.

• Setup allows a slicer user to select a slicing technique from
available slicers that are already registered with the plugin. The
slicer user can also select a slicing criterion and provide additional
parameters required by custom slicers.

• Debugging allows a slicer user to utilize the enhanced debug-
ging functionalities using the information generated by a slicing
technique. After getting the slice, the IDE code window high-
lights the slice statements and grays out the statements that are
not in the slice. The IDE also enables breakpoints only for state-
ments included in the slice and modifies the stepping commands
to traverse only statements in the slice. For example, the step
over command jumps to the next statement in the slice rather
than the next statement in the execution, as the original step over
command would do. Similarly, the modified variable window dis-
plays only the variables included in the slice and removes other
variables shown in the original variable window.

API Layer provides a standardized communication interface be-
tween the IDE and slicer wrappers through the APIs below:
• List<ParameterSpec> getConfiguration(): gets a list of parameter
specifications required by a slicer. The specification includes a
name, extension point (code editor, debugger editor, etc.), and
parameter type (statement or variable). This interface is used
when a slicer provider wants to integrate their new slicer into
the IDE.

• boolean setSlicingCriterion(Statement, List<Variable>): sets slicing
criteria, which is a statement and a subset of its variables, as
specified by the user. It returns true if the slicer succeeds in
setting the criterion and false otherwise.

• boolean setParameters(Map<ParameterSpec, List<Value>>): sets
the values (statements or variables) specified by the slicer user
for each parameter.

• boolean isInSlice(Statement): checks if a given statement is in the
slice. This API is used to highlight the statements in the code
view and also enable the breakpoint toggling for slice statements.

• Statement nextInSlice(Statement): given an in-slice statement as
an input, it retrieves the next statement in the slice. This API
is used to manage the modified stepping commands to skip the
next statement if it is not in the slice.

• Statement prevInSlice(Statement): given an in-slice statement as
an input, it retrieves the previous statement in the slice.

Slicer4D: A Slicing-based Debugger for Java ASE’24, October 27-November 1, 2024, Sacramento, CA, USA

New Slicer Integration

Slicing Parameter(s) Selection

Slicing Tool Selection

Customized Breakpoint Addition

Slicing Criterion Selection

Extendability

IDE

Customized Debugger Stepping

Setup

Customized Code Window

Customized Variable Window

API Layer Slicer Wrapper

Slicer
User

Debugging

New
Features

Extended
Features

Legend: Statement nextInSlice(Statement)

Statement prevInSlice(Statement)

boolean isInSlice(Statement)

boolean setSlicingCriterion
(Statement, List <Variable>)

boolean setParameters
(Map<ParameterSpec, List<Value>>)

List<ParameterSpec>
getConfiguration()

Slicer

Slicer
Provider

Custom Impl.

Custom Impl.
. . .

Default Slicer
Slicer 1

Slicer N
. . .

Slicer
Provider

Default Impl.

Figure 2: Slicer4D overview.

+. . . +getSlice(…)
+isInSlice(…)
+prevInSlice(…)
+nextInSlice(…)

+. . .
+isInSlice(…)
+prevInSlice(…)
+nextInSlice(…)

SlicerWrapper

+. . .
+getSlice(…)

DefaultSlicerWrapper

<<interface>>
APILayer

<<abstract>>
HelperWrapper

Figure 3: Slicer wrapper class diagram.

Slicer Wrapper supports integration of custom slicers. It serves
as a liaison between the slicing tool and our IDE. Figure 3 provides
more details on the implementation of wrappers. A SlicerWrap-
per has to implement all APILayer interfaces. This can be done
either directly or by extending the HelperWrapper abstract class
we provide. The HelperWrapper class reads and translates a simple
slice log to the format required by the IDE. It relies on and uses
the getSlice() method, which obtains the slice log from the slice
provider, to realize the remaining methods, such as isInSlice() and
nextInSlice(). Thus, wrappers extending HelperWrapper only have
to implement getSlice() instead of three slicer navigation methods.
This provides more flexibility in integrating third-party slicers not
originally designed to work with Slicer4D. As one example, we
introduce a default wrapper for the Slicer4J [3] integration.

4 Preliminary Evaluation

We investigated the usefulness of Slicer4D in a preliminary study.
Methodology.We conducted a user study involving 10 upper-level
(fourth- and fifth-year) undergraduate students in our university.
All participants had prior experience with IntelliJ IDEA and de-
bugging Java programs using this IDE: three were proficient, six
intermediate, and one identified themselves as a beginner. Each
participant had completed at least one co-op term of four months
working as a software developer in a company. The age of the

participants ranges between 21 and 26 years, with the majority
being 23 years old. As the study subjects, we selected three Java
programs (30 LoC, on average) and injected a bug into them. We
provided each participant with a randomly selected subject and
asked them to use Slicer4D to debug the program. Participants
were then asked to answer the following questions:
• How useful do you find Slicer4D (10-point scale, 1=not useful
at all, 10=very useful)?

• Which of Slicer4D’s features did you like the most?
• Which of Slicer4D’s features did you dislike the most?
• Any particular features that you want to see added?
• How easy is it to learn how to use Slicer4D (10-point scale, 1=not
easy at all, 10=very easy)?

To avoid biasing the participants, we recruited two students not
associated with our research group to conduct and moderate the
study. The moderators used their computers to allow the partici-
pants to access a running version of Slicer4D. Participants were
informed of the study’s purpose and were briefed on what was
required of them during the study, including debugging a program
and completing a retrospective survey.
Results. Overall, the participants expressed a high level of satisfac-
tion with Slicer4D (average usefulness of 8.6/10 and ease to learn
of 8/10). Qualitative feedback was also positive, with participants
pointing to Slicer4D’s intuitive interface and the clarity of the
slicing visualizations. In particular, they were most satisfied with
the line graying functionality, followed by the modified stepping
commands. Some participants mentioned that the plugin helped
them with “decreasing debugger complexity” as it “shows a smaller
program to step over”.

As suggestions for improvements, participants pointed out the
lack of interactive visualizations (e.g., graphs), which made it diffi-
cult for them to understand why certain statements were included
in the slice and what control and data flow dependencies existed be-
tween the slice statements. One participant suggested highlighting
lines of code with different colors based on their dependency type,
i.e., control and data. Participants also noticed delays in starting

ASE’24, October 27-November 1, 2024, Sacramento, CA, USA Sahar Badihi, Sami Nourji, and Julia Rubin

the debugging session due to the time needed for the underlying
slicing technique to finish execution. A visual progress bar could
help improve the user experience related to this issue. Finally, par-
ticipants suggested adding visuals to indicate which statements
were selected as slicing criteria/parameters.

Overall, despite these suggestions for improvements, the study
suggests that participants had an overall positive experience using
Slicer4D in the debugging process.

5 Limitations, Discussion, and Future Work

In its current version, Slicer4D only supports two types of addi-
tional parameters provided to custom slicers: statements and vari-
ables. While these are the parameters required by the contemporary
popular slicing techniques, Slicer4D can be further extended to
support other types of parameters that might become necessary in
the future. In addition, while the Slicer4D’s architecture is not tied
specifically to IntelliJ, its current implementation extends function-
ality within this IDE. The usability of the Slicer4D can further be
improved based on the feedback obtained in the user study. Finally,
our user study involved a relatively small sample of student partici-
pants from a single university, which may limit its generalizability
to the broader developer community.

Despite the limitations, we believe Slicer4D presents promising
opportunities for future development and community collabora-
tion. Our implementation is openly available and we encourage
the community to join our effort and further improve the tool. We
also encourage slicer providers to integrate their slicing tools into
Slicer4D, helping to broaden its applicability and usefulness. The
feedback from a more diverse set of users and the slicer provider
community, which we hope to achieve through this tool publica-
tion and demonstration, will be invaluable in refining and further
enhancing the tool.

As an additional way forward, we are also exploring the integra-
tion of Slicer4D into continuous integration (CI) pipelines, to use
it with slicing techniques for regression analysis. This would enable
more automated and efficient debugging workflows for evolving
large-scale software projects.

6 Related Work

Several prior works have focused on enhancing program debugging
by integrating various analyses into IDEs. MagpieBridge [14] is a
general framework for integrating static analyses into IDEs, provid-
ing developers with immediate feedback on potential issues in their
code. IntelliJ IDEA also includes a built-in static analysis for trac-
ing data transformations [8]. However, static analysis techniques
are less accurate for debugging failures due to over-approximation
static analysis makes.

Some approaches aim to provide extra information about the
current program execution, e.g., by displaying the call stack as a
UML sequence diagram [4] or displaying variables as a UML object
diagram [12]. While these approaches are sometimes referred to
as “visual debugger helpers”, our work is orthogonal and comple-
mentary: we focus on integrating slicing into IDE by identifying
statements relevant to the bug and modifying the code inspection
and debugging processes to consider only these statements. Never-
theless, Slicer4D can be further augmentedwith these visualization
ideas, to display information generated by slicing.

Several standalone debugging aids, e.g., Whyline [10], aim at
helping developers understand the software behavior by allowing
the developers to ask “why” and “why not” questions about program
behaviors. These tools are not integrated into the IDEs, whereas
Slicer4D focuses on IDE integration.

7 Conclusions

We introduced Slicer4D, an IntelliJ plugin that integrates slic-
ing techniques into the debugging workflow, i.e., code inspection,
breakpoints, and stepping. Slicer4D is modular and extensible,
separating the slicing logic from the user interface and debugging
modifications. This design makes it possible for the IDE to interact
with multiple slicers through a well-defined API layer, ensuring
flexibility and scalability. Our preliminary evaluation showed high
satisfaction with Slicer4D’s interface, despite areas for improve-
ment. We hope that our work will provide a platform for integrating
slicing techniques into standard workflows used by developers.
Acknowledgments. We would like to thank UBC capstone teams
for their contributions to the early versions of this plugin.

References

[1] Hiralal Agrawal, Richard A. DeMillo, and Eugene H. Spafford. 1991. Dynamic
Slicing in the Presence of Unconstrained Pointers. In Proc. of the Symposium
on Testing, Analysis, and Verification (TAV). 60–73. https://doi.org/10.1145/
120807.120813

[2] Hiralal Agrawal and Joseph R. Horgan. 1990. Dynamic Program Slicing. ACM
SIGPLAN Notices 25, 6 (1990), 246–256. https://doi.org/10.1145/93542.93576

[3] Khaled Ahmed, Mieszko Lis, and Julia Rubin. 2021. Slicer4J: A Dynamic Slicer for
Java. In The ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE).

[4] Jeffrey K Czyz and Bharat Jayaraman. 2007. Declarative and Visual Debugging in
Eclipse. In Proc. of the International Conference on Object-oriented Programming,
Systems, Languages, and Applications Workshop on Eclipse Technology eXchange
(OOPSLA). 31–35.

[5] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. 1987. The Program
Dependence Graph and Its Use in Optimization. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 9, 3 (1987), 319–349. https:
//doi.org/10.1145/24039.24041

[6] Clemens Hammacher. 2008. Design and Implementation of an Efficient Dynamic
Slicer for Java. Bachelor’s Thesis.

[7] IntelliJ IDEA. 2021. https://www.jetbrains.com/idea/
[8] IntelliJ. 2024. Data Flow Analysis. https://www.jetbrains.com/help/idea/

analyzing-data-flow.html
[9] Daniel Jackson and Eugene Joseph Rollins. 1994. Chopping: A Generalization of

Slicing. Carnegie-Mellon University. Department of Computer Science.
[10] Amy J Ko and Brad A Myers. 2008. Debugging Reinvented: Asking and An-

swering Why and Why Not Questions About Program Behavior. In Proc. of the
International Conference on Software Engineering (ICSE). 301–310.

[11] Bogdan Korel and Janusz Laski. 1988. Dynamic Program Slicing. Inform. Process.
Lett. 29, 3 (1988), 155–163. https://doi.org/10.1016/0020-0190(88)90054-3

[12] Tim Kräuter, Harald König, Adrian Rutle, and Yngve Lamo. 2022. The Visual
Debugger Tool. In 2022 IEEE International Conference on Software Maintenance
and Evolution (ICSME). 494–498.

[13] Jens Krinke. 2003. Barrier Slicing and Chopping. In Proc. of IEEE International
Workshop on Source Code Analysis and Manipulation (SCAM). 81–87.

[14] Linghui Luo, Julian Dolby, and Eric Bodden. 2019. Magpiebridge: A General
Approach to Integrating Static Analyses into IDEs and Editors. In Proc. of the
European Conference on Object-Oriented Programming (ECOOP).

[15] AnnelieseMayrhauser andA.Marie Vans. 1997. ProgramUnderstanding Behavior
During Debugging of Large Scale Software. Papers Presented at the Seventh
Workshop on Empirical Studies of Programmers (10 1997), 157–179. https://
doi.org/10.1145/266399.266414

[16] ReSeSS. 2024. Slicer4D. https://github.com/resess/Slicer4D
[17] Manu Sridharan, Stephen J Fink, and Rastislav Bodik. 2007. Thin slicing. In Proc.

of the Conference on Programming Language Design and Implementation (PLDI).
112–122.

[18] Mark Weiser and Jim Lyle. 1986. Experiments on Slicing-based Debugging Aids.
In Proc. of the Workshop on Empirical Studies of Programmers on Empirical Studies
of Programmers. 187–197.

