
Responsibility in Context: On Applicability of
Slicing in Semantic Regression Analysis

Sahar Badihi
University of British Columbia, Canada

shrbadihi@ece.ubc.ca

Yi Li
Nanyang Technological University, Singapore

yi_li@ntu.edu.sg

Khaled Ahmed
University of British Columbia, Canada

khaledea@ece.ubc.ca

Julia Rubin
University of British Columbia, Canada

mjulia@ece.ubc.ca

Abstract—Numerous program slicing approaches aim to help
developers troubleshoot regression failures – one of the most
time-consuming development tasks. The main idea behind these
approaches is to identify a subset of interdependent program
statements relevant to the failure, minimizing the amount of code
developers need to inspect. Accuracy and reduction rate achieved
by slicing are the key considerations toward their applicability
in practice: inspecting only the statements in a slice should be
faster and more efficient than inspecting the code in full.

In this paper, we report on our experiment applying one of
the most recent and accurate slicing approaches, dual slicing,
to the task of troubleshooting regression failures. As subjects,
we use projects from the popular Defects4J benchmark and
a systematically-collected set of eight large, open-source client-
library project pairs with at least one library upgrade failure,
which we refer to as LibRench. The results of our experiments
show that the produced slices, while effective in reducing the
scope of manual inspection, are still very large to be comfortably
analyzed by a human. When inspecting these slices, we observe
that most statements in a slice deal with the propagation of
information between changed code blocks; these statements are
essential for obtaining the necessary context for the changes but
are not responsible for the failure directly.

Motivated by this insight, we propose a novel approach,
implemented in a tool named INPRESS, for further reducing
the size of a slice by accurately identifying and summarizing
the propagation-related code blocks. Our evaluation of INPRESS
shows that it is able to produce slices that are 76% shorter than
the original ones (207 vs. 2,007 execution statements, on average),
thus, reducing the amount of information developers need to
inspect without losing the necessary contextual information.

Index Terms—Program slicing, slice minimization, regression
failures, case study

I. INTRODUCTION

Understanding and troubleshooting software regression fail-
ures is one of the most time-consuming development tasks,
especially in large, production-level software systems. To help
developers with this task, numerous change impact analysis and
fault localization approaches have been proposed. Their goal
is to focus the developers’ attention on the minimal subset of
program statements relevant to the failure. The majority of these
approaches can be largely divided into spectrum-based [1], [2]
and slicing-based [3], [4]. Unlike spectrum-based approaches
that output a ranked list of statements relevant to the failure,

slicing captures the dependencies and flow of information
between the outputted statements, supporting the mental-model
developers build when debugging failures [5], [6], [7]. For this
reason, slicing is shown to be useful in locating the source of
failures more easily [8], [9], [10].

The classic program slicing idea – to compute a subset of
program statements that affect a particular program variable or
statement of interest (the failure site, in our case) via control
and data dependencies – is further extended by numerous
slicing variants, such as dicing [5], chopping [11], slicing with
barriers [12], and thin slicing [13]. These variants propose
methods and heuristics to minimize the size of the slice
developers need to inspect while ensuring it contains the
relevant information needed to analyze the failure. Dual
slicing [14], [15], [16] is probably one of the most recent
and accurate dynamic slicing variants that was shown to be
effective for identifying regression failures. It simultaneously
analyses the base and regression versions of the program,
keeping in the slice only execution statements that lead to
diverging behavior between the versions.

The usefulness of the slicing approaches is typically evalu-
ated on relatively small code samples [11], [13], [17]. Work that
involves larger programs, typically from curated benchmarks
of real faults, such as Defects4J [18], focuses on demonstrating
that the produced slices include statements responsible for the
failure and are smaller than the original program traces [15],
[16]. However, they do not systematically assess whether the
size of the produced slices is reasonably small – an important
criterion as inspecting large slices is unlikely to be more helpful
in practice than debugging the program itself.

Case Study. Motivated to investigate the usefulness of slicing-
based approaches and promote their adoption in mainstream
software debugging tools, in this work, we start by conducting a
study on the properties of slices. In particular, we focus on dual
slicing, which is applied to identify regression failures. As our
study subjects, we use projects from the Defects4J benchmark.
However, projects in this benchmark are explicitly designed to
focus on individual faults in isolation, with changes between
program versions being small [19], [20], [21]. To experiment

Trace: Old ---> New

11

21

31

41

51

61

71

81

...
291

301

311

321

query = "select sum(c1)...where a>1"
expr = new SQLExpr()
parsed = query.split(" ")
opr = parsed[0]
if (opr.equals("select"))

opr = opr.toUpper()
expr = expr.append(opr)
...
//adding other sql items to expr
...
expr = expr.append(parsed[n])
res = getOperation(expr)
assertEquals("SELECT", res)

11

21

31

41

61

71

71

81

...
291

301

311

321

query = "select sum(c1)...where a>1"
expr = new SQLExpr()
parsed = query.split(" ")
opr = parsed[0]

expr = expr.append(opr);
...
//adding other sql items to expr
...
expr = expr.append(parsed[n])
res = getOperation(expr)
assertEquals("SELECT", res)

Figure 2

6

Common
block

te
st

te
st

pa
rs
eE
xp
re
ss
io
n(
qu
er
y)

expr = Func1(expr, opr)(a) Old version: P1. (b) New version: P2.

Fig. 1: Dynamic execution traces for P1 and P2 program versions.

with slicing in a more realistic setup, we collect an additional set
of projects where multiple changes distributed in the program
can simultaneously affect the test results. Specifically, we
identify eight large open-source library-client project pairs and
use them as case studies of troubleshooting library upgrade
failures. We refer to this benchmark as LibRench.

We pick the library upgrade task for our experiments because
of its relevance and practical importance: currently, a large
fraction of open-source library clients do not use the latest
versions of the libraries, even though more advanced library ver-
sions contain critical bug and security vulnerability fixes [22],
[23], [24], [25]. Developers delay library upgrades because
upgrades are often time-consuming and error-prone [26], [27],
[28]. Moreover, some library changes can be defective, causing
developers to revert to the original library version [24].

Both client and library developers spend days, if not
months, identifying the reasons and looking for ways to fix
upgrade failures. For example, an org.jdbi client developer
spent more than 10 days troubleshooting the upgrade of the
com.fasterxml.jackson library: «I fully intend to submit a
PR once I narrow down the root cause and come up with an
acceptable fix [29].» Another group of developers debugged
a failure for more than 20 days: «At this point I don’t have
time to start digging through bigger tests <...> but if someone
could help here trim tests down into core failure(s), more
minimal/isolated case, I’d happily merge a PR [30].» Inspecting
how slicing can help developers troubleshoot such upgrade
failures is thus an ideal task for our study.

We applied dual slicing for projects in Defects4J and
LibRench, to produce a slice relevant to each failure. Our
analysis of the slices showed that although slicing helped
substantially reduce the number of execution-level statements
that developers need to inspect in order to understand a failure
(i.e., debugging steps they need to make), in the majority
of cases, slices are still very large: 2,007 execution-level
statements on average, with a maximum of 9,767 statements
(see Section III for details). We believe this number is still
very large to be comfortably analyzed by a human. As such,
techniques to further reduce the size of slices are needed.

By inspecting the produced slices, we realized that slices
often contain statements that are responsible for the failure
and statements that propagate information between responsible

statements, to ensure adequate context and information flow
is preserved. This observation inspired the slice minimization
technique proposed in this work.
Slice Minimization Through Summarization. Building up
on the insights from the study, we propose an approach for
further minimizing program slices while preserving the code
necessary for understanding the regression failure. The main
idea behind our approach is to summarize the (generally large)
propagation blocks of code while keeping their effect on the
responsible statements.

Consider, for example, two versions of a program, P1 and
P2, in Figure 1 – a simplified version of a regression failure
which occurred when upgrading a popular database connection
library, alibaba-druid, from version 1.1.14 to 1.1.21. The
figure shows dynamic execution traces of the old (passing) and
new (failing) executions, where lines 1, 31, and 32 correspond
to the test and the remaining lines correspond to the changed
method parseExpression in the library code. We mark code
changed between the two versions in bold (lines 5-6).

The (unchanged) test calls the library parseExpression
method, with a String representing an SQL query as its input
(line 1 in both figures). The goal of the method is to parse the
input expression and return it in an SQL format. The test then
verifies that parsing was successful and that the operation of
the returned query is indeed SELECT (lines 31-32).

The expected result is successfully obtained in P1 but the
assertion fails in P2. That is because P1 ensured to capitalize
the name of the operation (lines 5-6) while P2 omitted these
statements. The remainder of the code (lines 7-30) parses
additional parts of the input query, building the output SQL
query returned by the parseExpression method. Yet, these
additional parts are not checked by the test and thus have no
effect on the failure.

The dual slicing approach applied to this example will return
all but the four grayed-out statements in lines 1-4. That is
because it correctly identifies that the execution of these grayed-
out statements is identical between the versions and thus cannot
be the reason for the failure. It will also correctly keep the
changed code in lines 5 and 6, as this code is responsible for
the failure. However, it will also keep the code in lines 7-30
as part of the slice, as the program output is data-dependent
on this code (see Section II for details).

2

Understanding how exactly the change in the value of opr
in line 6 affects the value of expr in line 31 through the
calculations in lines 7-30 does not help in understanding the
source of the failure: the value of expr is computed in the exact
same manner in both versions P1 and P2, with only the initial
value of opr being different. Simply removing statements in
lines 7-30, which did not change between the versions, e.g.,
like git diff does, is not useful either: that would hide the
important fact that the value of expr in line 31 depends on
the value of opr line 6 of P1 and line 4 of P2. Such context
is necessary to understand the reasons for the failure.

Thus, instead of removing such blocks of code, we propose
to summarize their effect on the rest of the program. The
summaries consist of high-level input-output functions, where
outputs are variables needed for later computations and
inputs are their dependencies on variables used earlier in
the slice. Such summarization eliminates unimportant internal
computations while preserving the flow of information in the
slice. In our example, the code in lines 7-30 is summarized
as a statement expr = Func1(opr, expr), which captures
the relationship between the inputs and the outputs of the
summarized block without including unnecessary details.

We implemented the proposed approach for identifying
and replacing propagation blocks with their corresponding
summaries in a tool named INPRESS (stands for Information-
Preserving Slice Summarization). Our evaluation of INPRESS
shows that it produces summarized slices that are around 76%
shorter than the original ones, on average (max: 97.89%),
helping to further reduce the amount of information developers
need to follow when troubleshooting regression failures.
Contributions. This paper makes the following contributions:
1. We conduct a study investigating the applicability of slicing-
based techniques for troubleshooting regression failures. Our
study shows that the produced slices are large – up to 9,767
execution-level statements (Section III).
2. We define the notion of responsible and propagation
statements of the slice: the former are necessary to understand
the failure and the latter are used to propagate contextual
information between the responsible statements (Section IV).
3. We propose an approach for reducing the size of slices by
abstracting contextual information while preserving its effects
on the failure through propagation (Section IV).
4. We implement the proposed approach in a tool, called
INPRESS, and evaluate its effectiveness (Section V).
5. We make our implementation of INPRESS, Defects4J and
LibRench case studies that we used, and all experimental data
available online [31], to encourage future work in this area.

II. BACKGROUND

In this section, we provide the necessary background and
definitions used in the rest of the paper.
Code Representation. We assume a common Java-bytecode-
style programming language representation [32], with method
calls and return statements, assignments to local and global
variables, conditionals, i.e., ifs, and jumps. For simplicity,
we discuss our examples on the source-code level; however,

slicing is performed on Java bytecode. Thus, all conditionals
other than ifs, such as for and while loops, are expressed
in terms of if and jump statements. We refer to a statement
in line i of our examples as si, e.g., the if statement in line 5
of Figure 1a is denoted by s5.

A library is a standalone distribution of a program which
exposes a number of APIs (i.e., method calls) to its clients.
A client program can use one or more libraries. We refer to
the two versions of a program (a client-library pair) as P1

and P2 and the set of changes between the versions as ∆.
These changes include statements that need to be added (A),
removed (R), and modified (M) to transform one version of the
program to another. More specifically, we define two symmetric
operators, ∆2 and ∆1. ∆2 captures additions, modifications,
and removals in P2 compared with P1. Applying ∆2 on the P1

version will produce P2, i.e., ∆2 (P1)→ P2. For the example
in Figure 1, ∆2 ={R(s5-s6)}. Similarly, ∆1 captures additions,
modifications, and removals in P1 compared with P2, i.e.,
∆1 (P2)→ P1. In our example, ∆1 ={A(s5-s6)}.
Tests and Execution Traces. In dynamic analysis, each
statement of a program can be triggered multiple times during
the program execution, e.g., in multiple iterations of a loop
or in different calls to the same method. We refer to each
individual execution of a statement as a statement instance
and denote the kth execution of a statement si as ski . We refer
to each statement instance as an execution-level statement or,
simply execution statement. A sequence of execution statements
(i.e., statement instances executed in a particular program run)
constitutes an execution trace. In Figure 1a, the execution trace
consists of s11, s12, s13, etc. For regression failures, we denote
a test case that passes with P1 and fails with P2 by Tc. We
assume that the execution of Tc is deterministic. We denote by
TP1

and TP2
the two traces that correspond to the execution

of Tc with P1 and P2, respectively.
Control, Control-flow, and Data-flow Dependencies. In
static analysis, for two statements si and sj , we say that
sj is control-dependent on si if, during execution, si can
directly affect whether sj is executed [33]. An if statement is
a common example of a statement that affects the execution of
its subsequent statements. For the example in Figure 1a, s6 is
control-dependent on s5. We say that statement instance smj is
control-dependent on ski if sj is control-dependent on si. That
is, s16 is control-dependent on s15.

We say that statement sj is control-flow-reachable from si if
sj is always executed following the execution of si, i.e., either
both statements are in the same method and sj appears after
si in the control-flow graph or they are in different methods
and si (transitively) invokes the method whose statement is sj .
For example, s4 is control-flow-reachable from s3 in Figure 1.
We say that a statement instance smj is control-flow-reachable
from ski if sj is control-flow-reachable from si and smj is, in
fact, executed after ski in the same thread.

We say that a statement instance ski is a dynamic reaching
definition of a variable v in smj if and only if (a) smj is control-
flow-reachable from ski , (b) there exists a variable v s.t. v is

3

used in sj and defined in si, and (c) there is no redefinition
of v along the control-flow edges between ski and smj . In that
case, we also say that the statement instance smj is data-flow-
dependent on ski w.r.t. the variable v [34]. For example, the
dynamic reaching definition of the variable parsed used in s14
is s13 and, thus, s14 is data-flow-dependent on s13 w.r.t. parsed.
Program Slicing. Program slicing [35], [4] computes the set
of statements that affect a particular variable of interest, often
referred to as a slicing criterion. Slicing can be performed
statically or dynamically [36]. While static slicing considers all
possible program paths leading to the slicing criterion, dynamic
slicing focuses on one concrete execution. The main idea behind
a dynamic slicing is to first collect an execution trace of a
program, and then inspect the control and data dependencies
of the trace statements, identifying statement instances that
affect the slicing criterion and omitting the rest.

A slicing criterion for an execution trace is a tuple (c, V),
where c is a statement instance and V is a set of all variables
of interest used in this statement instance [36]. If V is omitted,
it is assumed to include all variables used by c. A backward
dynamic slice [36] is the set of statement instances whose
execution affects the slicing criterion, i.e., the set of instances
on which the slicing criterion is control- or data-flow-dependent,
either directly or transitively. We denote by SP1 and SP2 the
two slices of the corresponding traces TP1 and TP2 , which
were obtained by running the test Tc. Intuitively, a dynamic
slice corresponds to the sequence of steps developers need to
analyze when troubleshooting a failure.
Trace Alignment. Trace alignment gets as input two traces,
TP1

and TP2
, and establishes correspondence of execution

points across the traces [37]. Several trace alignment techniques
have been proposed, based on string matching [38], memory
indexing [39], and structural indexing [40], [16]. They produce
a set of pairs of aligned trace statement instances, which we
denote by θ(TP1

,TP2
).

Dual Slicing. Dual slicing is a symmetric slicing technique that
works on two traces simultaneously; it was first introduced for
debugging concurrency bugs [14] and later used for regression
failures [15], [16]. Its goal is to produce a minimum sequence
of statement instances that are causally connected, leading from
the root cause to the failure. Given two execution traces – one
from the passing and the other from the failing execution, the
main idea behind dual slicing is to first align the traces and
then focus only on their differences. The approach defines two
types of differences: statement instances that are not aligned
across executions (e.g., s15-s16 in Figure 1a, as these are only
executed in one of the traces) and statement instances that are
aligned but produce different data values (e.g., s17 in Figures 1a
and 1b, as the execution of this statement instance results in
different values of expr).

Unlike classical slices, dual slices only contain statement
instances that differ between traces. In Figure 1, s11, s12, s13,
and s14 are not part of the slice (and thus grayed out in the
figure): these instances are aligned across executions and define
the exact same data values. As there is no divergence in the

execution of these instances, dual slicing concludes that they
are not the reason for the failure.

Another key difference between dual and classical slicing is
that dual slicing computes the transitive closure of dependencies
across both traces. This means that once a statement is added to
a slice in one of the traces, its corresponding aligned statement
is also added to the slice of the other trace. This is done to incor-
porate information missing from the run, as that could explain

a=1
r=0
if(a>0)

r++
assert(1,r)

11

21

31

41

51

a=-1
r=0
if(a>0)

assert(1,r)

11

21

31

41

51

(a) Trace of P1. (b) Trace of P2.
Fig. 2: Classical vs. dual slice.

the reason for a failure.
For the example in Fig-
ure 2, the statements in
lines 1 and 3 of P2 are
added to the dual slice
even though they have no
effect on the failing asser-
tion statement in line 5 of P2 and, thus, are not part of the
classical backward slice of P2.

III. CASE STUDY

We now describe the methodology, selection of subjects, and
results of our study for evaluating the properties of dual slices.

A. Methodology

We implemented a version of the dual slicing algorithm based
on recent work by Wang et al. [16]. This work focused on
improving trace alignment, which is the main building block for
dual slicing. The authors released their implementation of the
dual slicing algorithm in a tool named ERASE. We borrowed
the trace alignment algorithm from ERASE. We opted not to
use the slicing algorithm implemented in the tool as it does not
support implicit control dependencies caused by exceptional
flows (i.e., runtime exceptions which, in fact, were the main
reasons for failures in our case studies), multi-threading, and
data flows through Java framework calls, which were necessary
for our study. Instead, we implemented the slicing part on top
of Slicer4J [41]. Slicer4J relies on Soot [42] to instrument
the bytecode of its input programs and produces traces of
Jimple statements [43]. We further map these statements to
their corresponding source code statement instances using Soot.
We performed all our experiments on an Ubuntu 18.04.4 Virtual
Machine with 4 cores and 32 GB of RAM running on an in-
house Ubuntu server with 64 cores and 512 GB of memory.

B. Subjects

As our study subjects, we use two sets of programs described
below and summarized in Table I.
Defects4J. We started with the popular Defects4J bench-
mark [18], which consists of 395 regression failures from six
Java projects. For each regression failure, Defects4J provides
a faulty and a correct version of the program, a minimal set
of changes required to fix the fault, and a test that triggers the
fault. We had to exclude 41 program pairs whose traces cannot
be processed by the ERASE trace alignment algorithms, as
was also done by the authors of that tool [16] and 4 pairs that
could not run under Java 8 runtime used by Slicer4J [41]. Like
Lin et al. [44], we also excluded 16 pairs with nondeterministic

4

TABLE I: Subjects.

ID Project #Failures LoC
P1 P2

Defects4J
D1 JFreeChart 23 96,522 96,517
D2 Closure-Compiler 95 90,604 90,601
D3 Commons-Lang 49 22,756 22,750
D4 Commons-Math 63 85,623 85,617
D5 Mockito 26 37,281 37,277
D6 Joda-Time 22 28,428 28,422

Avg. - - 60,202 60,197
LibRench

L1 jettison / xstream 1 62,615 63,631
L2 square-dagger / modelmapper 1 55,051 56,995
L3 moshi / retrofit 1 54,229 54,987
L4 jackson-core / mockserver 1 96,880 100,567
L5 antlr4-runtime / fizzed-rocker 1 87,585 84,232
L6 httpcomponents-client / wasabi 1 184,363 186,329
L7 jackson-databind / openAPI-generator 1 391,254 387,458
L8 alibaba-druid / dble 1 440,011 445,216

Avg. - - 171,498 172,426
All

Avg. - - 115,848 116,314

test results. Finally, we excluded 56 “trivial” failures, which
occur at the last statement of the trace, as a dual slice for these
failures contains one statement only. At the end, our evaluation
included 278 Defects4J faulty and correct program pairs. Due
to space limitations, in Table I, we group the pairs by their
corresponding project and report the number of correct and
faulty program pairs in each project (#Failures). The full list
of subjects that we used is available online [31].

As the table shows, the size of the correct (P1) and faulty
(P2) versions of the programs in the Defects4J benchmarks
(subject ids D1-D6), is almost identical, in terms of lines of
code (LoC) calculated by the JaCoCo tool [45]. This is because
the Defects4J benchmark is tailored to study individual faults in
isolation, with each correct and faulty program pair containing
only one fault and only the changes needed to fix the fault. That
is, Defects4J might not represent realistic debugging scenarios,
where numerous types of changes, made for different purposes,
co-exist in the program [46].
LibRench. To evaluate the applicability of slicing for identify-
ing regression failures in more realistic debugging scenarios,
we collected an additional set of programs, which we refer
to as LibRench. To this end, we focused on the task of
troubleshooting failing open-source software library upgrades,
collecting the five most-used libraries from each of the 30
different categories in Maven [47] (150 libraries in total). We
further selected 128 libraries whose source code is available
in GitHub. The size of these libraries ranges between 2,135
and 973,435 LoC (average: 123,484, median: 56,366).

To collect clients, we started from the 1,000 top-starred Java
projects in GitHub that use the Maven dependency manager.
We filtered out 573 projects that could not pass the build and
test phases successfully under JDK version 8. We parsed the
pom.xml files of the remaining projects to obtain the list of
Maven libraries they use and selected projects with at least
one library in our list of top libraries. We then attempted to
upgrade the client to the latest version of the library available

on Maven, identifying 168 client-library pairs for which at
least one client test fails after the upgrade. This set of pairs
contained 84 unique libraries, which we further ordered by size
and grouped into 8 bins We then randomly selected a library
from each bin and a client-library pair for further inspection.
This process ensured that we have represented libraries of
different sizes in our dataset.

Subjects L1-L8 in Table I correspond to the selected client-
library pairs, where we list the name of the library and the client
for each pair. Detailed information about the selected projects,
such as their versions and more, is available online [31].

C. Results
We applied dual slicing on each base and regression subject

program pair, (P1, P2), using the failing regression test as an
input. Table II shows the size of the execution trace (#T) and
the produced dual slice (#DSlice), in terms of the number of
execution statement instances they contain. It also shows the
reduction rate achieved by dual slicing, calculated as #T−#DSlice

#T
(%Reduct.). We report the metrics for each library-client pair
individually (subjects #L1-#L8) and aggregate the metrics to
report average numbers for all Defects4J cases in the same
project (subjects #D1-#D6). Detailed results for each individual
Defects4J case are available online [31]. The last column of
the table captures the number of changes, i.e., consecutively
changed statement instances, that a trace contains (#Chg).
E.g., lines 5-6 in the example in Figure 1 are counted as
one consecutive change.

The table shows that dual slicing is indeed very effective
in reducing the size of the original execution trace: around
88.28% reduction rate on average (row “P1 +P2 Avg.”, which
considers P1 and P2 executions together, for both Defects4J
and LibRench). The main reason for this reduction is that traces
are relatively large: more than 30,000 statement instances, on
average. Yet, they contain only a small number of changes: 23
consecutive changes, on average. A small number of changes,
especially when located towards the end of the trace, i.e., close
to the failure, gives dual slicing an opportunity to remove
numerous statements preceding the change.

TABLE II: Reduction Rate Achieved by DSlice.

ID #T #DSlice %Reduct. #Chg
P1 P2 P1 P2 P1 P2 P1 P2

Defects4J
D1 6,080 5,745 69 53 89.95 89.87 3 1
D2 100,517 84,809 3,193 3,489 97.09 96.08 6 5
D3 3,612 2,570 60 26 93.42 92.21 3 1
D4 11,212 6,390 444 1,033 92.15 85.3 6 19
D5 3,628 2,600 542 213 90.47 91.93 7 4
D6 14,176 11,899 407 630 95.21 94.61 3 2

Avg. 39,491 32,543 1,291 1,505 93.97 91.94 5 7
LibRench

L1 20,667 22,374 856 2,829 95.85 87.35 34 169
L2 5,891 1,275 474 309 91.95 75.76 36 27
L3 1,112 1,150 194 201 82.55 82.52 8 14
L4 9,035 2,213 1,146 1,141 87.31 48.44 6 6
L5 128,965 128,468 8,872 9,767 93.12 92.39 58 133
L6 127 307 63 30 50.39 90.22 3 2
L7 30,813 47,747 5,964 8,162 80.64 82.9 56 78
L8 52,957 54,781 923 949 98.25 98.26 10 14

Avg. 31,196 32,289 2,311 2,923 85.01 82.23 26 55
All

Avg. 35,343 32,416 1,801 2,214 89.49 87.08 15 31
P1 +P2 Avg. 33,879 2,007 88.28 23

5

Change
Extraction

Instrumentation
&

Dual Slicing

Block Extraction Summarization

…

1 2

Summaries
S!!
" & S!"

"

Test case: ##

Changes: ∆

'̅(B!! ,B!")

B!!& B!"

$$$%

S!!& S!"
'(T!! ,T!")

Fig. 3: INPRESS overview.

One of the main reasons the reduction rate for Defects4J
is higher than that for LibRench is that, by design, Defects4J
benchmarks include only a minimal set of changes, which are
mostly located close to the failure. In fact, in more than 90%
of the Defects4J subjects, the first changed statement instance
appears in the last third of the trace, which gives dual slicing
an opportunity to remove numerous statements preceding the
change. This is not the case for the majority of LibRench
subjects. Interestingly, only the largest LibRench subject, #L8,
exhibits the same property: the first change in the P1 execution
of 52,957 statement instances appears at position 50,693 of the
trace. Thus, dual slicing removes more than 50,000 statement
instances preceding the change, achieving a very high reduction
rate of 98.25% in this case.

However, despite the high reduction rate, the slice size for
the majority of the subjects (including #L8) is still very large:
2,007 statement instances, on average, with a maximum of
9,767 instances for P2 of subject #L5. This means that, even
after slicing, developers still need to follow a large number of
execution steps when debugging failures.

By manually inspecting the generated slices, we observe
that slices contain large blocks of statement instances common
between different program versions, similar to statements in
Figure 1, which was inspired by a real case we observed. In this
case, the common code block, in fact, included 223 statement
instances that propagate manipulations related to managing
expressions and do not directly contribute to the failure. In
another example, the jettison library for converting between
XML and JSON formats (subject #L1), the change resulted
in a different structure of the JSON object that further went
through a chain of serialization and deserialization operations
(152 statement instances), which are, again, of low relevance to
the failure. In yet another case, the jackson-databind library
used for data processing tasks (subject #L7), the change related
to removing an if condition validating certain properties of
the input. This change further propagated to more than 2,000
statement instances that dual slicing keeps due to a transitive
control dependency on the removed if.

This presents an opportunity for slice minimization through
summarizing these large blocks of common code, which have
little relevance to the failure and mostly propagate information
related to the change. Such minimization can further reduce the
size of the slices while keeping the flow of information in the
program, improving the effectiveness of slicing for regression
analysis. We discuss our approach, INPRESS, for performing
such summarization next.

IV. SLICE MINIMIZATION APPROACH

Figure 3 shows the overview of INPRESS. It receives as
input two slices, SP1

and SP2
, which are produced by a dual

slicing technique for the execution of the test Tc on P1 and P2,
respectively. It also receives the trace alignment, θ(TP1

,TP2
),

and the set of changes between program versions, ∆. INPRESS
produces as output summarized slices, S∆P1

and S∆P2
, which

capture the effects of changes in P2 on the failure of Tc.
In the current version of INPRESS, input slices and their

alignment are produced by our instantiation of the dual slicing
algorithm. However, any pair of aligned execution sequences,
including classical backward slices and the complete execution
trace itself, can be used instead.

INPRESS leverages the insight that computations performed
by code that is common between two versions of the program
are not directly responsible for the test failure. Yet, simply
removing common code is not desirable as developers rely
on the context and flow of information in a program when
troubleshooting failures [7], [9]. Thus, instead of removing
common code, INPRESS 1 accurately identifies blocks of
common code that can be individually summarized in terms of
high-level input-output functions and 2 concisely summarizes
the identified blocks while keeping the flow of information
in the program intact. As such, INPRESS minimizes the slice
while preserving the dependencies between all its statements.

We now describe these two parts of our approach (boxes 1
and 2 in Figure 3) using Figure 4 as an example that we
created to illustrate different features of INPRESS. Figures 4a
and 4b show the successful and failing runs of program versions
P1 and P2, respectively. Like in Figure 1, we mark statements
changed between the versions in bold and gray out statement
instances removed by the dual slicing algorithm.

A. Block Extraction
Given the input slices (SP1 ,SP2) and changes ∆=(∆1,∆2),

INPRESS first marks statement instances within each slice
that have to be preserved in the summary in their original
form. We refer to the set of preserved statement instances
as the retained set and denote it by ρP1

and ρP2
, for SP1

and SP2
, respectively. We define the retained set ρP1

(ρP2
) to

contain all statement instances corresponding to the statements
added and modified in ∆1 (∆2). These statement instances are
bolded in the figure. We also add to retained sets the statement
instances corresponding to the test assertion. For the example
in Figure 4a, ρP1

contains statement instances in lines 2, 5,
12, and 14. We represent the retained set elements by dots in
the schematic representation at the center of the figure.

6

11
21
31
41
51
61
71
91
101
121
111
121
131
141

a=10
b=0
c=5+b
d=a-b
if(a>0)

e=c+d
f=15+e

g=f+5
g++
h=g*2
assert(72,h)

11
21
31
41
51
61
711
81
91
101
111
121
131
141

a=10
b=5
c=5+b
d=a-b
if(a<0)

else
e=d
f=15-e

g=f+5

h=g*2
assert(72,h)

DS: Old ---> New

Func1 Func1

Func6 Func6

Func3

Func4
Func5 Func5

Func2 Func2

7

(a) Dual slice: P1. (b) Dual slice: P2.

Fig. 4: Example regression failure.

if(old)
b=0[old: 0]

else //new
b=5[old: 5]

c=Func1(b)[old: 10; new: 15]
d=Func2(b)[old: 10; new: 5]
if(old && a<0)
f=Func3(c,d)[old: 35]

else //new
f=Func4(d)[new: 10]

g=Func5(f)[old: 40; new: 15]
if(old)
g++[old: 41]

h=Func6(g)[old: 82; new: 30]
assert(82,h)[old:t; new:f]

21
31
41
51
71
901
121
111
121
131
141

b=0
c=Func1(b)
d=Func2(a,b)
if(a>0)
f=Func3(c,d)

g=Func5(f)
g++
h=Func6(g)
assert(72,h)

21
31
41
511
711
81
101
111
121
131
141

b=5
c=Func1(b)
d=Func2(a,b)
if(a<0)

else
f=Func4(d)
g=Func5(f)

h=Func6(g)
assert(72,h)

Libre: Old ---> New

8

21
31
41
51
71
901
121
111
121
131
141

b=0
c=Func1(b)
d=Func2(a,b)
if(a>0)
f=Func3(c,d)

g=Func5(f)
g++
h=Func6(g)
assert(72,h)

21
31
41
511
711
81
101
111
121
131
141

b=5
c=Func1(b)
d=Func2(a,b)
if(a<0)

else
f=Func4(d)
g=Func5(f)

h=Func6(g)
assert(72,h)

(a) Slice summary: P1. (b) Slice summary: P2.

Fig. 5: Summarized slices for the example in Figure 4.

Next, INPRESS identifies the set of blocks within each
slice. Intuitively, a block is the longest sequence of statement
instances that correspond to a chunk of common code, with the
retained statements used as “dividers”. We further distinguish
between two types of blocks: matched blocks (¯̄B), which contain
statement instances aligned between slices, i.e., in θ(TP1

,TP2
),

and unmatched blocks (B̄), which contain unaligned statement
instances. In the example in Figure 4a, TP1 , has three matched
blocks, represented by rectangles in the figure: statement in-
stances in lines 3-4, 11, and 13. It also has an unmatched block
represented by a diamond: (unaligned) statement instances in
lines 6-7. The slice in Figure 4b, TP2

, by definition, has the
exact same matched blocks and also an unmatched block: in
lines 9-10. Furthermore, even though there are no retained set
elements between statement instances in lines 11 and 13 of
TP2

, these instances are split into two blocks, to match the
blocks in TP1

.
The block extraction step outputs “chunked” slices, BP1

and
BP2

, as well as the alignment between their matched blocks, θ̄.
Such an abstraction of blocks allows us to identify regions of
code between the retained statements that can be summarized
without losing critical information related to the statements of
interest to the client developers, as discussed next.

B. Slice Summarization

The goal of this step is to accurately summarize the slice,
expressing the mapping between inputs and outputs for each
block, as well as dependencies between the block summaries
and the retained statements. More specifically, inspired by

Person et al. [48], we summarize each block as a set of
functions representing the mapping between the block’s input
variables (i.e., variables used in the block) and its output
variables (i.e., variables defined in the block).

For example, the first unmatched block in Figure 4a consists
of two statement instances in lines 6 and 7. It uses two variables:
c and d in line 6 and sets two variables: e and f. However, only
one of these variables is used in the remainder of the code – f
(in line 11). The variable e is used for internal calculations only
and thus is not part of the external block definitions. Thus, the
summary of this block is represented by a function Func3(c,d),
as shown in Figure 5a (line 7). That is, the summary of the
block abstracts the internal computations, only exposing input-
output mappings of variables defined in the block and used in
the rest of the code.

One important aspect of INPRESS is the ability to synchro-
nize summaries of matched blocks. For example, in Figure 4b,
only the variable d is used in the rest of SP2

(line 9), while
in SP1

both variables, c and d, are used in line 6 and, thus,
are represented as Func1(b) and Func2(a,b) in lines 3 and 4
in Figure 5a. However, to ensure that matched blocks (of
aligned statement instances) are summarized in an identical
way, INPRESS also generates the summary for the variable c
in SP2

. Besides ensuring that matched code is summarized with
the same functions, this also demonstrates that, unlike in SP1

, c
was not used in SP2

for calculating the value of the variable f
(because of the change in the if condition in line 5).

Each abstraction function contains all statement instances
used for computing the variable, which are all statement
instances that are in the backward slice performed on the
common block code, with the defined variable being the slicing
criterion. For example, the body of Func1(b) consists of one
statement instance in line 3, while the body of Func3(c,d)
consists of two instances in lines 6 and 7.

To produce the summaries, INPRESS processes both ex-
ecution slices backwards, starting from the failing assertion
statement. It transitively collects definitions of variables used in
the retained statement instances while summarizing each block
as a set of assignments capturing the mapping of the block
input to output variables. While doing that, it also synchronizes
the summaries of the matched blocks. In a sense, the tool
performs a backward dynamic slicing over the set of retained
statement instances and blocks, producing a set of statement
instances required to retain the flow of information (1) from the
input variables to the changed statement instances, (2) between
the changed statement instances, and (3) from the changed
instances to the failed assertion.

This process is shown in Algorithm 1, which accepts BP1
,

BP2
, and the set of matched blocks ¯̄B as input and produces

the minimized versions of both slices, S∆P1
and S∆P2

, as output.
It works simultaneously on both slices and, similar to dynamic
backward slicing techniques, maintains working sets WP1

and
WP2

(line 4) to track the ids of the variables that have to be
defined in each of the summaries. It leverages the fact that input
slices are aligned around common blocks and thus summarizes
the unmatched parts of each slice first, starting from the failing

7

Algorithm 1: Slice summarization algorithm.

1 Input: BP1
, BP2

, ¯̄B
Output: S∆P1

, S∆P2

2 begin
3 S∆P1

, S∆P2
← ∅

4 WP1 , WP2 ← ∅ ▷ definitions to look for
5 while BP1 ̸= ∅ ∨ BP2 ̸= ∅ do
6 ProcessUnmatched (BP1

, S∆P1
, WP1

)
7 ProcessUnmatched (BP2

, S∆P2
, WP2

)
8 ProcessMatched (BP1

, BP2
, S∆P1

, S∆P2
, WP1 , WP2)

9 return S∆P1
, S∆P2

10 Procedure ProcessUnmatched(B, S∆L , W)
11 begin
12 while B ̸= ∅ do
13 e← get_last(B) ▷ get the last element

14 if e ∈ ¯̄B then
15 return ▷ will be processed with its matched block

16 else if e ∈ ρ then
17 S∆L ← e+ S∆L ▷ prepend the retained statement instance
18 W ←W ∪ {use(e)} ▷ look for the variables it uses
19 if e is assignment then
20 W ←W \ {def (e)} ▷ no need to track redefined variables

further

21 else
22 SummarizeDefinitions (e, S∆L , W) ▷ unmatched block

23 B ← B \ {e} ▷ remove the processed element

24 Procedure ProcessMatched(BP1
, BP2

, S∆P1
, S∆P2

, WP1 , WP2)
25 begin
26 e← get_last(BP1) ▷ get the matched block
27 SummarizeDefinitions (e, S∆P1

, WP1
∪ WP2

)
28 SummarizeDefinitions (e, S∆P2

, WP1
∪ WP2

)
29 BP1

← BP1
\ {e}; BP2

← BP2
\ {e} ▷ remove the processed

elements

30 Procedure SummarizeDefinitions(block, S∆L , W)
31 begin
32 A← summarize(block) ▷ represent the block as a set of assignments
33 foreach a ∈ A do
34 if def (a) ∈W then

▷ a summary assignment defines a variable of interest
35 S∆L ← a+ S∆L ▷ prepend the summary statement
36 W ←W \ {def (a)} ▷ not tracking redefined variables further
37 W ←W ∪ {use(a)} ▷ look for the variables it uses

assertion statement (lines 6-7), then synchronizes on both slices
to summarize matched blocks (line 8), and repeats until both
slices are fully processed (lines 5-9).

Unmatched parts of the slice are either individual statement
instances from the retained set (represented with dots in
Figure 4) or unmatched blocks (represented with diamonds
in Figure 4). They are handled by the ProcessUnmatched
procedure of the algorithm (lines 10-23). Specifically, this
procedure traverses each individual slice, represented by B,
backwards until it reaches a matched block (lines 14-15). When
a matched block is reached, the procedure terminates, to make
sure matching blocks are handled together.

When processing elements of an unmatched block, it makes
sure to add all elements of the retained set to S∆L (line 17),
prepending them to order the summary in chronological rather
than reverse order. It then identifies all variables used by the

retained statement instance and adds them to the working set
W , to make sure their definitions are included in the summary
(line 18). Moreover, if the retained statement is an assignment
(rather than an if statement or a method call), it identifies
the variable defined in the assignment and removes it from
the working set, since this variable is being redefined in the
current statement (line 20).

Unmatched blocks are treated similarly, with the goal to
find and keep definitions of variables in W . Specifically, the
algorithm calls the SummarizeDefinitions procedure (lines
21-22), to summarize the effect of each block as an unordered
set of assignments capturing the data flows from the block
input to output variables, as discussed above (line 32). Then,
definitions of variables in W are added to the summary S∆L
(line 35) and removed from W because their definitions are
found already (line 36). Instead, variables used by the newly
added statements are added to W for further tracking (line 37).

Finally, after the unmatched blocks in both SP1 and SP2 are
processed, the algorithm processes matched blocks (line 8, 24-
28). Matched blocks are summarized similarly to unmatched
ones, except that both working sets WP1

and WP2
are used to

specify the variables of interest. This is done to ensure that
matched blocks are summarized with identical functions, as in
the example of c in Figure 4b, discussed above.

The algorithm terminates when it finishes processing both
slices (line 12) and returns the produced summaries.

C. Implementation

The implementation of INPRESS works for Java (version 8)
and consists of three parts: dual slicing, block identification, and
trace summarization. Our implementation of the dual slicing
algorithm was discussed in Section III. For block identification,
we borrowed the trace alignment algorithm from ERASE and
further used GumTree [49] – a state-of-the-art code differencing
tool, which identifies inserted, deleted, and modified code
statement – to identify common vs. changed code.

For block summarization, we adapted the implementation of
Slicer4J [41] to compute control and data-flow dependencies
for each variable v defined in the block. It outputs a slice
containing statement instances that may affect v. The variables
used in the slice, X , (rather than internally defined in the block)
are essentially inputs to the block, which may affect the defined
variable v. Our implementation then produces the assignment
statement mapping v to the variables affecting it, via a function
in the form of v := Funcv(X). We further populated the
produced function Funcv(X) with all block statement instances
from the slice created for v. Finally, we used the same slicing
algorithm to compute data-flow dependencies over the trace
augmented with the assignments summarizing the effect of each
common block. Both block identification and summarization
algorithms are implemented in Java.

V. EVALUATION

We evaluate our approach on subject programs described in
Section III. Our evaluation aims at answering the following
research questions:

8

RQ1 (Effectiveness). How effective is the trace size reduction
achieved by INPRESS?
RQ2 (Code Properties). Which code properties affect the size
of the produced summaries?

A. RQ1 (Effectiveness)

To answer RQ1, we compared the sizes of the dual slice
(#DSlice) and the minimized slice produced by INPRESS
(#INPRESS). As in Section III, we calculated the reduction rate
of INPRESS over the dual slice (%Reduct.): #DSlice−#INPRESS

#DSlice .
To further inspect the overhead of INPRESS, we measured
both the dual slicing and the slice summarization times for all
cases and report the averaged results, in minutes, from five
consecutive runs. We, again, performed all our experiments on
an Ubuntu 18.04.4 Virtual Machine with 4 cores and 32 GB
of RAM running on an in-house Ubuntu server with 64 cores
and 512 GB of memory.

Table III shows the results of our analysis for each subject
program, which we further separate into results for the old
and new slices. Like in Section III, due to space limitations,
we had to aggregate the metrics and report the averages for
all Defects4J faults in the same project. Complete results are
available online [31].

The table shows that INPRESS achieves a high reduction rate
for all subject programs: 76.07% on average, in both versions
(row “All Avg.”, which considers P1 and P2 executions together,
for both Defects4J and LibRench). This means that, instead of
inspecting 2,007 execution steps during a debugging session,
a developer now needs to inspect only 207, for an average
project. Focusing on the LibRench benchmark for more detailed
analysis, the maximal reduction rate of 97.89%, for the P2

version of subject #L4, occurs because the original slice is
relatively large, 1,141 statement instances, but the changes it
contains are few and sparse: only 6 changed blocks, with 2.5
statement instances each, on average. At the same time, there
are 14 blocks of common code, with 80 statement instances
each, on average, which can be efficiently summarized by

TABLE III: Slice Reduction Rate Achieved by INPRESS.

ID #DSlice #INPRESS %Reduct. Time (Min.)
P1 P2 P1 P2 P1 P2 DSlice INPRESS

Defects4J

D1 69 53 9 4 69.67 72.12 0.01 0
D2 3,193 3,489 177 151 82.64 88.16 64.92 25.8
D3 60 26 12 5 50.13 57.39 0.03 0.016
D4 444 1,033 35 44 60.57 78.39 1.52 0.01
D5 542 213 30 22 80.59 87.93 0.38 0.03
D6 407 630 31 30 75.18 86.31 0.18 0.05

Avg. 1,291 1,505 77 70 70.05 79.03 22.58 8.86
LibRench

L1 856 2,829 114 683 86.68 75.85 2.98 0.79
L2 474 309 218 181 54 41.42 3.85 0.1
L3 194 201 31 50 84.02 75.12 0.98 0.02
L4 1,146 1,141 291 24 74.60 97.89 939.88 0.91
L5 8,872 9,767 899 1,318 89.86 86.5 2506.4 461.59
L6 63 30 24 15 61.9 50 0.08 0.01
L7 5,964 8,162 669 841 88.78 89.69 1069.1 0.68
L8 923 949 47 74 94.9 92.2 198.23 0.30

Avg. 2,311 2,923 286 398 79.34 76.08 590.18 0.9
All

Avg. 1,801 2,214 181 234 74.6 77.55 306.38 4.88
All Avg. 2,007 207 76.07

INPRESS, with 2 statement instances in the summary, on
average. We observe a similar trend in most of the other cases.

The smallest reduction rate of 41.42% is for the P2 version of
subject #L2, where the number of changed statement instances
is relatively large compared with the number of statements in
the slice: there are 140 changed statement instances in the slice
of size 309 in total. As such, the upper bound for a possible
reduction rate is 55% only. Furthermore, changes split the slice
into smaller blocks of common code, which further reduce
the opportunity for minimization. Yet, INPRESS achieved a
reduction rate of 41.42% by summarizing common blocks of
size 4.8, on average, into blocks of size 1.1, on average.

The runtime measurements show that INPRESS can process
even the longest slices in a matter of a few minutes, which is
low compared to the runtime of the dual slicing algorithm. The
time of dual slicing is generally proportional to the size of both
input traces and its high runtime performance is mainly due to
slicing the trace and performing the trace matching algorithm.
Similarly, the runtime of INPRESS is proportional to the size
of both input slices, as it also works on both slices in one pass.
Specifically, subject #L5, with the largest input trace and slice
sizes, has the highest processing time for both dual slicing and
INPRESS; the processing time is the lowest for subjects #D1
and #L6, with the smallest input trace and slice sizes.

Answer to RQ1: INPRESS is able to produce slice
summaries that are around 76% shorter than the original
slice, on average. The reduction rate is higher for subjects
with larger input slices and a smaller number of changes
as it increases the chance of building larger blocks of
common code and consequently summarizing their internal
computations.

B. RQ2 (Code Properties)

To answer RQ2, we investigated the relative contribution
of matched and unmatched code blocks, denoted by ¯̄B and
B̄, respectively, on the overall effectiveness of INPRESS. To
this end, we produced two versions of the tool: INPRESS¯̄B,
which summarizes matched blocks only, adding unmatched
blocks to the retained set and, conversely, INPRESSB̄, which
summarizes unmatched blocks only. We then calculated the
number and size of blocks of each type and the reduction rate
achieved by summarizing only blocks of that type.

Table IV shows the results of this analysis. Each row of the
table correspond to a subject program; the columns show the
number of blocks of each type, the average and maximal size of
the blocks, and the reduction rate achieved by summarizing only
the blocks of that type, separately for P1 and P2 versions of
each subject, and then for all subjects and versions combined.
By definition, the number and size of matched blocks are
identical in P1 and P2.

Summarizing only the unmatched blocks leads to a high
reduction rate of 58.64% on average, for P1 and P2 executions
combined; summarizing only the matched blocks leads to a
reduction rate of 17.45%, on average. Unmatched blocks thus
have a larger contribution to the total reduction rate achieved

9

TABLE IV: Reduction Rate Achieved by INPRESS¯̄B and INPRESSB̄.

ID

¯̄B (Matched Blocks) B̄ (Unmatched Blocks)
of Blocks Avg. (Max) Size %Reduct. # of Blocks Avg. (Max) Size %Reduct.
P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

Defects4J

D1 1 1 1.6 (2) 1.6 (2) 11.3 16.32 3 1 47.7 (52) 27.1 (475) 57.57 56.5
D2 19 19 57.1 (458) 57.1 (458) 31.84 30.9 18 14 120.8 (938) 143.2 (1,651) 50.8 57.26
D3 2 2 6.4 (14) 6.4 (14) 25.03 29.32 3 1 6.7 (11) 5.0 (7) 25.1 28.17
D4 5 5 6.9 (25) 6.9 (25) 17.16 20.94 6 6 160.5 (342) 457.1 (687) 43.39 57.45
D5 4 4 25.5 (56) 25.5 (56) 30.66 37.85 5 4 55.1 (335) 34.5 (63) 49.93 50.08
D6 4 4 25.7 (54) 25.7 (54) 30.46 33.25 4 3 70.9 (175) 102.4 (240) 44.72 53.06

Avg. 8 8 26.1 (168) 26.1 (168) 24.3 25.66 9 8 93.2 (438) 168.2 (727) 46.58 52.14

LibRench

L1 18 18 8.6 (50) 8.6 (50) 14.71 4.48 26 159 25.1 (247) 14.3 (475) 73.59 71.93
L2 11 11 4.9 (13) 4.9 (13) 10.75 16.5 39 26 6.8 (20) 4.2 (18) 43.24 24.91
L3 4 4 2.7 (6) 2.7 (6) 3.09 2.98 9 14 19 (91) 12.1 (91) 80.92 72.13
L4 1 1 1 (1) 1 (1) 0 0 5 5 227 (1,090) 224.8 (1,095) 74.60 97.89
L5 9 9 188.8 (1,208) 188.8 (1,208) 11.85 10.8 52 131 135.6 (3,569) 59.1 (2,035) 74.52 75.73
L6 3 3 7.6 (13) 7.6 (13) 23.8 50 2 1 13 (25) 1 (1) 38.09 0
L7 77 77 2.4 (34) 2.4 (34) 1.62 1.16 90 102 62.9 (1,269) 76.5 (1,360) 87.15 88.58
L8 13 13 3.5 (15) 3.5 (15) 3.57 3.47 14 17 61.7 (292) 51.1 (290) 91.3 88.72

Avg. 17 17 27.4 (167) 27.4 (167) 8.69 11.18 30 56 68.9 (825) 55.4 (670) 70.86 64.98

All

Avg. 12 12 26.7 (168) 26.7 (168) 16.49 18.42 19 32 81.05 (631) 111.8 (698) 58.72 58.56
P1 +P2 Avg. 12 26.7 (168) 17.45 25 96.42 (664) 58.64

by INPRESS. This is because the number of unmatched blocks
is generally larger than the number of matched blocks (25 vs.
12, on average) and their size is also larger (96.42 vs. 26.7, on
average), giving more opportunities for reduction.

Unmatched blocks (B̄). There are two reasons for why
unmatched blocks of common code exist. First, code that is
common between two versions can be executed in one but not in
the other version. This happens because of control divergence,
e.g., a change in the value of a variable used in an if condition
causes the else block to be taken instead of the if block.
Likewise, an existing but previously unused method can be
triggered in the new version. In fact, the majority of unmatched
blocks in our experiments (89%) are in this category. As one
example, in subject #L7 discussed in Section III, a removal of
an if condition resulted in the execution of 2,000 previously
unexecuted statements.

The second reason (11% of unmatched blocks, mostly in
LibRench) is related to issues with trace alignment – a generally
hard problem which prevents some “expected” matches. The
ERASE trace alignment algorithm uses the control path (a
sequence of loop conditions and method calls) as ids of
statements and then aligns statements based on these ids.
As method refactorings lead to a divergence of control paths
and, thus, statement ids, the trace alignment algorithm treats
statements controlled by this modified code as unmatched. For
example, in subjects #L1 and #L4, code was refactored into a
new method, which resulted in large portions of unmatched
code. In subject #L3, a method rename early in the trace led,
again, to a chain of unmatched blocks.

Matched blocks (¯̄B). Our decision to synchronize the size and
type of matched blocks between versions resulted in several
chunks of common code being split by changed statements
executed in one version but not the other. This results in

producing smaller matched blocks, with fewer opportunities
for eliminating internal calculations and variables. For example,
in subject #L7, there are 77 synchronized matched blocks.
Without synchronizations, P1 and P2 would have 55 and 53
blocks, respectively. In fact, the higher the number of changes
between the versions, the more blocks get split, which explains
a higher number of matched (and also unmatched) blocks in
LibRench compared with Defects4J subjects.

Interestingly, the reduction rate achieved by summarizing
matched blocks only is generally higher for Defects4J than
LibRench, with the exception of LibRench subject #L6. That
is because these subjects contain a relatively small number of
changes and it happens more often that changes to assignment
lead to data rather than control divergence. As such, the fraction
of matched blocks is higher in these subjects, providing more
opportunities for reduction.

Answer to RQ2: Factors affecting the reduction rate include
the number and types of code statements that are changed
and the quality of the alignment algorithm. The combination
of approaches employed by INPRESS increases its ability
to achieve a high reduction rate for the majority of cases.

VI. LIMITATIONS AND THREATS TO VALIDITY

For external validity, our results may be affected by the
subject selection and may not necessarily generalize beyond
our subjects. We attempted to mitigate this threat by selecting
an externally created dataset used in prior work, Defects4J,
and further augmenting it with the LibRench dataset of most-
popular Java libraries and clients from Maven. As we used
different projects of considerable size and complexity, we
believe our results are reliable.

For internal validity, we controlled for the threat of
any implementation defects by having two authors of this

10

paper manually and independently analyze the results and
discuss their findings. We make all our experimental data and
implementation of the tool publicly available [31] to encourage
validation and replication of our results.

The main limitation of our approach is its command-line
nature, which makes the produced traces difficult to inspect.
While we share this limitation with other slicing and trace-based
techniques, we intend to explore integration with IDEs as part
of future work. Additional limitations are inherited from the
limitations of the underlying infrastructure: Soot and ERASE
cannot support Java versions beyond 9 and 8, respectively; the
trace alignment algorithm might miss some desired alignments,
as discussed in Section V; and Slicer4J can consume substantial
time, especially when slicing long execution traces.

VII. DISCUSSION AND RELATED WORK

We now discuss the related work on fault localization,
focusing mainly on slicing-based techniques and techniques for
pinpointing failure-inducing changes. We then discuss empirical
studies on fault localization approaches developers follow.
Slicing-based fault localization. Program slicing – a technique
for reducing the size of the program by identifying only those
parts of the code that are relevant w.r.t. a certain slicing criterion
– was extensively discussed in this paper. Our work builds up
on these approaches; however, to the best of our knowledge,
we are the first to propose an approach for summarizing large
pieces of code when analyzing regression failures by relying
on a common code abstraction.

Perhaps the most related to ours is the slice rewriting
approach called amorphous slicing [50], [51]. The main idea
behind this approach is to preserve the semantic rather than
syntactic behavior of a slice by simplifying the slice statements,
with the goal of producing a smaller slice. Integrating such an
approach with ours, e.g., by producing simplified slices instead
of the summaries produced by INPRESS, could be a valuable
direction for possible future work.
Pinpointing failure-inducing changes. Techniques based on
delta debugging aim to isolate failure-inducing changes by
repetitively reverting different subsets of changes between the
original, correct version and the current, faulty version of the
program [52], [53]. These approaches report the smallest subset
of changes that can be reverted to recover the original program
behavior. Spectrum-based techniques, e.g., Tarantula [1], are
inspired by probabilistic- and statistical-based models. Given a
program and a set of failed/passed tests, these approaches use
various heuristics to rank the program statements as suspicious
components which might be involved in a failure, narrowing
the search for the faulty component that made the execution
fail [54]. Another line of work uses symbolic analysis to
automatically find potential root causes of regression failures.
Given two versions of a program and an input that fails
on the modified version program, such approaches aim to
automatically synthesize new inputs that (a) is similar to
the failing input and (b) does not fail [55]. By generating
additional input cases, these techniques aim to pinpoint reasons
for failures, even for hard-to-explain bugs.

Our work is thus orthogonal and complementary to these
approaches: we focus on identifying reasons for large slices
found in practice and on minimizing slices by summarizing
the precise flow of information propagated from these changes
to the failure. As any slice-based approach, INPRESS can be
augmented by techniques that distinguish between responsible
and not responsible changes within the slice, e.g., as in [15].
Developers’ approach to fault localization. By investigating
how developers debug a never-seen-before program, Weiser [3]
found that developers recognize program slices significantly
more often than random code fragments presented to them,
suggesting that developers tend to follow the flow of execution
when investigating a failure. Additional studies found that devel-
opers had a better understanding of the program and were more
systematic in their inspection of code when using slices [6], [7].
Developers were also shown to perform systematic analysis to
track changes in variable values and explain the crash through
these changes [56]. Intuitively, this captures the mechanism
employed in slicing. A number of authors [9], [57], [58]
investigated how developers use automated debugging tools.
One of the key findings of these works is that presenting only
the potentially relevant statements, as done in spectrum-based
fault localization, without context and dependencies between
them, is insufficient for developers during debugging sessions.
The assumption behind our approach is in full agreement with
these studies: we build up on the program slicing mechanisms
while ensuring context and flow of information is adequately
maintained. However, unlike these works, our main focus is
on studying the properties of slicing and using these properties
for slice minimization.

VIII. CONCLUSION

In this paper, we investigated the usefulness of slicing-based
techniques in narrowing down developers’ attention to a subset
of program statements relevant for troubleshooting a regression
failure. Specifically, we conducted a study applying dual slicing,
one of the most advanced of these techniques, to more than
280 programs from the Defects4J and LibRench benchmarks.
Our study showed that: (a) the slices reported by the technique
are still relatively large to be comfortably inspected by a
human and (b) there is an opportunity to further reduce the
size of the slices by retaining statements responsible for the
failure and summarizing statements that propagate contextual
information between the responsible statements. Based on these
observations, we implemented a slice minimization approach,
INPRESS, and showed its effectiveness in reducing the size of
the slices by 76%, on average. We believe our work will help
promote the efficient integration of slicing-based techniques in
debugging and will inspire further research in this area.

Data Availability. To support further work in this area, detailed
information about our case studies and their analysis, as well
as our implementation of INPRESS, are available online [31].
Acknowledgments. Part of this work was funded by the
Ministry of Education, Singapore, under its Academic Research
Fund Tier 2 (MOE2019-T2-1-040).

11

REFERENCES

[1] J. A. Jones, M. J. Harrold, and J. T. Stasko, “Visualization for Fault
Localization,” in Proc. of the International Conference on Software
Engineering Workshop on Software Visualization (ICSE-SV), 2001.

[2] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “An Evaluation of
Similarity Coefficients for Software Fault Localization,” in Proc. of the
International Symposium on Dependable Computing (PRDC), 2006, pp.
39–46.

[3] M. Weiser, “Program Slicing,” in Proc. of the International Conference
on Software Engineering (ICSE), 1981, pp. 439–449.

[4] ——, “Program Slicing,” IEEE Transactions on Software Engineering
(TSE), no. 4, pp. 352–357, 1984.

[5] M. Weiser and J. Lyle, “Experiments on Slicing-based Debugging Aids,”
in Workshop on Empirical Studies of Programmers (ESP), 1986, pp.
187–197.

[6] M. A. Francel and S. Rugaber, “The Value of Slicing While Debugging,”
Science of Computer Programming, vol. 40, no. 2-3, pp. 151–169, 2001.

[7] S. Kusumoto, A. Nishimatsu, K. Nishie, and K. Inoue, “Experimental
Evaluation of Program Slicing for Fault Localization,” Empirical Software
Engineering (ESE), vol. 7, no. 1, pp. 49–76, 2002.

[8] A. J. Ko and B. A. Myers, “Debugging Reinvented: Asking and
Answering Why and Why Not Questions about Program Behavior,”
in Proc. of the International Conference on Software Engineering (ICSE),
2008, pp. 301–310.

[9] C. Parnin and A. Orso, “Are Automated Debugging Techniques Actually
Helping Programmers?” in Proc. of the International Symposium on
Software Testing and Analysis (ISSTA), 2011, pp. 199–209.

[10] E. Soremekun, L. Kirschner, M. Böhme, and A. Zeller, “Locating Faults
with Program Slicing: An Empirical Analysis,” Empirical Software
Engineering (ESE), vol. 26, no. 3, pp. 1–45, 2021.

[11] N. Gupta, H. He, X. Zhang, and R. Gupta, “Locating Faulty Code Using
Failure-inducing Chops,” in Proc. of the International Conference on
Automated Software Engineering (ASE), 2005, pp. 263–272.

[12] J. Krinke, “Slicing, Chopping, and Path Conditions with Barriers,”
Software Quality Journal, vol. 12, no. 4, pp. 339–360, 2004.

[13] M. Sridharan, S. J. Fink, and R. Bodik, “Thin Slicing,” in Proc. of
the International Conference on Programming Language Design and
Implementation (PLDI), 2007, pp. 112–122.

[14] D. Weeratunge, X. Zhang, W. N. Sumner, and S. Jagannathan, “Analyzing
Concurrency Bugs Using Dual Slicing,” in Proc. of the International
Symposium on Software Testing and Analysis (ISSTA), 2010, pp. 253–264.

[15] W. N. Sumner and X. Zhang, “Comparative Causality: Explaining
the Differences Between Executions,” in Proc. of the International
Conference on Software Engineering (ICSE), 2013, pp. 272–281.

[16] H. Wang, Y. Lin, Z. Yang, J. Sun, Y. Liu, J. S. Dong, Q. Zheng, and
T. Liu, “Explaining Regressions via Alignment Slicing and Mending,”
IEEE Transactions on Software Engineering (TSE), 2019.

[17] E. Alves, M. Gligoric, V. Jagannath, and M. d’Amorim, “Fault-
localization Using Dynamic Slicing and Change Impact Analysis,” in
Proc. of the International Conference on Automated Software Engineering
(ASE), 2011, pp. 520–523.

[18] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A Database of Existing
Faults to Enable Controlled Testing Studies for Java Programs,” in Proc.
of the International Symposium on Software Testing and Analysis (ISSTA),
2014, pp. 437–440.

[19] V. Sobreira, T. Durieux, F. Madeiral, M. Monperrus, and
M. de Almeida Maia, “Dissection of a Bug Dataset: Anatomy
of 395 Patches from Defects4j,” in Proc. of the International Conference
on Software Analysis, Evolution and Reengineering (SANER), 2018, pp.
130–140.

[20] Y. Küçük, T. A. Henderson, and A. Podgurski, “The Impact of Rare
Failures on Statistical Fault Localization: The Case of the Defects4j Suite,”
in Proc. of the International Conference on Software Maintenance and
Evolution (ICSME), 2019, pp. 24–28.

[21] Y. Song, X. Xie, Q. Liu, X. Zhang, and X. Wu, “A Comprehensive
Empirical Investigation on Failure Clustering in Parallel Debugging,”
Journal of Systems and Software (JSS), vol. 193, p. 111452, 2022.

[22] A. Machiry, N. Redini, E. Camellini, C. Kruegel, and G. Vigna, “Spider:
Enabling Fast Patch Propagation in Related Software Repositories,” in
Proc. of the Symposium on Security and Privacy (SP), 2020, pp. 1562–
1579.

[23] “Equifax Data Breach,” https://en.wikipedia.org/wiki/2017_Equifax_data_
breach.

[24] Y. Wang, B. Chen, K. Huang, B. Shi, C. Xu, X. Peng, Y. Wu, and
Y. Liu, “An Empirical Study of Usages, Updates and Risks of Third-
party Libraries in Java Projects,” in Proc. of the International Conference
on Software Maintenance and Evolution (ICSME), 2020, pp. 35–45.

[25] “Open-Source Library Vulnerabilities,” https://www.veracode.com/blog/
managing-appsec/six-types-open-source-library-vulnerabilities.

[26] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes, “Keep Me Updated:
An Empirical Study of Third-party Library Updatability on Android,”
in Proc. of the Conference on Computer and Communications Security
(CCS), 2017, pp. 2187–2200.

[27] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do
Developers Update their Library Dependencies?” Empirical Software
Engineering, vol. 23, no. 1, pp. 384–417, 2018.

[28] P. Salza, F. Palomba, D. Di Nucci, C. D’Uva, A. De Lucia, and F. Ferrucci,
“Do Developers Update Third-party Libraries in Mobile Apps?” in Proc.
of the International Conference on Program Comprehension (ICPC),
2018, pp. 255–265.

[29] “Jackson-databind (Issue-2789),” https://github.com/FasterXML/
jackson-databind/issues/2789.

[30] “Jackson-databind (Issue-2876),” https://github.com/FasterXML/
jackson-databind/issues/2876.

[31] “Supplementary Materials.” https://resess.github.io/artifacts/InPreSS/.
[32] J. Zhao, “Dependence Analysis of Java Bytecode,” in Proc. of the Inter-

national Computer Software and Applications Conference (COMPSAC),
2000, pp. 486–491.

[33] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The Program Dependence
Graph and Its Use in Optimization,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 9, no. 3, pp. 319–349, 1987.

[34] H. Agrawal, R. A. DeMillo, and E. H. Spafford, “Dynamic Slicing in
the Presence of Unconstrained Pointers,” in Proc. of the Symposium on
Testing, Analysis, and Verification (TAV), 1991, pp. 60–73.

[35] M. Weiser, “Program Slices: Formal, Psychological, and Practical
Investigations of an Automatic Program Abstraction Method,” PhD thesis,
University of Michigan, 1979.

[36] B. Korel and J. Laski, “Dynamic Program Slicing,” Information Process-
ing Letters, vol. 29, no. 3, pp. 155–163, 1988.

[37] X. Zhang, S. Tallam, N. Gupta, and R. Gupta, “Towards Locating
Execution Omission Errors,” in Proc. of the International Conference on
Programming Language Design and Implementation (PLDI), 2007, pp.
415–424.

[38] M. K. Ramanathan, A. Grama, and S. Jagannathan, “Sieve: A Tool for
Automatically Detecting Variations Across Program Versions,” in Proc.
of the International Conference on Automated Software Engineering
(ASE), 2006, pp. 241–252.

[39] W. N. Sumner and X. Zhang, “Memory Indexing: Canonicalizing
Addresses Across Executions,” in Proc. of the International Symposium
on Foundations of Software Engineering (FSE), 2010, pp. 217–226.

[40] B. Xin, W. N. Sumner, and X. Zhang, “Efficient Program Execution
Indexing,” ACM SIGPLAN Notices, pp. 238–248, 2008.

[41] K. Ahmed, M. Lis, and J. Rubin, “Slicer4J: A Dynamic Slicer for Java,”
in Proc. of the International European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE),
2021, pp. 1570–1574.

[42] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot: A Java bytecode optimization framework,” in Proc. of the
Conference of the Centre for Advanced Studies on Collaborative Research
(CASCON), 1999, pp. 1–11.

[43] R. Vallee-Rai and L. J. Hendren, “Jimple: Simplifying java bytecode for
analyses and transformations,” Sable Technical Report, 1998.

[44] Y. Lin, J. Sun, L. Tran, G. Bai, H. Wang, and J. Dong, “Break the
Dead End of Dynamic Slicing: Localizing Data and Control Omission
Bug,” in Proc. of the International Conference on Automated Software
Engineering (ASE), 2018, pp. 509–519.

[45] M. R. Hoffmann, B. Janiczak, and E. Mandrikov, “JaCoCo Java Code
Coverage Library,” https://www.jacoco.org/jacoco/.

[46] G. An, J. Yoon, and S. Yoo, “Searching for Multi-fault Programs in
Defects4j,” in Proc. of the International Symposium on Search Based
Software Engineering (ISSBSE), 2021, pp. 153–158.

[47] “Maven Central Repository,” https://maven.apache.org/.
[48] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Păsăreanu, “Differential

Symbolic Execution,” in Proc. of the International Symposium on
Foundations of Software Engineering (FSE), 2008.

12

[49] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and Accurate Source Code Differencing,” in Proc. of the
International Conference on Automated Software Engineering (ASE),
2014, pp. 313–324.

[50] M. Harman and S. Danicic, “Amorphous Program Slicing,” in Proc. of
the International Workshop on Program Comprehension (IWPC), 1997,
pp. 70–79.

[51] M. Harman, D. Binkley, and S. Danicic, “Amorphous Program Slicing,”
Journal of Systems and Software (JSS), vol. 68, no. 1, pp. 45–64, 2003.

[52] A. Zeller, “Yesterday, My Program Worked. Today, It Does Not. Why?”
ACM SIGSOFT Software Engineering Notes, vol. 24, no. 6, pp. 253–267,
1999.

[53] A. Zeller and R. Hildebrandt, “Simplifying and Isolating Failure-inducing
Input,” IEEE Transactions on Software Engineering (TSE), vol. 28, no. 2,
pp. 183–200, 2002.

[54] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A Survey on
Software Fault Localization,” IEEE Transactions on Software Engineering
(TSE), vol. 42, no. 8, pp. 707–740, 2016.

[55] D. Qi, A. Roychoudhury, Z. Liang, and K. Vaswani, “Darwin: An
Approach to Debugging Evolving Programs,” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 21, no. 3, pp.
1–29, 2012.

[56] M. Böhme, E. O. Soremekun, S. Chattopadhyay, E. Ugherughe, and
A. Zeller, “Where is the Bug and How is It Fixed? an Experiment
with Practitioners,” in Proc. of the International European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2017, pp. 117–128.

[57] X. Xie, Z. Liu, S. Song, Z. Chen, J. Xuan, and B. Xu, “Revisit of
automatic debugging via human focus-tracking analysis,” in Proc. of
the International Conference on Software Engineering (ICSE), 2016, pp.
808–819.

[58] X. Xia, L. Bao, D. Lo, and S. Li, ““Automated Debugging Considered
Harmful” Considered Harmful,” in Proc. of the International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 2016, pp.
267–278.

13

