An Empirical Investigation into the Reproduction of
Bug Reports for Android Apps

Jack Johnson*, Junayed Mahmud?, Tyler Wendland*, Kevin Moran', Julia Rubin}, Mattia Fazzini*
*University of Minnesota, MN, USA; joh19267 @umn.edu, wendl155@umn.edu, mfazzini@umn.edu
tGeorge Mason University, VA, USA; jmahmud@gmu.edu, kpmoran@gmu.edu
iUniversity of British Columbia, BC, Canada; mjulia@ece.ubc.ca

Abstract—One of the key tasks related to ensuring mobile
app quality is the reporting, management, and resolution of
bug reports. As such, researchers have committed considerable
resources toward automating various tasks of the bug man-
agement process for mobile apps, such as reproduction and
triaging. However, the success of these automated approaches is
largely dictated by the characteristics and properties of the bug
reports they operate upon. As such, understanding mobile app
bug reports is imperative to drive the continued advancement
of report management techniques. While prior studies have
examined high-level statistics of large sets of reports, we currently
lack an in-depth investigation of how the information typically
reported in mobile app issue trackers relates to the specific details
generally required to reproduce the underlying failures.

In this paper, we perform an in-depth analysis of 180 re-
producible bug reports systematically mined from Android apps
on GitHub and investigate how the information contained in
the reports relates to the task of reproducing the described
bugs. In our analysis, we focus on three pieces of information:
the environment needed to reproduce the bug report, the steps
to reproduce (S2Rs), and the observed behavior. Focusing on
this information, we characterize failure types, identify the
modality used to report the information, and characterize the
quality of the information within the reports. We find that bugs
are reported in a multi-modal fashion, the environment is not
always provided, and S2Rs often contain missing or non-specific
enough information. These findings carry with them important
implications on automated bug reproduction techniques as well as
automated bug report management approaches more generally.

I. INTRODUCTION

The importance of the quality of mobile applications (collo-
quially referred to as apps) has grown in recent years as smart-
phones and tablets have become deeply integrated into users’
daily lives. Once an application has been released to users, its
quality is largely ensured by continuing maintenance activities,
which have been shown to consume considerable amounts of
engineering effort [1]. These important maintenance activities
are typically centered around bug report management and
include activities related to understanding, reproducing, and
resolving bug reports.

A number of unique development constraints related to
mobile apps, such as pressure for frequent releases [2], [3],
the need to cope with constantly evolving platform APIs [4],
[5], a large volume of user feedback [6], [7], [8], [9],
[10], and testing challenges [11] complicate the bug report
management process. Software engineering researchers have
recognized these domain-specific challenges and have worked
toward providing automated solutions across several bug report

management activities for mobile apps, including bug report
quality assessment [12], reproduction [13], [14], triaging [15],
and bug localization [16], [17].

One common thread among these various automated solu-
tions is that they operate directly upon the information con-
tained within bug reports and, as such, are directly affected by
the characteristics and quality of various report components,
such as environmental information (e.g., device, software ver-
sion), reproduction steps (S2Rs), and observed behavior (OB).
Thus, researchers and practitioners require a solid empirical
foundation that delineates common characteristics of mobile
app bug reports to build effective automated techniques.

In prior work, researchers have examined high-level statis-
tics (e.g., number and type of report, fix rates, fix time)
of large sets of bug reports. For example, Battacharya et
al. [18] performed an empirical study on bugs submitted to
the Android platform on 24 widely-used open source apps.
Others have compared high-level bug characteristics between
mobile apps and desktop apps [19]. However, to the best
of our knowledge, no study has yet provided an in-depth
characterization of how the information contained in mobile
bug reports might impact the task of bug reproduction. One
likely reason that past studies have not examined this relation
is that as it requires manually reproducing real bug reports,
which is a time-consuming and difficult task. Despite the
difficulty of this analysis, understanding this information is
critical as both developers and automated bug analysis tech-
niques may need to (i) understand the type of reported failure,
(i1) understand multiple modalities of information, such as
text, images, or screen-recordings, and (iii) identify or infer
information that is either vague or missing from the reports.
In short, empirically analyzing both the characteristics and
quality of the information reported in mobile app bugs is
critical for both the practical and scientific advancement bug
report management for mobile apps.

In this paper, we conduct and in-depth characterization of
reproducible bug reports for Android apps. To this end, we
significantly extend ANDROR?2 [20] — a dataset of reproducible
bug reports for Android apps which contains bugs representing
a range of failure types. We augmented the dataset with addi-
tional, manually verified and fully reproduced bug reports from
open source Android apps hosted on GitHub [21] and available
on the Google Play store [22], obtaining a dataset of 180 bug
reports. In this work, we focus on bug reports for Android

mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

apps as Android is the most widely used operating system for
mobile apps [23]. To the best of our knowledge, ours is the
largest dataset of (i) fully reproduced bug reports for Android
apps, which (ii) contains both user-submitted and developer-
submitted reports, and (iii) in contrast to related work, focuses
on different types of failures beyond app crashes. Given this
dataset, we focused our in-depth analysis on three sources
of information: the description of the environment needed
to reproduce the bug report, the steps to reproduce, and the
observed behavior.

Leveraging the fact that our studied reports are considered
fully reproducible, we perform an in-depth analysis of both the
report characteristics—including the failure types and modal-
ities of reported information—and the quality of reported
information. In relation to the quality of reported information,
we focus on three aspects: the types and prevalence of missing
information, whether report discussion threads contain helpful
information for reproducing the reports, and the specificity
of reported information (which investigates whether reported
information can be directly used for reproducing the reports).
Although these aspects are only some of ones that describe the
quality of reported information, we believe that the analysis
of these aspects provides useful insights into the reproduction
of bug reports and hence focus on them.

Our analysis shows that (i) reported failures can be grouped
into four types, three of which are not yet considered by
existing automated reproduction techniques, (ii) different in-
formation modalities are used to report the details related to
the environment, steps to reproduce, and observed behavior,
(iii) a large number of reports (74%) have at least one step
to reproduce that requires multiple operations in the app
indicating that the information provided for the step is not
always specific enough, (iv) the great majority of reports
(92%) have at least one missing reproduction step, illustrating
that the operations required to reproduce the reports must
often be inferred, and (v) bug report discussions can, in some
cases (19%), provide additional information useful for the
reproduction of the reports. Finally, we discuss implications
of our findings, which can help guide future research on
automated reproduction of bug reports and, more generally,
bug report management activities.

In summary, the main contributions of this paper are:

e A large set of 180 manually mined and reproduced
bug reports for Android apps that contains user- and
developer-submitted bug reports of multiple failure types.

o A study that examines bug characteristics and information
quality in reproducible mobile app bug reports. This
advances upon prior studies which do not manually verify
and collect reproducible bug reports.

o A discussion on the implications of our findings, which
illustrates the need for future research on non-crashing
oracles, multi-modal understanding of report information,
mocking environments, and missing and non-specific
reproduction steps.

o A replication package [24] that contains our dataset of
bug reports, data analysis reports, and scripts to perform

,—| Bug Report I N\

Title:

Bug: Long pressing the amount input brings up QWERTY keyboard
Content:

Software specifications:

+ GnuCash Android version: 2.2.0

+ System Android version: 6.0

+ Device type: Motorola Moto G (2nd Generation)
Steps to reproduce the behaviour:

1. Navigate to Transactions screen

2. Tap the Add button

3. Enter Description (optional)

4. Focus the Amount input

5. Long press to bring up the context menu
Expected behaviour:

See the context menu

Actual behaviour:

X New transaction SAVE

Heating/Utilities

Fig. 1: Bug report for the GNUCASH app.

the study analyses, which can facilitate future replications
and extensions of this work.

II. BACKGROUND AND TERMINOLOGY

Given a bug report that describes a failure in an app, we
use the term reporter to identify the person submitting the
bug report. A reporter can be either a user or a developer. In
this study, we consider a person who never contributed to the
source code of an app to be a user and all other reporters to
be developers.

We conceptually group the information contained in a bug
report into multiple parts, each of which detail a particular
aspect of the report. The parts and aspects of interest in this
study are the ones providing details on how to reproduce the
failure described in a report. These aspects are: the environ-
ment, the steps to reproduce (S2Rs), and the observed behavior
(OB). The environment includes information on the software
and hardware necessary to reproduce the failure described in
a report. This part can contain information such as the app
version, the operating system (OS) version, and the device
where the failure occurred. The S2Rs provide details on the
operations that should be performed on a device in order
to reproduce the failure. We use the terms GUI action (or
simply action) and GUI interaction (or simply interaction)
interchangeably to indicate the operations performed on the
GUI of a device. An S2R (which are the unit of information
composing the S2Rs) can be mapped to one or more GUI
actions. The OB describes the failure and can be used to check
that the failure was successfully reproduced. In practice, the
information from these conceptual parts can be interleaved
across the paragraphs and sections of a bug report. Bug
reports can also have a discussion thread. A discussion thread
contains discussion messages and these messages can provide

additional information on the environment, the S2Rs, and the
OB associated with the report.

Figure 1 provides an example of a user-submitted bug re-
port [25]. This bug report is taken from the report management
system of GNUCASH, an app for finance tracking, and is
slightly modified for presentation purposes. The bug report
contains information related to the environment, the S2Rs, and
the OB, which are located in the Software specifications, Steps
to reproduce the behaviour, and Actual behaviour sections of
the report, respectively.

To exercise the bug, the user navigated to the transactions
screen, started adding a new transaction, and long-clicked on
the GUI element representing the amount of the transaction.
The failure manifests as a wrong screen being displayed to the
user: screen with a keyboard view instead of the context menu.
The OB describing the failure is reported using text (in the
title) and using an image (in the Actual behaviour section). We
refer to the way in which a piece of information is reported as
the reporting modality (or modality in short) and reporters can
provide the same information multiple times using different
modalities. Because the user did not reach the desired screen,
we identify this failure as a navigation failure. We use the
terms failure type and failure category interchangeably to refer
to the categorization of the failure.

The report has five S2Rs (numbered items under the Steps
to reproduce the behaviour section) and 13 GUI actions are
necessary to reproduce the failure. An example of GUI action
is performing a click on the add button in the transaction
screen of the app as indicated by 2. Tap the Add button. An
S2R can map to one or more GUI actions. In this example,
the first S2R (1. Navigate to Transactions screen) maps to
three GUI actions. We refer to S2Rs that map to multiple
GUI actions as non-specific S2Rs. Of the remaining four S2Rs,
three map to one GUI action and one S2R is optional (3. Enter
Description (optional).) This optional S2R is not included in
13 GUI actions necessary to reproduce the failure. Seven (13-
3-3) of the GUI actions in this example are not described by
any of the S2Rs. We refer to such GUI actions as unmapped
GUI actions and say that they correspond to missing S2Rs.
We refer to the remaining actions as mapped GUI actions.
If an unmapped GUI action occurs before the first mapped
GUI action, we call the missing S2R that corresponds to
the unmapped action a missing context S2R, indicating that
some contextual information is missing from the bug report.
Otherwise, if a missing S2R is associated with a GUI action
occurring after the first mapped GUI action, we refer to the
S2R as a missing inline S2R.

III. METHODOLOGY

To characterize reproducible bug reports, inform research on
automated bug reproduction, and, more generally, provide in-
sights for research on bug report management, we formulated
and answered the following research questions (RQs):

e RQ;: What are the failure types associated with
reproducible bug reports? In this RQ, we analyzed
and categorized failures associated with reproducible bug

reports. With the findings from this RQ we aim to inform
research on automatic failure recognition.

¢ RQ,: What information modalities are used to report
the information contained in reproducible bug re-
ports? This RQ categorizes the modalities used to report
environment, S2Rs, and OB information. The findings
from this RQ aim to inform research in bug triaging,
report reproduction, and report quality assessment.

e RQ3: Do reproducible bug reports have missing in-
formation? We answer this question by analyzing the
information contained in reproducible bug reports w.r.t.
operations required to reproduce the failures described in
the reports. This RQ aims to direct efforts on research
for identifying and inferring missing information in bug
reports, necessary for bug report reproduction.

e RQ4: Do discussion threads of reproducible bug re-
ports contain helpful information for reproducing the
reports? In this RQ, we analyzed the information gain
obtained by interpreting the bug report discussions. This
RQ aims to evaluate the need for approaches that combine
content from bug reports and their discussions.

e RQ5: How specific is the information reported in
reproducible bug reports? In this RQ, we investigated
whether the information contained in reproducible bug
reports can be directly mapped onto the operations need
to reproduce the reports. This RQ aims to provide insights
on how to leverage the information in bug reports for
reproducing the failures.

Figure 2 provides a high-level outline of the methodology
we used to answer the RQs. In a nutshell, we first assembled
a dataset of reproducible bug reports and then analyzed the
characteristics of the bug reports through qualitative and
quantitative analyses. We describe these steps in detail next.

A. Dataset Creation

The Dataset Creation component of Figure 2 provides an
overview of our data collection workflow, which consisted of
two phases: bug reports filtering and failure reproduction.

1) Bug Reports Filtering: The objective of this phase was
to identify a set of bug reports that we could try to reproduce
and ultimately include in our dataset. In this study, we are
interested in both user-submitted and developer-submitted bug
reports that are reproducible and describe different types of
failures. To the best of our knowledge, ANDROR2 [20] is
the largest dataset of reproducible bug reports for Android
apps that does not exclusively focus on crashes. This dataset
contains 90 user-submitted bug reports, which are associated
with apps available on the Google Play store [22] and hosted
on GitHub [21]. The 90 bug reports are GitHub issues [26]
and are associated with reproduction scripts created by the
ANDRORZ2’s authors. This set of 90 bug reports was extracted
from a larger set of 6,365 issues that was systematically
mined from GitHub. The set of 6,365 issues contains issues
that: (i) are part of repositories that use Java, (ii) have
the label “bug”, (iii) are in repositories that contain an
AndroidManifest.xml file (as Android apps require this

Dataset Creation

Failure
Reproduction

Bug Reports

Filtering Reproduced

Bug Reports

EBug Reports
. Preparation

Bug Reports Analysis

RQ1: Failure Type RQ2: Reporting Modality RQ3: Missing Information

AndroR2 Filtered

Annotated =
=0 AN
N %

Bug Reports

-l

S D= & [0

»*

Reproduction ;|
Scripts

Bug Reports
t t)

RQ4: Discussion Information

D
—
 —|
—

RQ5: Information Specificity

A AN

Fig. 2: Overview on the methodology used in the study.

file to properly compile [27]), (iv) contain the word “step”
in them, and (v) are associated with apps also available on the
Google Play store.

Because we are also interested in developer-submitted bug
reports, we started from the set of 6,365 GitHub issues pro-
vided by ANDROR?2 and identified 90 reproducible, developer-
submitted bug reports (to match the number of already avail-
able user-submitted bug reports). To identify the 90 developer-
submitted bug reports, we used a methodology similar to that
of ANDROR?2. Specifically, we first refined the set of 6,365
issues to only contain those created by GitHub users that
had contributed to the repositories associated with the issues,
resulting in 2,523 issues. Second, we selected issues that were
closed at the time the issues were mined (November 2020) so
that we could more easily identify whether the issues were also
originally reproduced by the developers. This filtering resulted
in 2,045 reports. Third, after analyzing the set of issues, we
found that some repositories had a much larger number of
issues compared to others. To avoid overfitting the bug report
dataset to a specific app, we considered at most ten issues
per repository. When a repository had more than ten issues,
we randomly selected ten from this set resulting in 645 bug
reports for 164 apps.

2) Failure Reproduction Phase: In the second phase of our
dataset creation process, we randomly selected bug reports
from the set of 645 developer-submitted bug reports until we
reproduced 90 of them. In this process, we disregarded trivially
reproducible bug reports, i.e., those we could reproduce by
simply opening the app.

Two authors tried to reproduce the failures described in the
bug reports. To reproduce a failure, the authors followed the
S2Rs contained in the bug report by mapping the steps to GUI
actions on the screen of the device running the app associated
with the report. If a report had missing S2Rs, the authors
manually explored the functionality of the app to identify the
minimal sequence of GUI actions that would account for those
missing steps, using a trial-and-error approach. When a bug
report could be successfully reproduced by one of the two
authors, the other author also tried to reproduced the same
report to ensure that the reproduced failure was the same as
the one described in the report. For all 90 bug reports, the
authors also encoded the GUI actions in reproduction scripts
using the UlAutomator framework [28].

To validate whether user-submitted bug reports were still
reproducible, we ran the scripts associated with these reports

in the ANDROR?2 dataset. Four reports were not reproducible
as the servers associated with the apps were no longer running.
To replace these bug reports, we identified and reproduced four
additional user-submitted reports from the set of 6,365 GitHub
issues provided by ANDROR2. At the end of this process,
we obtained a set of 90 user-submitted and 90 developer-
submitted reproducible bug reports, which we considered for
the rest of the study.

B. Bug Reports Analysis

In this section, we present the analyses we performed to
characterize aspects related to the reproducibility of Android
bug reports. The Bug Reports Analysis Creation part of
Figure 2 provides a summary of the analyses we performed.
The analyses were driven by two of the paper’s authors and
were performed one at a time to reduce cognitive load.

1) Bug Reports Preparation: Before performing the analy-
ses associated with the RQs, we annotated the information
contained in the bug reports and their discussion threads,
to identify the portions of each report that provide infor-
mation about the environment, S2Rs, and OB. This step
was performed by the two authors together and in multiple
sessions; the authors associated each sentence in the report’s
textual description, as well as each link, image, recording,
and execution logs, with it designated purpose: to describe
environment, S2Rs, and OB. Some elements received multiple
annotations, e.g., a sentence can provide both S2Rs and OB.

2) Analysis for RQ1 (What are the failure types associated
with reproducible bug reports?): To answer RQ;, we per-
formed a qualitative analysis that combines inductive and axial
coding [29], [30]. Inductive coding is a systematic approach
for categorizing data by manually coding (i.e., labeling) the
data. Axial coding relates codes to one another and finds
higher-level codes that represent abstractions of the original
codes. In our analysis, a code is a label that categorizes the
type of a failure and we assigned the code to the bug report
describing the failure.

The analysis was performed by two raters, who analyzed
the description of the failure in the bug report and used the
reproduction scripts to observe how the failure manifested.
The analysis was divided into two parts. In the first part, the
two raters analyzed a sample of the bug reports to define
the analysis codebook — a document detailing the rules for
assigning a specific code to a failure. For each code, the set

of rules specified the characteristics required for assigning a
code to a failure.

This part of the analysis was performed in six iterations. In
each iteration, the raters independently analyzed 18 bug reports
(10% of the report considered in the study). The set contained
the same bug reports for both raters and was selected randomly
from the set of not-yet-analyzed bug reports. At the end of each
iteration, the raters used negotiated agreement [31] to resolve
inconsistencies among created and assigned codes, and to in-
sure the reliability of the coding process. We used this method
due to it is advantages in research like ours, where generating
new insights is the primary concern [32]. Because we used
negotiated agreement, measures such as inter-rater agreement
are not applicable in our context. To resolve disagreements,
the raters reproduced the failures together and then decided
on the final classification. For example, for one of the reports
considered in the study [33], one of the raters categorized the
failure as a crash and the other rater categorized the failure as
a navigation issue. When the two raters met, they discussed
the disagreement and decided to classify the failure as a crash
because the app displayed an exception before bringing the
user back to a different screen.

At the sixth iteration, the raters did not create new codes and
had assigned the same codes to all reports. From that point, the
raters split the remaining 72 bug reports equally and coded the
bug reports independently. At the end of the coding process,
the raters also performed axial coding. This step led to four
main categories of failures, which we present in Section IV.

3) Analysis for RQs (What information modalities are used
to report the details contained in reproducible bug reports?):
The analysis to answer RQs was also based on inductive and
axial coding. Two raters analyzed the environment, S2Rs, and
OB information annotated during the bug reports preparation
step. The raters created the analysis codebook in two iterations,
analyzing in each iteration a sample of 18 bug reports (10%
of all bug reports). The raters used negotiated agreement to
address the reliability of the coding process. After finalizing
the codebook, the authors split the remaining 144 bug reports
equally and coded them independently.

The raters performed axial coding at the end of the coding
process. This process led to six main reporting modalities,
detailed in Section IV.

4) Analysis for RQs (Do reproducible bug reports have
missing information?): To answer RQs, we performed two
types of analysis. First, we leveraged the annotations created
in the bug reports preparation step to identify whether environ-
ment, S2Rs, and OB information was completely missing from
the reports. Second, when the S2Rs information was provided,
we performed an in-depth analysis of S2Rs. Specifically, for
each bug report, we compared the S2Rs information from
the bug report with the GUI actions in our reproduction
scripts, in order to identify missing S2Rs. Once we identified
missing S2Rs, we categorized them into missing context S2Rs
and missing inline S2Rs (see definitions in Section II). Two
authors analyzed each bug report independently and then met
to discuss and finalize the classification.

5) Analysis for RQ4 (Do discussion threads of reproducible
bug reports contain helpful information for reproducing the
reports?): In RQy, two authors manually analyzed the mes-
sages in the bug report discussions, to identify whether they
added information relevant to understanding and reproducing
the bug reports. The authors leveraged the annotations from the
bug reports preparation step to focus on messages providing
environment, S2Rs, and OB information. The authors analyzed
each bug report independently and labeled with the word
additional the data from discussion messages that provided
additional information. The two authors met and discussed
the final classification also in this case.

6) Analysis for RQs (How specific is the information re-
ported in reproducible bug reports?): To answer RQs, we
analyzed whether the information provided in the bug reports
could be directly used for reproducing the bug reports. For the
environment-related information, two authors checked whether
the provided information was sufficient to define the environ-
ment where to reproduce the failure. If no additional infor-
mation was needed, we considered the provided information
to be of specific (and non-specific otherwise). For S2Rs, two
authors mapped each of the S2Rs defined in a bug report
to corresponding GUI actions from the reproduction script.
If an S2R mapped to multiple GUI actions, we labeled that
S2R as a non-specific S2R. We considered the other S2Rs
to be specific. For the OB information, the authors checked
whether the information was sufficient to verify the failure. If
no additional information was needed (i.e., no need to check
discussion messages), we considered the provided information
to be specific (and non-specific otherwise).

IV. RESULTS

In this section, we present the results of our study on ana-
lyzing and characterizing reproducible Android bug reports.

A. RQy: What are the failure types associated with repro-
ducible bug reports?

Our analysis identified four failures types: output, cosmetic,
navigation, and crash. Output failures reveal issues in the
output provided by the app. Cosmetic failures identify issues
in the app that do not affect the functionality of the app.
Navigation failures display the wrong screen to the user.
Crashes abruptly terminate the execution of the app. Across the
bug reports considered, we identify 33% of reports reporting
output failures, 31% reporting cosmetic failures, 8% reporting
navigation failures, and 28% reporting crashes. This finding is
notable, as many current bug report analysis techniques focus
solely on crashes. We discuss the implications of these findings
further in Section V.

This distribution reveals a comparable amount of failures
between the output, cosmetic, and crash categories and a sig-
nificantly lower number of navigation failures. The distribution
is similar across both developer- and user-submitted bug re-
ports. Specifically, among the user-submitted bug reports, there
are 33% output failures, 31% cosmetic failures, 7% navigation
failures, and 28% crashes. Among developer-submitted bug

Test test

ab #testa #testb

@ addreminder

(a) Example of output failure on the left and fix on the right.

Q search apps

B0 e B

Calculator ~ Calendar

Set up a new account

Camera Clock test@test.com

w

Family Fi. Files

Contacts

of or
[] show password

CustomL. DevTools Email
v Adv

(c) Example of navigation failure on the left and fix on the right.

< Mozilla &

Mozilla
Show home screen tips Show home screen tips
About Firefox Focus About Firefox Focus
Help] Help

Your Rights Your Rights

(b) Example of cosmetic failure on the left and fix on the right.

NSES/INCOMES ~ EXPENSES BY ARTICLES INCOMES BY AR

Unfortunately, Family Finance has stopped.

(d) Example of crash failure on the left and fix on the right.

Fig. 3: Screenshot examples for the four failure types identified in the bug reports considered.

reports, there are 32% output failures, 29% cosmetic failures,
9% navigation failures, and 29% crashes.

Our analysis categorized the 60 output failures into two
subcategories: incorrect output (32) and missing output (28).
Incorrect output identifies failures in which some computation
of the app is displayed incorrectly or improperly saved to a
file, and missing output describes failures where the result of
some computation is not displayed or saved to a file. A vast
majority of these cases affect the GUI of the app (56 cases)
whereas a smaller number impact generated files (4 cases).

The screenshot on the left of Figure 3a shows an example of
a failure under the incorrect output subcategory. The example
is taken from a bug report [34] of OMNI NOTES, a note-taking
app. The app has a failure as it does not display the right values
for the tags associated with the notes in the app.

As part of our analysis, we further classified the 55 cosmetic
failures into eight subcategories: incorrect color (10), incorrect
cursor placement (3), content cut (3), image rendering issue
(4), missing GUI element (9), incorrect orientation (2), incor-
rect placement (4), and incorrect text (18). We provide details
for each of these subcategories in our online appendix [24].
The screenshot on the left of Figure 3b illustrates an example
of a cosmetic failure from the incorrect placement subcategory.
This example is taken from a report [35] submitted for
FIREFOX FocCUs, a browser app. In this example, the text
Show home screen tips has additional padding w.r.t other
text elements (e.g., About Firefox Focus) on the screen.

Our analysis of the navigation failures did not produce any
further subcategories. The screenshot on the left of Figure 3c
reports an example of a navigation failure. This failure was
reported [36] for K-9 MAIL, an email client app. In this
example, the user started setting up a new email account, went
into the manual configuration settings, and, upon pressing the
back button, the user was brought out of the app instead of
the previous app screen. The screenshot in the right part of
Figure 3c illustrates the correct app behavior where the user
navigates to the sign-up screen after pressing the back button.

For the 50 failures leading to a crash, we identified two
main subcategories, immediate crash (46) and app freeze (4).
Immediate crash identifies failures in which the app crashes

as soon an operation is performed in the app. App freeze
includes failures in which the app first becomes unresponsive
after an operation is performed in the app, and then the crash
appears after a certain amount of time. The screenshot in the
left portion of Figure 3d reports an example of an immediate
crash failure reported [37] for FAMILY FINANCE, a household
finance app. The right part of the Figure 3d reports the screen
of the app after the bug in the app was fixed.

RQ; answer: Our categorization identified four failure
types: output (33%), cosmetic (31%), navigation (8%), and
crash (28%). We also identified subcategories for output (2),
cosmetic (8), and crash (2). Finally, the failure distribution
does not differ dramatically when user- and developer-
submitted reports are considered individually.

B. RQ>: What information modalities are used to report the
details contained in reproducible bug reports?

In our analysis of RQ2, we identified six modalities used
to report bug information: fext, annotated text, image, anno-
tated image, recording, and log. Text identifies information
reported in plain text. Annotated text is a sentence containing
text within quotes or text with casing or capitalization [38],
which represent either app inputs or GUI elements. Image
identifies device screenshots. Annotated image is associated
with device screenshots that have been edited to highlight parts
of their content. Recording refers to any animated image or
video providing a recording of the device screen. Finally, log
identifies reporter-provided stack traces extracted from either
app or system logs. Figure 4 reports the distribution of the
modalities, for reports as a whole (Figure 4-a), the environment
(Figure 4-b), S2Rs (Figure 4-c), and OB (Figure 4-d).

As expected, fext is the most commonly used modality,
with all 180 bug reports using text to convey some piece
of information. Annotated text is the second most recurring
modality and appeared in 100 bug reports. In our analysis,
we also further categorized the annotated text modality into
annotated GUI text and annotated input text. Annotated GUI
text identifies bug reports in which the reporter used text within
quotes or latter casing to identify an element in the GUI of the

mm Text Ml Annotated Text HEE Image Annotated Image Recording Log

2007 7g0 160 2007 79 200
175 140{ 133 175 1751 72
150 120 150 150
125 100 125 125
100 100 80 100 89 100

75 60 75 75

50 40

30 50 50 36 29
25 18 19 20. 25 14 25 16 19
6 2 4 1 5
0 0 0 0
a) Modalities for bug reports. b) Modalities for environment. ¢) Modalities for S2Rs. d) Modalities for OB.

Fig. 4: Reporting modalities for bug reports and bug report components.

relevant app. An example of this case appears in the bug report
associated with Figure 3b in which the user wrote “Show
homescreen tips” is indented in the report to describe the
report’s OB. The annotated input text subcategory contains
cases in which the reporter provided a textual app input using
text within quotes. An example of this case appears in a
bug report [39] for K-9 MAIL, where the reporter mentioned
Add new email account with “foo@b.2” as one of the S2Rs
in the report. In total, we identified 100 bug reports with
annotated text (85 annotated GUI text, six annotated input text,
and nine in which both categories appeared). The remaining
modalities, while less common, were still present and, in a
large number of cases, provided information that would have
been more cumbersome to convey otherwise. Among the bug
reports considered, reporters used the image, annotated image,
recording, and log modalities in 30, 6, 18, and 19 bug reports,
respectively. Furthermore, image-based modalities (i.e., image,
annotated image, and recording) appeared more frequently
in user-submitted (35) than developer-submitted bug reports
(14). Finally, we noticed a slight trend of increasing use of
image data over the years, with image-based information being
present in only 14% of reports in 2016 to 36% in 2019.
Figures 4-b, 4-c, and 4-d report the modalities used for
specific sections of the bug reports. Figure 4-b reports the
modalities used for the environment sections. The great ma-
jority of the reports (133) use the text modality to report
environment information, and only a few use the image
modality (2). Figure 4-c provides the modalities used for the
S2Rs. Text is the most commonly used modality (present in
179 bug reports). Annotated text also appears in a considerable
number of bug reports (89). The remaining modalities are less
common but provide relevant information for reproducing the
bug reports. Nineteen bug reports had multiple S2R modalities
other than text or annotated text, 16 of these bug reports
were user-submitted and 3 were developer-submitted. These
19 bug reports also used the recording (14), the image (4),
and annotated image (1) modalities. Finally, Figure 4-d report
the modalities used for the OB sections. Once more, the text
modality is the most recurring one (172 cases). However,
for OB, the image and recording modalities were used more
frequently (29 and 16 cases, respectively) as compared to
environment and S2Rs. Sixty bug reports had multiple OB
modalities other than text or annotated text, 38 of these bug
reports were user-submitted and 22 were developer-submitted.
These 60 bug reports also used the image (29), the annotated

image (5), recording (16), and log (19) modalities (with
some bug reports having multiple modalities). Overall, user-
submitted bug reports used reporting modalities other than text
more frequently that developer-submitted bug reports.
Examining the relationship between reporting modalities
and failure types, we found that bug reports with cosmetic and
navigation failures have a higher proportion of cases in which
the information is reported using image-based modalities as
compared to output and crash failures. Specifically, 45% of
the bug reports describing cosmetic failures and 43% of the
bug reports discussing navigation failures use image-based
modalities, while these modalities appear in only 16% and
18% of the bug reports describing crash and output failures,
respectively. Focusing on specific bug reports sections, we
find a similar result for OB descriptions. Additionally, the
log modality was used exclusively to report the OB of bug
reports describing crashes. These results highlight how certain
modalities might be preferable particular failure types.

RQ- answer: Our categorization identified six main re-
porting modalities. Overall, text and annotated text are the
most recurring modalities. Certain modalities occur more
frequently when considering specific failure types, e.g.,
images for cosmetic and navigation failures.

C. RQs: Do reproducible bug reports have missing information?

Our analysis identified that 54 bug reports did not contain
any environment information, one bug report did not have any
S2Rs, and four bug reports did not contain OB information.
(Missing information is computed with respect to the bug re-
ports initially submitted and does not consider the information
contained in their discussions, as that is the focus of RQ4.)

Although only one bug report did not have any S2Rs, 92.2%
of the bug reports had at least one missing S2R. As mentioned
in Section II, missing S2Rs include missing context S2Rs
and missing inline S2Rs. 88.3% of bug reports had at least
one missing context S2R and 37.7% of bug reports had at
least one missing inline S2R. Figure 5 associates missing
S2Rs to unmapped GUI actions. More precisely, for each bug
report, the figure reports the percentage of unmapped GUI
actions with respect to the number of GUI actions necessary
to reproduce the report. The figure reports the percentage for
missing S2Rs, missing context S2Rs, and missing inline S2Rs.
The figure reveals that 75% of the bug reports have at least
20% unmapped GUI actions due to missing S2Rs. Across

2 100%] °
S €
S 80%;
=)
O 60%-
°
Q
S 40% g
I]
c
2 20%-
2 I
N E——
S RS RS
V\.\‘ss’\(‘%g)jl o(\‘e‘l&gl A0 (\\.\“es
L NS (G
wiss® W

Fig. 5: Pct. of unmapped GUI actions due to missing S2Rs.

all bug reports, missing S2Rs led to 43.2% of GUI actions
being unmapped. 33.4% of unmapped GUI actions are due
to missing context S2Rs and 9.8% are due to missing inline
S2Rs. These results illustrate that reproducing bug reports also
requires inferring a large number of GUI actions that are not
specified in the description of the bug reports.

Comparing missing S2Rs from user-submitted bug reports
with respect to missing S2Rs from developer-submitted bug
reports, users submitted reports that have a lower percentage of
unmatched GUI actions due to missing context S2Rs (22.5%)
with respect to developer-submitted reports (43.5%). This
difference does not appear for unmatched GUI actions due
to missing inline S2Rs (9.5% for user-submitted and 10%
for developer-submitted bug reports). We did not observe a
difference in missing information across failure types.

e

RQ3; answer: The environment section of a bug report is the
most likely to be missing from submitted bug reports among
the sections considered. A large percentage of bug reports
(92%) had at least one missing S2R. Missing S2Rs equate
to 43.2% unmapped GUI actions necessary to reproduce the
failures described in the reports.

D. RQy: Do discussion threads of reproducible bug reports
contain helpful information for reproducing the reports?

To answer this RQ, we analyzed the discussions associated
with the bug reports in our dataset and identified information
added as part of the conversations that was relevant for repro-
ducing the bugs. In total, 35 of the bug reports contained addi-
tional information detailing either the environment, the S2Rs,
or the OB of the bug reports. Among these 35 bug reports,
25 were user-submitted and 10 were developer-submitted.
Additionally, in 22 of the 35 bug reports, a developer explicitly
requested for the information to be added to the discussion.

In the discussions, there were 20 instances of environment
information added to the report, 11 instances of S2Rs, and 9
instances of OB. The sum of these numbers is higher than
the total number of bug reports with additional information
because some discussions (five in total, four with two mes-
sages and one with three) contained multiple messages that
provided additional information. Although added information
does not appear in a large number of cases, these results show

0% 20% 40% 60% 80% 100%

Fig. 6: Percentage of non-specific S2Rs by bug report.

that follow up conversations can be leveraged to reproduce
reported bugs. Furthermore, considering the high number of
reports with missing environment information and unmatched
GUI actions identified in RQs, automated techniques can try
to identify and automatically seek this information through
iterative or interactive bug reproduction approaches.

Looking at different failure types, bug reports describing
output failures were the ones with the highest number of
added information in their discussions. Among the 35 bug
reports with added information, 17 described output failures,
15 reported crashes, 2 described cosmetic failures, and 1
discussed a navigation failure.

RQ, answer: Among the bug reports considered, 35 had
additional information relevant for reproducing the reports
derived from follow-up, message-based discussions. In 22
reports, the information was explicitly requested by a devel-
oper. Finally, of the 35 reports, 20 had added environment
info, 11 had added S2Rs, and 10 had added OB.

E. RQs: How specific is the information reported in repro-
ducible bug reports?

When the environment was reported, the information could
be directly mapped into actions for reproducing the failure.
That is, it was possible to select the right app version, Android
version, and device for reproducing the failure. In the case of
OB, we had to look at the bug report discussion of six reports
to better understand the problem associated with the reported
failures, meaning that, in our analysis, the OB described in
those bug reports was not specific enough for reproducing the
failures. Considering S2Rs, 73.9% of the bug reports had at
least one reported S2Rs that could not be directly mapped
into a single GUI action but, instead, required multiple GUI
actions. Based on the terminology defined in Section II, this
means that those bug reports had at least one non-specific S2R.
Figure 6 reports the percentage of non-specific S2Rs in each
bug report of our dataset. Across all reports, the S2Rs section
had an average of 36% of S2Rs that were non-specific. This
results shows that there is the need to fill a gap to map S2Rs
into corresponding GUI actions when reproducing reports.

Considering failure types, bug reports describing navigation
failures had the highest average percentage of non-specific
S2Rs (40%), while output failures had the lowest (34%). This
result shows a minor difference in the specificity of S2Rs
between reported failure types. There was also little difference
in the average percentage of non-specific S2Rs reported by
users (34.6%) and developers (35.8%).

RQ; answer: Environment and OB information was spe-
cific enough to reproduce reported failures in the great
majority of cases. A large percentage of reports (73.9%) had
at least one non-specific S2R, and the average percentage
of non-specific S2Rs across all reports was 36%.

V. DISCUSSION AND IMPLICATIONS

1) New automated techniques are needed for understanding
non-crashing oracles. Most existing automated bug repro-
duction approaches for mobile apps focus on reproducing
bugs leading to a crash [13], [14]. This is likely because
failures related to crashes are easier to recognize, for example
through detection of a crash dialog, and thus detect when a
a crashing bug has been reproduced. However, our analysis
shows that more than 70% of the bug reports describe failures
other than crashes and thus require more sophisticated oracle
definitions and detection. For example, automated techniques
for bug report reproduction might benefit from techniques
that can define visual oracles using computer vision, such as
detecting an incorrect color theme through color histogram
analysis. Similarly, navigation failures might require analysis
of statically computed program state graphs, to determine
feasibility of navigation paths. Extending recent work on
defining oracles through the derivation of program invariants
(e.g., [40]) could further aid in oracle construction.

2) There is a need for automated multi-modal understand-
ing of bug report information. Our analysis has illustrated
that bug reports can mix multiple modalities of information
together in form of text, images, and recordings, which capture
disparate pieces of information about a given bug. However,
most recent work on automated bug report reproduction and
analysis only considers the textual modality [12], [13], [14].
Given the amount of prevalence of missing information, even
in reproducible reports, revealed through our analysis of RQs,
automated report analysis should strive to analyze all types of
reported information for a more robust and complete analysis.
As such, new techniques for multi-modal understanding of
bugs is needed. For example, deep learning techniques that
connect images and natural language (e.g., dense image cap-
tioning [41]) could be used to link textual information to visual
information for more complete report analysis. Furthermore,
in the case of S2Rs, automated techniques would also need to
identify how to suitably order the information and this could
be achieved by leveraging window transition graphs computed
statically or dynamically from the apps [42], [43].

3) Techniques for inferring and mocking app environments
are essential. Historically, Android app developers have strug-
gled to reign-in issues related to the fragmented platform and
device ecosystem. These issues also surface in bug reporting.
As identified while analyzing the bug reports considered, it
is possible for bugs to manifest under specific combinations
of device and platform versions. Considering, that this in-
formation is not always present in submitted bug reports
(missing in 30% of the cases), techniques that are able to infer,
prioritize environmental settings (e.g., device and platform

versions) are needed to help drive research on more advanced
automated mobile bug report analysis techniques. Furthermore,
considering that apps are released frequently [44], [45] and
bug reports do not always contain the associated app version,
it would be beneficial to automatically infer the version of
the app associated with a bug report. This task could be done
by automatically by mapping bug report information into GUI
components or code entities in the app.

3) Reasoning about missing S2Rs is required. Our analysis
illustrated that a large majority (92%) of our studied bug
reports have at least one missing S2R. This represents a
notable challenge for automated report analysis techniques
which will likely need to infer this missing information in
order to provide robust analyses. Current techniques do offer
advanced solutions (i.e., they are based on random exploration)
to help fill in certain missing gaps [13], [14], [12]. However,
additional techniques are likely needed that allow for fine-
grained inference of missing steps. For instance, future tech-
niques could examine existing corpora of bug reports (such
the artifacts associated with this research) and attempt to infer
missing steps via patterns learned from a corpus of complete
bug reports.

4) Handling non-specific S2Rs in bug report data is a
major challenge. In addition to a high prevalence of missing
S2Rs, our analysis also revealed that 36% of the S2Rs were
mapped to multiple GUI actions. These S2Rs identified “high-
level” operations, in which the actions or target GUI elements
were not explicitly delineated. This situation represents a
challenging reasoning problem for automated reproduction
and report analysis techniques. Current techniques attempt
to overcome such ambiguities through the use of ontological
matching [13] or neural representations of text [12] in addition
to random exploration. However, additional techniques for
performing mapping of non-specific actions or targets are
likely needed. For example future techniques may benefit
from inferring descriptions of app controls or functionality
through multi-modal image captioning models that allow for
better mapping of text to runtime app information. Automated
“repair” of ambiguous bug report steps based on patterns
learned form well-formed sets of reproduction steps may also
be a worthwhile direction of exploration. Additionally, S2R
descriptions could be extracted from sequences of GUI actions
in existing test cases and be mapped to S2Rs in bug reports
to facilitate their reproduction.

In summary, the analysis performed in this paper has
revealed several notable implications that impact future work
on automated bug report reproduction, reporting, analysis, and
management. We believe that future work will benefit from
these findings and the potential new directions of research that
they point towards.

VI. THREATS TO VALIDITY

While we follow a systematic methodology in collecting,
analyzing, and reporting our results, it is important to discuss
the threats to validity of our study to provide a comprehensive
view of our findings. In terms of external validity, our results

may not generalize to bugs for other Android apps. However,
given the number, diversity, and popularity of our subject
applications and reports, we believe our studied reports should
be reasonably representative of Android bug reports as a
whole. We considered the most recent dataset of reproducible
bug reports (with non-crashing bugs) and extended the dataset
to also include developer-submitted bug reports. This dataset
includes apps that vary in terms of their size and category. An
additional threat could be posed by the fact that we only used
open source apps. However, the evaluation includes apps such
as FIREFOX Focus and SIMPLENOTE, which have complex
functionality and millions of installs. In terms of construct
validity, our results might be affected by errors in the tools
we used to perform our analyses. To mitigate this threat, we
extensively tested our tools and multiple authors manually
inspected the results. Finally, we also performed qualitative
analyses, which could be impacted by divergent understanding
among evaluators. To mitigate this threat, we used open coding
based on negotiated agreement [31].

VII. RELATED WORK
A. General Studies on Bug Reports

Related work investigated bug report properties to better un-
derstand multiple activities characterizing the bug report man-
agement process [46], [47], [48], [49], [50], [511, [52], [53],
[54]. Among different topics, this line of research analyzed
bug report content, developers’ and users’ participation in
bug report discussions, triaging, and bug fixing. A prominent
study carried out by Bettenburg et al. [46] identified desired
aspects that should be contained in a bug report. In follow-up
work, Bettenburg et al. [47] also showed that duplicated bug
reports contain some additional helpful information that could
be used for bug triaging. Sahoo et al. [48] identified the main
components necessary for bug reproduction by performing
an empirical study. Some prior studies focused primarily on
user-submitted bug reports. This line of research investigated
how users typically communicate software problems [51], the
usefulness of the provided information by power users [52],
and user communitys’ expectations [55]. In this paper, we
investigated key aspects related to both user-submitted and
developer-submitted Android bug reports. Furthermore, we fo-
cused on the aspects related to the reproduction of bug reports
and specifically investigated how the bug report information
relates to the information needed to reproduce the reports.

B. Bug Report Studies for Mobile Apps

Most of the initial studies on bug reports focused on
desktop applications. However, because of smartphone apps’
availability, usability, and popularity in the last decade, re-
searchers have also started focusing on studying characteristics
of bug reports for mobile apps. Zhou et al. [19] performed
a study to understand the bug management between desktop
and mobile software. Bhattacharya et al. [18] studied mobile
bug reports and the bug-fixing process. Aljedaani et al. [56]
compared the bug reports between Android and iOS. Zhang et
al. [57] studied mobile apps bug reports, labeled those reports,

10

and computed similarities with the previously labeled ones.
In our study we reproduced bug reports, characterized the
failures associated with the reports, analyzed the usefulness
of the information provided in the reports, and categorized the
reporting modalities. Previous studies also produced datasets
of Android bugs with associated bug reports. Wendland et
al. [20] created a dataset of reproducible, user-submitted bug
reports. Su et al. [58] created a dataset of crashing bugs based
on GitHub issues. Fazzini et al. [13] and Zhao et al. [14]
also assembled a dataset of crashing bugs for their research
on automated reproduction of bug reports. Compared to these
datasets, to the best of our knowledge, this paper is the first
to create and consider in its study a dataset of non-crashing
and reproducible bug reports that contains both user-submitted
and developer-submitted reports.

VIII. CONCLUSION

We presented an empirical study that characterized re-
producible Android bug reports. Specifically, we manually
reproduced 180 bug reports systematically mined from An-
droid apps on GitHub and investigated how the information
contained in the bug report relates to the task of reproducing
the reports. Our analysis identified that reported failures can
be grouped into four categories, three of which are not yet
considered by existing automated reproduction techniques,
reporters use different modalities to report the information
relevant for reproducing failures, a large number of reports
(74%) have at least one non-specific S2R (i.e., multiple GUI
action are necessary to perform the operation described by the
S2R), the great majority of reports (92%) do not provide all the
S2Rs that are necessary to reproduce the reports, and bug re-
port discussions can, in some cases (19%), provide additional
information useful for the reproduction of the reports.

In future work, we first plan to present our findings to
Android developers and then develop techniques to aid au-
tomated reproduction of bug reports. To support automated
reproduction of bug reports, we first plan to define an approach
that leverages natural language processing and computer vi-
sion techniques to automatically encode OB information into
oracles and so aid reproduction of output, cosmetic, and
navigation failures. Second, we plan to define a technique that
combines S2Rs information reported using different modali-
ties. Third, we plan to define a technique that leverages the
information contained in existing test cases to help mapping
non-specific S2Rs to corresponding GUI actions. Finally, we
believe that additional studies into the reproduction of bug
reports for software in other domains are needed and those
studies could inform techniques for bug report management
in those domains.

ACKNOWLEDGMENT
This work was partially supported by a gift from Facebook
and the NSF CCF-2007246 & CCF-1955853 grants. Any
opinions, findings, and conclusions expressed herein are the
authors’ and do not necessarily reflect those of the sponsors.

[1]

[2]

[3]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

G. Tassey, “The economic impacts of inadequate infrastructure for
software testing,” National Institute of Standards and Technology, Tech.
Rep., 2002.

G. Hu, X. Yuan, Y. Tang, and J. Yang, “Efficiently, effectively detecting
mobile app bugs with appdoctor,” in Proceedings of the 9th European
Conference on Computer Systems, ser. EuroSys’14, New York, NY,
USA, 2014, pp. 18:1-18:15.

N. Jones, “Seven best practices for optimizing mobile testing efforts,”
Gartner, Technical Report G00248240, 2013.

D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and E. Stroulia,
“Understanding android fragmentation with topic analysis of vendor-
specific bugs,” in Proceedings of the 2012 19th Working Conference
on Reverse Engineering, ser. WCRE ’12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 83-92. [Online]. Available:
http://dx.doi.org/10.1109/WCRE.2012.18

“Android fragmentation statistics http://opensignal.com/reports/2014/
android-fragmentation/,” 2014.

A. Ciurumelea, A. Schaufelbiihl, S. Panichella, and H. Gall, “Analyzing
reviews and code of mobile apps for better release planning,” in
Proceedings of the IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering, ser. SANER’17, Feb. 2017, pp.
91-102.

A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A. Visag-
gio, G. Canfora, and H. C. Gall, “What Would Users Change in My App?
Summarizing App Reviews for Recommending Software Changes,” in
Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. FSE’16, Seattle, WA, USA,
2016, pp. 499-510.

F. Palomba, P. Salza, A. Ciurumelea, S. Panichella, H. Gall, F. Ferrucci,
and A. De Lucia, “Recommending and localizing change requests for
mobile apps based on user reviews,” in Proceedings of the 39th Interna-
tional Conference on Software Engineering, ser. ICSE’17, Piscataway,
NJ, USA, 2017, pp. 106-117.

F. Palomba, M. Linares-Vasquez, G. Bavota, R. Oliveto, M. D. Penta,
D. Poshyvanyk, and A. D. Lucia, “Crowdsourcing user reviews to
support the evolution of mobile apps,” Journal of Systems and Software,
pp. 143-162, 2018.

F. Palomba, M. Linares-Vasquez, G. Bavota, R. Oliveto, M. D. Penta,
D. Poshyvanyk, and A. D. Lucia, “User reviews matter! tracking crowd-
sourced reviews to support evolution of successful apps,” in Proceedings
of the IEEE International Conference on Software Maintenance and
Evolution, ser. ICSME’15, Sept 2015, pp. 291-300.

S. Choudhary, A. Gorla, and A. Orso, “Automated test input generation
for android: Are we there yet? (e),” in 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
Los Alamitos, CA, USA: IEEE Computer Society, nov 2015, pp.
429-440. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/ASE.2015.89

O. Chaparro, C. Bernal-Cérdenas, J. Lu, K. Moran, A. Marcus,
M. Di Penta, D. Poshyvanyk, and V. Ng, “Assessing the Quality of the
Steps to Reproduce in Bug Reports,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. Association
for Computing Machinery, 2019, p. 86-96.

M. Fazzini, M. Prammer, M. d’Amorim, and A. Orso, “Automatically
translating bug reports into test cases for mobile apps,” in Proceedings of
the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA), 2018, pp. 141-152.

Y. Zhao, T. Yu, T. Su, Y. Liu, W. Zheng, J. Zhang, and W. G. J. Halfond,
“ReCDroid: Automatically Reproducing Android Application Crashes
From Bug Reports,” in Proceedings of the 41st International Conference
on Software Engineering (ICSE), 2019, pp. 128-139.

X. Xia, D. Lo, Y. Ding, J. M. Al-Kofahi, T. N. Nguyen, and X. Wang,
“Improving automated bug triaging with specialized topic model,” IEEE
Transactions on Software Engineering, vol. 43, no. 03, pp. 272-297, mar
2017.

M. Pradel, V. Murali, R. Qian, M. Machalica, E. Meijer, and S. Chandra,
“Scaffle: Bug localization on millions of files,” in Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing and
Analysis. New York, NY, USA: Association for Computing Machinery,
2020, p. 225-236.

T. Zhang, W. Hu, X. Luo, and X. Ma, “A commit messages-based bug
localization for android applications,” International Journal of Software

11

(18]

[19]

[20]

(21]
[22]
(23]
[24]

[25]

[26]
(27]
[28]
[29]
[30]

(31]

[32]
(33]
[34]
[35]
[36]
(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Engineering and Knowledge Engineering, vol. 29, no. 04, pp. 457-487,
2019.

P. Bhattacharya, L. Ulanova, I. Neamtiu, and S. C. Koduru, “An
empirical analysis of bug reports and bug fixing in open source android
apps,” in Software Maintenance and Reengineering (CSMR), 2013 17th
European Conference on, 2013, pp. 133-143.

B. Zhou, I. Neamtiu, and R. Gupta, “A cross-platform analysis of bugs
and bug-fixing in open source projects: desktop vs. android vs. ios,”
Proceedings of the 19th International Conference on Evaluation and
Assessment in Software Engineering, 2015.

T. Wendland, J. Sun, J. Mahmud, S. M. H. Mansur, S. Huang, K. Moran,
J. Rubin, and M. Fazzini, “Andror2: A dataset of manually-reproduced
bug reports for android apps,” 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR), pp. 600-604, 2021.
(2021, Oct.) Github. [Online]. Available: https://github.com

(2021, Oct.) Google play. [Online]. Available: https://play.google.com
“Mobile operating system market share worldwide,” StatCounter, Tech-
nical Report, 2021.

A. Authors, “Online appendix
2021bugreportingstudy/home,” 2021.
(2021, Oct.) Bug: Long pressing the amount input brings up
qwerty keyboard. [Online]. Available: https://github.com/codinguser/
gnucash-android/issues/689

(2021, Jan.) About issues. [Online]. Available: https://docs.github.com/
en/github/managing- your-work-on- github/about-issues

(2021, Jan.) App manifest overview. [Online]. Available:
//developer.android.com/guide/topics/manifest/manifest-intro
(2021, Jan.) Uiautomator. [Online]. Available: https://developer.android.
com/training/testing/ui-automator

J. Corbin and A. Strauss, Basics of qualitative research: Techniques and
procedures for developing grounded theory. Sage publications, 2014.
M. B. Miles, A. M. Huberman, and J. Saldafia, Qualitative data analysis:
A methods sourcebook. Sage publications, 2018.

J. L. Campbell, C. Quincy, J. Osserman, and O. K. Pedersen, “Coding in-
depth semistructured interviews: Problems of unitization and intercoder
reliability and agreement,” Sociological Methods & Research, vol. 42,
no. 3, pp. 294-320, 2013.

E. R. Morrissey, “Sources of error in the coding of questionnaire data,”
Sociological Methods & Research, vol. 3, no. 2, pp. 209-232, 1974.
(2018, Aug.) Can’t open the add/remove medicine stock dialog.
[Online]. Available: https://github.com/citiususc/calendula/issues/134
(2021, Oct.) Tag text removal bug by using checkbox. [Online].
Available: https://github.com/federicoiosue/Omni-Notes/issues/634
(2021, Oct.) Home screen tips toggle improperly indented. [Online].
Available: https://github.com/mozilla-mobile/focus-android/issues/3304
(2021, Oct.) App closes on pressing back button in manual setup.
[Online]. Available: https://github.com/k9mail/k-9/issues/3971

(2021, Oct.) app crash when change view by in report section. [Online].
Available: https://github.com/zwieback/FamilyFinance/issues/1

(2021, Oct.) Title case Vs sentence case in
ux writing. [Online]. Available: https://uxdesign.cc/
title-case- vs-sentence- case-in-ux-writing-212087192261

(2021, Oct.) Crashes with invalid format email address. [Online].
Available: https://github.com/k9mail/k-9/issues/3255

T. Su, Y. Yan, J. Wang, J. Sun, Y. Xiong, G. Pu, K. Wang, and Z. Su,
“Fully automated functional fuzzing of android apps for detecting non-
crashing logic bugs,” Proc. ACM Program. Lang., vol. 5, no. OOPSLA,
Oct. 2021. [Online]. Available: https://doi.org/10.1145/3485533

J. Johnson, A. Karpathy, and L. Fei-Fei, “Densecap: Fully convolutional
localization networks for dense captioning,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016.

D. Lai and J. Rubin, “Goal-driven exploration for android applications,”
in 2019 34th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), 2019, pp. 115-127.

S. Yang, H. Wu, H. Zhang, Y. Wang, C. Swaminathan, D. Yan, and
A. Rounteyv, “Static window transition graphs for Android,” International
Journal of Automated Software Engineering, vol. 25, no. 4, pp. 833-873,
Dec. 2018.

J. Gao, L. Li, T. F. Bissyandé, and J. Klein, “On the evolution of mobile
app complexity,” in 2019 24th International Conference on Engineering
of Complex Computer Systems (ICECCS), 2019, pp. 200-209.

S. Mcllroy, N. Ali, and A. E. Hassan, “Fresh apps: an empirical study
of frequently-updated mobile apps in the google play store,” Empirical
Software Engineering, vol. 21, no. 3, pp. 1346-1370, 2016.

https://sites.google.com/view/

https:

http://dx.doi.org/10.1109/WCRE.2012.18
http://opensignal.com/reports/2014/android-fragmentation/
http://opensignal.com/reports/2014/android-fragmentation/
https://doi.ieeecomputersociety.org/10.1109/ASE.2015.89
https://doi.ieeecomputersociety.org/10.1109/ASE.2015.89
https://github.com
https://play.google.com
https://sites.google.com/view/2021bugreportingstudy/home
https://sites.google.com/view/2021bugreportingstudy/home
https://github.com/codinguser/gnucash-android/issues/689
https://github.com/codinguser/gnucash-android/issues/689
https://docs.github.com/en/github/managing-your-work-on-github/about-issues
https://docs.github.com/en/github/managing-your-work-on-github/about-issues
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
https://github.com/citiususc/calendula/issues/134
https://github.com/federicoiosue/Omni-Notes/issues/634
https://github.com/mozilla-mobile/focus-android/issues/3304
https://github.com/k9mail/k-9/issues/3971
https://github.com/zwieback/FamilyFinance/issues/1
https://uxdesign.cc/title-case-vs-sentence-case-in-ux-writing-212087192261
https://uxdesign.cc/title-case-vs-sentence-case-in-ux-writing-212087192261
https://github.com/k9mail/k-9/issues/3255
https://doi.org/10.1145/3485533

[46]

[47]

(48]

[49]

[50]

[51]

[52]

N. Bettenburg, S. Just, A. Schroter, C. Weiss, R. Premraj, and T. Zim-
mermann, “What makes a good bug report?” in Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. New York, NY, USA: ACM, 2008, pp. 308-318.

N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Duplicate
bug reports considered harmful ... really?” in Proceedings of the Inter-
national Conference on Software Maintenance, ser. ICSM’08, 2008, pp.
337-345.

S. K. Sahoo, J. Criswell, and V. Adve, “An empirical study of reported
bugs in server software with implications for automated bug diagnosis,”
in Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ser. ICSE *10. New York, NY, USA:
Association for Computing Machinery, 2010, p. 485-494. [Online].
Available: https://doi.org/10.1145/1806799.1806870

S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Information Needs
in Bug Reports: Improving Cooperation Between Developers and Users,”
in Proceedings of the Conference on Computer Supported Cooperative
Work (CSCW’10), 2010, pp. 301-310.

S. Davies and M. Roper, “What’s in a bug report?” in Proceedings
of the 8th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, ser. ESEM ’14. New York, NY,
USA: Association for Computing Machinery, 2014. [Online]. Available:
https://doi.org/10.1145/2652524.2652541

A.J. Ko, B. A. Myers, and D. H. Chau, “A Linguistic Analysis of How
People Describe Software Problems,” in Proceedings of the Symposium
on Visual Languages and Human-Centric Computing (VL/HCC’06),
2006, pp. 127-134.

A. J. Ko and P. K. Chilana, “How power users help and hinder open

12

[53]

[54]

[55]

[56]

[57]

(58]

bug reporting,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI "10. New York, NY, USA:
Association for Computing Machinery, 2010, p. 1665-1674. [Online].
Available: https://doi.org/10.1145/1753326.1753576

F. Thung, D. Lo, and L. Jiang, “Automatic defect categorization,”
in Proceedings of the Working Conference on Reverse Engineering
(WCRE’12), 2012, pp. 205-214.

P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy,
“Characterizing and predicting which bugs get fixed: An empirical
study of microsoft windows,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ser. ICSE
’10. New York, NY, USA: Association for Computing Machinery,
2010, p. 495-504. [Online]. Available: https://doi.org/10.1145/1806799.
1806871

P. K. Chilana, A. J. Ko, and J. O. Wobbrock, “Understanding expressions
of unwanted behaviors in open bug reporting,” in 2010 IEEE Symposium
on Visual Languages and Human-Centric Computing, 2010, pp. 203—
206.

W. Aljedaani, M. Nagappan, B. Adams, and M. Godfrey, “A comparison
of bugs across the ios and android platforms of two open source cross
platform browser apps,” in 2019 IEEE/ACM 6th International Confer-
ence on Mobile Software Engineering and Systems (MOBILESoft), 2019,
pp. 76-86.

T. Zhang, H. Li, Z. Xu, J. Liu, R. Huang, and Y. Shen, “Labelling issue
reports in mobile apps,” IET Softw., vol. 13, pp. 528-542, 2019.

T. Su, J. Wang, and Z. Su, “Benchmarking automated gui testing for
android against real-world bugs.” New York, NY, USA: Association
for Computing Machinery, 2021, p. 119-130.

https://doi.org/10.1145/1806799.1806870
https://doi.org/10.1145/2652524.2652541
https://doi.org/10.1145/1753326.1753576
https://doi.org/10.1145/1806799.1806871
https://doi.org/10.1145/1806799.1806871

	Introduction
	Background and Terminology
	Methodology
	Dataset Creation
	Bug Reports Filtering
	Failure Reproduction Phase

	Bug Reports Analysis
	Bug Reports Preparation
	Analysis for RQ1 (What are the failure types associated with reproducible bug reports?)
	Analysis for RQ2 (What information modalities are used to report the details contained in reproducible bug reports?)
	Analysis for RQ3 (Do reproducible bug reports have missing information?)
	Analysis for RQ4 (Do discussion threads of reproducible bug reports contain helpful information for reproducing the reports?)
	Analysis for RQ5 (How specific is the information reported in reproducible bug reports?)

	Results
	RQ1: What are the failure types associated with reproducible bug reports?
	RQ2: What information modalities are used to report the details contained in reproducible bug reports?
	RQ3: Do reproducible bug reports have missing information?
	RQ4: Do discussion threads of reproducible bug reports contain helpful information for reproducing the reports?
	RQ5: How specific is the information reported in reproducible bug reports?

	Discussion and Implications
	Threats to Validity
	Related Work
	General Studies on Bug Reports
	Bug Report Studies for Mobile Apps

	Conclusion
	References

