
Stronger Together: On Combining Relationships in
Architectural Recovery Approaches

Evelien Boerstra∗
Univ. of British Columbia, Canada

boerste@student.ubc.ca

John Ahn∗
Univ. of British Columbia, Canada

jahn18@student.ubc.ca

Julia Rubin
Univ. of British Columbia, Canada

mjulia@ece.ubc.ca

Abstract—Architecture recovery is the process of obtaining
the intended architecture of a software system by analyzing its
implementation. Most existing architectural recovery approaches
rely on extracting information about relationships between code
entities and then use the extracted information to group closely
related entities together. The approaches differ by the type of
relationships they consider, e.g., method calls, data dependencies,
and class name similarity. Prior work shows that combining
multiple types of relationships during the recovery process is
often beneficial as it leads to a better result than the one obtained
by using the relationships individually. Yet, most, if not all,
academic and industrial architecture recovery approaches simply
unify the combined relationships to produce a more complete
representation of the analyzed systems. In this paper, we propose
and evaluate an alternative approach to combining information
derived from multiple relationships, which is based on identifying
agreements/disagreements between relationship types. We discuss
advantages and disadvantages of both approaches and provide
suggestions for future research in this area.

Index Terms—architecture recovery, software re-engineering,
relationships between code entities.

I. INTRODUCTION

Software architecture recovery techniques [27], [32], [43]–
[46], [50], [66], [71] aim at extracting architectural information
from lower-level software representations, such as source code.
They assist software developers and architects by augmenting
often outdated or even non-existing architectural documentation
with up-to-date information which is in full sync with the
implemented system. Closely related to the field of architec-
tural recovery are microservice extraction techniques, which
recently gathered substantial attention in both academia and
industry [13], [18], [24], [28], [29], [37], [38], [47], [48],
[52], [56], [58], [61], [69]. These techniques are designed to
help developers migrate legacy applications from monolithic
to the microservice architecture style [42], effectively splitting
a monolithic software system into a set of interdependent
modules (a.k.a. microservice candidates).

Most of these techniques share the same underlying principle:
they construct a graph representation of the analyzed software
system, in which the nodes represent application elements,
e.g., packages, classes, methods, etc., and the edges represent
(weighted) relationships between the elements, e.g., statically
or dynamically collected method calls and data dependencies,
name similarities, evolutionary similarities, etc. Once such a
graph-based representation is constructed, the techniques utilize

*Equal contribution.

existing [30] or proprietary [50], [71] clustering algorithms
to group nodes into separate partitions (a.k.a. clusters), which
represent architectural modules. The main objective of cluster-
ing is to achieve loose coupling, i.e., minimizing inter-cluster
connections, and high cohesion, i.e., maximizing intra-cluster
connections, w.r.t. the considered relationships.

Most of the existing techniques operate at a class- or
file-level granularity, which was shown to align with users’
expectations the best [19], [22], [23]. The techniques vary
by the types of relationships between elements they consider
during the decomposition process. Moreover, existing work
shows that considering only one type of relationship is often
insufficient [44] and, thus, most of the existing approaches
combine multiple types of relationships, e.g., method calls
and class hierarchies [28], method calls and class name
similarities [37], statically and dynamically extracted method
call info [58], structural relationships and evolutionary data
about artifact co-changes [29], and more.

These approaches typically use (what we refer to as) a
union-based strategy for combining information from multiple
relationships. That is, for each pair of elements, they unify
information from different sources into one combined edge
between the elements. Consider, for example, a simplified
version of an online shopping application in Figure 1, which is
inspired by one of our case studies. This example application
consists of six classes: Shopper, which represents a user of the
system; Order, which represents the shopping order of the user
and includes the details about the price of the order, payment
methods, and shipping details; ShoppingCart, which aggregates
CartItems the user selects for their order; Product that contains
detailed information about a product and its possible variations;
and, finally, ProductConfig which defines particular product
configurations selected by the user.

Figure 1a shows the decomposition produced when con-
sidering (weighted) static method call relationships between
the classes. Such an approach is often taken to capture the
architectural structure of the system. This decomposition
consists of two clusters: S1, which contains the ShoppingCart,
CartItem, and Product classes, and S2, which contains the
Shopper, Order, and ProductConfig classes. The Product class
has a higher affinity with CartItem than with ProductConfig
because CartItem often queries the Product class to present
accurate product information to the user. At the same time,
ProductConfig has a higher affinity with Order than with
Product because the Order class needs to access various aspects

Shopping-
Cart Shopper

CartItem Order

Product Product
Config

2

8 5

8

2

3

1

S1 S2

(a) By Static Relationships.

Shopping-
Cart Shopper

CartItem Order

Product Product
Config

3

5

5

N3

N2

N1

(b) By Name Similarities.

Shopping-
Cart Shopper

CartItem Order

Product Product
Config

5

8

5

81

2

8

5

U1

U2

(c) Union-based.

C2

C3C1

Shopping-
Cart Shopper

CartItem Order

Product Product
Config

5

8

5

81

2

8

5

(d) Concensus-based.

Fig. 1: Examples of Possible Application Decompositions.

of the product configuration to identify the price, shipment
options, etc. Thus, these two classes were split into two different
clusters in this decomposition.

Figure 1b shows a different decomposition that was obtained
by considering the similarity between class names. This
approach is often taken to capture business domains encoded
in element names. The produced decomposition contains three
clusters: N1 groups Shopper, ShoppingCart, and CartItem
together, as both Shopper and CartItem have names similar
with ShoppingCart. N2 groups Product and ProductConfig
together, due to the similarity in their names. Order does not
have an edge connecting it with other classes as their names
are not similar; it is thus placed in a separate cluster, N3.

A typical union-based approach for combining static and
name-based relationships from Figures 1a and 1b is shown in
Figure 1c. It aggregates all edges between each pair of classes
and sums up their weights. For example, the edge between the
Product and ProductConfig classes has a weight of 8 in this
example as it combines the static relationship with a weight
of 3 and the name-based similarity relationship with a weight
of 5. In practice, edge weights are typically normalized during
such a union, as we discuss in the next section, but we omitted
this in our example for simplicity of the demonstration.

The decomposition produced by these unified edges contains
two clusters, U1 and U2, which represent cohesive elements
w.r.t. both relationships combined. However, even though the
ShoppingCart and CartItem classes (shaded in the figure) were
placed in the same cluster in both by-static and by-name-
similarity decompositions, there are split apart between different
clusters in this clustering result.

In this paper, we investigate an alternative approach for
combining information derived from multiple relationships,
which relies on the intuition that elements which were grouped
together in both individual decompositions are likely to belong
together. We refer to our approach, which is inspired by the
clustering ensemble work from the field of machine learning
and data science [67], as a consensus-based strategy. In this
strategy, we first compute decompositions by each individual
relationship type and then “lock together” elements that are
part of the same cluster in each individual decomposition, like
the classes ShoppingCart and CartItem in our example. We
then complete the clustering for the remaining elements using
a union of relationships.

Figure 1d shows an example of such consensus-based
decomposition. As ShoppingCart and CartItem are locked
together, they are placed in their own cluster, C1. To obtain the
best result w.r.t. the couplings and cohesion for the remaining
elements, Product and ProductConfig are placed in C2, while
Shopper and Order are placed in C3. That is, in fact, the
expected result in this example, as it correctly separates
shopping cart, product, and user details.

To investigate the applicability and usefulness of both
strategies in practice, we conduct an empirical study with
six large-scale real-life applications. We picked these case
studies because they include manually constructed and curated
expected decomposition results (a.k.a. ground truth) and are
commonly used for evaluating architectural recovery and
microservice decomposition techniques [44], [63], [65], [70].

We decompose the applications using both union- and
consensus-based strategies and use similarity metrics to com-
pare the obtained and expected results. Our analysis shows
that the consensus-based strategy outperforms the union-based
strategy in the majority of cases, producing a result closer to
the users’ expectations.
Contributions. This paper makes the following contributions.
1. It defines the problem of combining multiple relationship
types in architectural recovery and microservice extraction.
2. It introduces a new consensus-based strategy for combining
information derived from multiple relationships and empirically
compares it with the union-based strategy used in prior work
on six large-scale case study applications. The results of the
comparison show that the consensus-based strategy outperforms
union-based in the majority of cases.
3. It makes our implementation, empirical evaluation setup, and
evaluation results publicly available to facilitate reproducibility
and future work in this area [14].

The remainder of the paper is structured as follows. Section II
formally defines both union- and consensus-based strategies
for performing decompositions using multiple relationships. In
Section III, we discuss our instantiation of the approaches, in-
cluding our selections of relationships and clustering techniques.
Section IV discussed our study methodology and Section V
presents the results of our evaluation, lessons learned, and
future research directions. Limitations and threats to validity of
our study are discussed in Section VI, Section VII outlines the
related work and, finally, Section VIII concludes the paper.

2

II. STRATEGIES FOR COMBINING RELATIONSHIPS

In this section, we formally define the union-based strategy
for combining relationships, which is used in prior work [19],
[37], [49], [57]. We then define the consensus-based strategy
we introduce in this work.

We represent a software system as a graph (N,R), where
the set of nodes N corresponds to elements of the system, such
as classes, methods, files, or packages, and a set of undirected
weighted edges R corresponds to the relationships between
the elements. For the example in Figure 1, N is the set of
classes ShoppingCart, CartItem, Product, Shopper, Order, and
ProductConfig. There are two types of relationships in this
example: R1, which corresponds to the static relationships
in Figure 1a and R2, which corresponds to the name-based
similarities in Figure 1b.

Each relationship r ∈ R has a weight, denoted by w(r). To
fairly combine the relationships without one “dominating” over
the other, we ensure that the weights are normalized and are
ranging between 0 and 1, i.e., ∀r ∈ R,w(r) ∈ [0, 1].

We define a decomposition D of a graph (N,R) as a partition
of N into a set of clusters {c1, . . . , ck}. Each cluster ci ∈ D is
a non-empty subset of elements from N , i.e., ci ⊆ N ∧ ci 6= ∅.
We require all clusters to be mutually exclusive, ci ∩ cj = ∅,
and cover the entire set N , ∪ki=1ci = N . In other words, every
element of N must belong to one and only one cluster.

A. Union-based Strategy

The union-based strategy, which we refer to as U, assumes
a software system with two types of relationships, i.e., graphs
(N,R1) and (N,R2). It combines the information from the
different relationship types and derives a unified representation
(N, R̄), which consists of the same set of nodes N and a new
set of edges R̄. There exists an edge e ∈ R̄ between two nodes
ni, nj ∈ N if and only if there is an edge e1 between these
nodes in R1 and/or an edge e2 between the nodes in R2. We
define the weight of the edge w(e) = w(e1)+w(e2)

2 , assuming
that w(ei) = 0 if ei /∈ Ri.

For the example in Figure 1c, we summed up rather than
averaged weights of the combined relationship for illustration
purposes. We create an edge between Product and Product-
Config with a weight of 8 as it combines the weights of the
static and by-name similarity edges in Figures 1a and 1b,
with weights 3 and 5, respectively. The edge between the
ShoppingCart and Shopper elements has a weight of 5, like
in the by-name similarity relationship graph, as no such edge
exists in the static relationship graph.

The unified graph (N, R̄) is then used to cluster the nodes
towards producing the union-based decomposition DU, as
shown in Figure 1c of our example.

B. Consensus-based Strategy

The consensus-based strategy, which we refer to as C,
preserves elements grouped together in decompositions of
N produced using individual relationships R1 and R2. The
intuition behind this strategy is to preserve the consensus

between the decompositions induced by different relationship
types when reconciling relationships.

More formally, given decompositions D1 and D2 over
(N,R1) and (N,R2), respectively, we first find all consensus
groups ĉij between D1 and D2:

ĉij = ci ∩ cj | ci ∈ D1, cj ∈ D2

We denote by Ĉ the set of all non-empty consensus groups,
i.e., all groups of elements that were clustered together in both
decompositions:

Ĉ =

 ⋃
i∈[1,|D1|], j∈[1,|D2|]

ĉij | ĉij 6= ∅

For the example in Figure 1d, there is one non-empty

consensus group consisting of the classes ShoppingCart and
CartItem as these classes were grouped together in both static
and by-name similarity decompositions. This consensus group
is indicated by lock symbols in Figure 1d. Note that each
element can appear in at most one consensus group as clusters
in each decomposition are mutually exclusive.

We define a new consensus graph (N,L, R̄), where N are
nodes representing the elements of the system, R̄ are edges
between the nodes, defined as in the union-based strategy, and
L is the set of labels annotating the nodes. L contains a distinct
label for each consensus group in Ĉ, |L| = |Ĉ|. We denote the
label of a node n in (N,L, R̄) by l(n) and ensure that nodes
share the same label if and only if they belong to the same
consensus group:

∀ni, nj ∈ N, l(ni) = l(nj) ⇐⇒ ∃ĉ ∈ Ĉ | ni ∈ ĉ ∧ nj ∈ ĉ

We say that a label of a node n is empty if n does not
belong to any consensus group: l(n) = ∅ if @ĉ ∈ Ĉ | n ∈ ĉ.

The consensus graph (N,L, R̄) is, again, used to cluster
elements in N while ensuring that all elements with the same
label are always placed in the same resulting cluster. We
refer to the produced decomposition as the consensus-based
decomposition DC. Figure 1d shows an example of such a
decomposition for our motivating example.

III. INSTANTIATION OF THE APPROACH

In this section, we discuss the relationships and the clustering
algorithms that we use to instantiate and empirically compare
the identified strategies.

A. Selected Relationship Types

Prior work on architectural recovery and microservice
extraction techniques considered a variety of relationship types
between application elements [27], [32], [39], [44], with the
most common being structural, semantic, and evolutionary re-
lationships. Structural relationships aim to capture architectural
similarity between application elements and group together
elements that are likely to belong to the same architectural
component. Semantic relationships aim to capture lexical
similarity between application elements and group together
elements that use the same terminology. The idea behind this
type of relationships is that elements using similar terminology
are likely to belong to the same application domain. Finally,

3

evolutionary relationships aim to capture the structure of the
team working on an application and group together elements
developed by the same team members. The idea here is to
capture elements developed by independent sub-teams, as they
can represent independent components.

For our experiments, we instantiated the approach with two
types of relationships: structural and semantic. In particular,
we experimented with class/file-level static and name-based
similarity relationships, which we describe below.

Static Relationships. These relationships represent control and
data dependencies between elements. A control dependency
occurs when one class/file invokes a method from another
class/file. A data dependency occurs when a class/file uses
a data structure defined in another class/file as its field,
local variable, method parameter, or return variable. In the
graph representing static relationships, these dependencies are
translated into weighted undirected edges, where the weight is
set to the sum of all control and data dependencies between
the corresponding connected elements, in both directions.

For the example in Figure 1a, the edge between the
ShoppingCart and CartItem classes indicates that there exist
two control and/or data dependencies between these two classes.
In this case, ShoppingCart contains a field of type CartItem
and invokes a method in the CartItem class. The CartItem
does not invoke any methods or use data of type ShoppingCart.
Thus, the weight of the edge is set to 2.

For our experiments, we extracted static relationships using
the Understand by SciTools [11] tool. We set edge weights by
the number of static dependencies (or “references” in SciTools
terminology), which include the aforementioned dependencies.

Name-based Similarity Relationships. These relationships
capture the similarity of class/file names. Intuitively, they aim
to identify elements that belong to the same domain by relying
on naming conventions followed by developers. There exists
a name-based similarity relationship between two elements
if the elements contain similar terms in their name. For the
example in Figure 1b, ShoppingCart and CartItem share an
edge because of the shared term “Cart” in their names.

We rely on classic Information Retrieval (IR) techniques,
including name tokenization, lemmatization, and the removal
of stopwords to calculate these relationships. First, all class/file
names are tokenized according to the naming convention of
the application (e.g., camelCase, PascalCase, Train-Case or
Snake_Case) into a set of terms. Each term is lemmatized and
stop words are removed from the set. Stop words include the
most common English words [5] and keywords of the Java
and C/C++ programming languages.

We then calculate the degree of similarity between two
names as the fraction of the number of common terms used
in both names out of the number of all unique terms used in
both names. That is, let the name X be defined by terms(X)
and the name Y be defined by terms(Y). The name similarity
between name X and Y is then defined as

similarity(X,Y) =
|terms(X) ∩ terms(Y)|
|terms(X) ∪ terms(Y)|

For example, ShoppingCart and CartItem in Figure 1 are
represented in PascalCase. They are tokenized as {Shopping,
Cart} and {Cart, Item}, respectively. Lemmatization reduces the
term Shopping to Shop. In this case, no stopwords are present.
The names share one common term, Cart. The similarity
between the names is then 1

3 (in Figure 1b, we multiplied
all numbers by 10 for demonstration purposes).

For our experiments, we consider the file basename (i.e., the
rightmost segment of the file path) of an application element
as the name of that element. Additionally, we used the Word
Net Lemmatizer offered by the Natural Language Toolkit [7]
to extract and lemmatize tokens.

Relationship Normalization. In our case, the weight of
static relationships is unbounded and is represented by whole
numbers, whereas the weight of name relationships is bounded
in the range of 0 to 1. To fairly combine relationships whose
weights are not within the same range, weights must first be
normalized; otherwise, one relationship type can dominate
another and the overall decomposition would largely resemble
the one with the more dominant relationship weights.

We perform normalization by first standard-normalizing all
edge weights in the edge set R and then transforming them
to values between 0 to 1. That is, for each edge e with the
weight w(e), we define the z-score normalized edge weight
z(w(e)) as: z(w(e)) =

w(e)− µR

σR

where µR represents the mean and σR represents the standard
deviation of the edge set R. Shifting the edge set distribution
to the standard normal distribution does not affect the shape
or spread of the distribution, but rather centers it at 0. In
other words, the distribution adopts a mean of 0 and standard
deviation of 1. This ensures that z-score normalized edge
weights from different distributions are comparable.

As z-scores measure the number of standard deviations an
edge weight is from the edge set mean, they are sensitive to
outliers [36] and do not produce weights in the common 0 to
1 range. That could bias the clustering in favor of an edge set
with a greater distribution spread. We thus transform each z-
score normalized edge weight z(w(e)) by the standard logistic
function, sigmoid curve, defined by s(x) = 1/(1 + exp(−x)).
This function has a domain of all real numbers. Its return
value ensures that edges with large z-score normalized weights,
either positive or negative, are assigned weights closer to 0
and 1, respectively, whereas weights near the mean for each
distribution are assigned weights near 0.5. That is, the function
does not change the distribution shape but adjusts the spread
so that edges have a weight between 0 and 1, reducing the
impact of outliers and increasing the contribution of edges near
the distribution mean [72].

B. Clustering Algorithms

Graph clustering is a known problem in computer sci-
ence with many applications in software engineering, social
networks, biology, medicine, and more. In particular, there
are several clustering techniques developed specifically for
architecture recovery problems [17], [25], [27], [32], [45], [50],

4

as well as a large number of generic, off-the-shelf clustering
techniques [35], [60], [71]. To ensure our results are not
specific to a particular clustering technique, we picked for our
experiments one specific and one generic clustering approach,
as described below.
BUNCH [50] is one of the most popular open source clus-
tering algorithms designed for software modularization; it is
commonly used in in architectural recovery studies [43], [44],
[59], [70]. Its objective function, Turbo Modularization Quality
(TurboMQ), optimizes for high cohesion and low coupling w.r.t.
intra- and inter-relationships of software elements grouped into
clusters. More specifically, given a decomposition of elements
into k clusters, a cluster factor CFi for each cluster i is
calculated as CFi =

µi

µi + 0.5×
∑

j εij + εji

where µi is the number of intra-relationships and εij + εji
is the number of inter-relationships between cluster i and any
other cluster j. TurboMQ is then defined as the sum of cluster
factors of all clusters of a decomposition:

TurboMQ =

k∑
i=1

CFi

BUNCH provides a number of optimization algorithms:
Nearest Ascent Hill Climbing (NAHC), Steepest Ascent Hill
Climbing (SAHC), and a genetic algorithm. Prior work found
that, although the genetic algorithm finds a solution more
quickly, the hill-climbing algorithms produce higher-quality
results, with NAHC having a lower tendency to timeout than
the SAHC approach [44], [62]. Therefore, we used the NAHC
version in our analysis. We configured BUNCH to perform 500
random initializations for each clustering problem (an initial
population size of 500) and try all possible moves in each run
(a hill climb percentage of 100%).
Spectral clustering [53] is a technique rooted in graph theory;
it is used for solving a relaxation of an NP-hard discrete graph
partitioning problem [26], in particular, to identify clusters in
a weighted graph whose nodes correspond to data points and
edges represent distances between the points. As such, it is
very suitable for our task: finding communities of nodes in a
graph based on the edges connecting them.

We used an off-the-shelf spectral graph clustering technique
implemented by the scikit-learn python library [55], particularly
the cluster.SpectralClustering module. As spectral clustering
assumes the target number of clusters k as the input, we
instantiated it twice: (i) by setting k to be equal to the number of
clusters in the expected architecture for each subject application
and (ii) by setting k to be equal to the number of clusters
produced by BUNCH. This was done to investigate the effect
of the number of clusters on the quality of decompositions
produced by the consensus-based approach.

Implementing Decomposition Approaches. To produce de-
compositions by individual relationship types, as well as the
union decomposition DU, we simply inputted the corresponding
graphs to BUNCH and the spectral clustering approaches.

To produce the consensus decomposition, DC, we first calcu-
lated consensus groups from the individual decompositions, as

(N,R1)
static

(N,R2)
name-
based

(N,R1�R2)

Δ
consensus
groups

expected

cluster

cluster

cluster

cluster

U

C

Ĉ

Fig. 2: Evaluation Overview.

described in Section II. We leveraged and augmented the open
source implementation of BUNCH to ensure that consensus
groups stay together during clustering. Specifically, we ensured
that all elements in a consensus group are assigned to the same
cluster during initialization and are also moved together in
any subsequent move that the tool explores. As our approach
does not alter the clustered elements and their relationships, it
does not interfere with BUNCH’s TurboMQ objective function,
providing a fair comparison with the union approach.

For the spectral clustering, we followed the advice on
StackOverflow [64], contracting the input adjacency metric.
Specifically, we replaced all elements belonging to a consensus
group C with a single element c and created an edge between
c and each element v that was adjacent to an element of
C. We set the weight of an edge between c and v to be the
maximal weight of all elements of C that were adjacent to v, to
preserve the strongest relationship to v. We treated contracted
elements separately when computing all similarity metrics, for
fair comparison with the union-based approach.

For the example in Figure 1, we merged the ShoppingCart
and CartItem classes of the consensus group into one element,
which has four outgoing edges: to Shopper, Order, Product,
and ProductConfig. As each of these classes has only one
edge connecting it to an element of the consensus group, the
maximum of edge weights is trivially equal to the original
weight of such edge.

IV. EVALUATION SETUP

In this section, we describe our experimental methodology
and evaluation setup. Our investigation is driven by the
following research questions:

RQ1 (Usefulness) Is the consensus-based strategy plausible?
RQ1.1 What fraction of consensus-based groups is preserved

in the expected decomposition?
RQ1.2 What fraction of consensus-based groups is split in

the union-based decomposition?
RQ2 (Performance) How well does the consensus-based
strategy perform compared with the union-based strategy?
RQ2.1 How close are both decompositions to the expected

result?
RQ2.2 What is the execution time for both decompositions?

Figure 2 outlines our overall evaluation approach. We used indi-
vidual relationships to decompose each subject software system
and also produced union- and consensus-based decompositions
DU and DC, respectively. We compared these decompositions
to the expected result using a set of metrics.

5

In what follows, we discuss our selection of subject applica-
tions and their expected decompositions, the metrics we used,
and our runtime evaluation environment.

A. Subject Applications

We selected six large open-source projects commonly used
in evaluation of architectural recovery techniques [15], [37],
[44], [63], [65], [70] as subject applications for our work (see
Table I). These projects span a number of application domains,
are implemented in three different programming languages (C,
C++, Java), two different programming paradigms (procedural
and object-oriented), and greatly vary in size.

Three of the projects – Bash, Hadoop, and ArchStudio are
borrowed from Lutellier et al. [44]. We selected these projects
as they included manually curated expected decomposition
results (a.k.a. ground-truth architectures) the authors obtained
through collaboration with engineers closely familiar with these
systems [4]. We excluded ITK and Chromium from our study
as, at the time of writing, we could not retrieve the version of
the projects used by the authors.

In addition, we followed the approach by Teymourian et
al. [70] and Jin et al. [37] and included Mozilla Firefox and
XWiki projects as the authors confirmed that the desired appli-
cation decomposition conforms with the application package
structure in these cases.

Finally, we augmented our set of projects with a popular
Java web application, PartsUnlimited, used in prior work on de-
composing monolithic to microservice-based architecture [15],
[39] and which also has an open-source ground-truth version.
Next, we describe these subject systems in more detail.

Bash [3] (the Bourne-Again SHell) is a command-line shell
that provides a user interface to a GNU operating system (OS).
Bash is written in C and is included in popular OSs, such
as GNU/Linux and Mac OS X. Version 4.2 of the system is
implemented in 364 .c and .h files comprising 102 KLOC.
The ground-truth architecture splits these files into 14 clusters,
which contain all the original files and 9 duplicated files.
Hadoop [1] is a widely used open-source framework for
distributed data processing in compute clusters [10]. Following
prior studies [44], we focused on the HDFS, Map-Reduce,
and Core components of Hadoop version 0.19.0, as we have
access to the ground-truth architecture for these components.
The components are implemented in Java, consist of 90 KLOC,
and contain 615 Java classes. The ground-truth architecture
splits this implementation into 67 clusters, which contain all
the original classes and 157 duplicates.
ArchStudio [2] is a development environment for modeling,
analyzing, implementing, and visualizing systems and software
architectures. ArchStudio version 4 is implemented in Java,
consists of 58 KLOC, and contains 583 Java files. Its ground-
truth architecture contains 57 clusters, which contain all the
original files, without any duplicates.
Mozilla Firefox [6] is an open-source web browser written
in C++. We followed the approach by Teymourian et al. [70]
and used ten out of 55 main folders of the developer preview
version 3.7a4, release 1.9.3a4, as there is a credible human

TABLE I: Subject Applications
Case study Project

version
Lang. KLOC # Classes /

Files
Clusters

in Expected
Bash 4.2 C 102 364 14
Hadoop 0.19.0 Java 90 615 67
ArchStudio 4 Java 58 583 57
Mozilla Firefox 1.9.3a4 C++ 600 3437 67
XWiki 14.1 Java 264 3135 76
PartsUnlimited - Java 3 52 5

expert confirmation that sub-folders of these ten folders can
act as the decomposition ground truth. The selected folders are:
Accessible, Browser, Build, Content, Db, Dom, Extensions,
Gfx, Intl and Ipc. Excluding tests, they contain 3437 .cpp, .c
and .h files comprising 600 KLOC, and include 67 sub-folders
we used as the ground truth. Unlike prior work that analyzed
each folder individually, we focused our analysis on the entire
selected code, to perform a system-level analysis. Our method
thus considers all the files of the selected folders together in
a flat structure and assesses the similarity of the produced
clusters to the existing sub-folder structure.
XWiki [12] is an open source wiki software platform written in
Java with a design emphasis on extensibility. For our analysis,
we use the most recent stable version with a verified signature
on GitHub, namely version 14.1. We focused on the xwiki-
platform-core component, which is implemented in 3135 Java
files consisting of 264 KLOC. As with Mozilla Firefox, we used
the existing directory structure, which contains 58 sub-folders,
as the ground-truth architecture.
PartsUnlimited [8], [9] is a Java-based open source Man-
ufacturing Resource Planning application which was devel-
oped for training purposes and contains both monolithic and
microservice-based versions of the backend sub-system. We
focused on decomposing the monolithic version in commit
a83586b, which contains 3 KLOC in 52 Java files. The
microservice-based version of the backend contains five clusters,
with all the original files and 28 duplicates.

B. Metrics

To assess the usefulness of consensus-based groups and to
answer RQ1, we measure the fraction of the groups that are
indeed preserved in the expected decomposition for each case
study. That is, given the expected decomposition DE and a
set of consensus groups Ĉ, we compute a subset of consensus
groups ĈP ⊆ Ĉ preserved in the expected decomposition,
such that each ĉP ∈ ĈP is a subset of at least one cluster
cE ∈DE, i.e., ∃cE ∈ DE |ĉP ⊆ cE . We report on the fraction
of preserved consensus groups out of the total number of
consensus groups, |ĈP |

|Ĉ| .

While all consensus groups Ĉ are, by definition, preserved in
the consensus-based decomposition, we also assess how these
groups are handled during the union-based decomposition. To
this end, we calculate and report the number of consensus
groups ĈSU ⊆ Ĉ that are split (i.e., not preserved) by the
union-based decomposition. That is, given a decomposition DU,
ĈSU includes all consensus groups in Ĉ that are not a subset
of any of the clusters in DU. We report both the total number

6

of such consensus groups and the number of consensus groups
in the “important” subset of ĈSU – those that are preserved
in the expected decomposition, i.e., ĈSU ∩ ĈP .

To answer RQ2, we assess each produced decomposition
based on its closeness to the expected results using a set of
common architecture recovery metrics [19], [20], [33], [40],
[41], [43], [44], [54], which we describe below.
MoJoFM [73] is a non-symmetric metric that takes as input two
clustered architectures, A and B, and quantifies the number of
Move and Join operations required to transform architecture A
into B. The Move operation moves an entity from one cluster to
another existing or a newly created cluster. The Join operation
joins two clusters into one and reduces the number of clusters
by one. MoJoFM assigns the same weight to both operations.
More formally, MoJoFM is defined as:

MoJoFM(A,B) =

(
1− mno(A,B)

max(mno(∀A,B))

)
× 100%

where mno(A,B) is the minimum number of oper-
ations needed to transform architecture A into B and
max(mno(∀A,B)) is the maximum number of non-repeated
steps to transform any architecture A (with the same elements)
into B. Placing max(mno(∀A,B)) in the denominator effec-
tively ‘scales’ the value of Move and Join operations to match
the size of its input architectures.

MoJoFM scores range from 0% to 100%, wherein a higher
value represents a higher similarity between two architectures.
In our analysis, we measure the value of transforming a
produced architecture into the expected architectures, as our
goal is to assess how ‘architecturally distant’ the produced
architectures are from the ground-truth architectures.
Architecture-to-architecture (a2a) [40] is a metric proposed to
address the main drawback of MoJoFM: that its Join operation
is excessively cheap for clusters containing a high number
of elements. This is particularly visible for large produces,
resulting in high MoJoFM values for architectures with many
small clusters. Moreover, a2a handles discrepancies between
the recovered and ground-truth architectures, i.e., when the
recovered architecture contains a higher/lower number of
elements [40]. a2a is formally defined as:

a2a(A,B) =

(
1− mto(A,B)

aco(A) + aco(B)

)
× 100%

mto(A,B) = addE(A,B) + remE(A,B) +movE(A,B)+

addC(A,B) + remC(A,B)

aco(X) = addC(X∅, X) + addE(X∅, X) +movE(X∅, X)

where mto(A,B) is the minimum number of operations
needed to transform architecture A into B and aco(X) is the
number of operations needed to construct any architecture X
from a “null” architecture X∅. mto and aco calculate the total
number of the five operations used to transform one architecture
into another: addE handles cases where elements exist in the
ground-truth architecture B but not in A, by “symbolically”
adding them to A; remE removes elements from A if they
do not exist in B, movE moves an element from one cluster
of A to another, ensuring that it is placed with elements that

appear in the same cluster in B. At the cluster level, addC
adds a new cluster in A and remC removes one.
Cluster-to-cluster Coverage (c2ccvg) [33], [43], [44] aims to
assess cluster-level accuracy by measuring the degree of overlap
between the clusters of two architectures:

c2c(ci, cj) =
|ci ∩ cj |

max (|ci|, |cj |)
× 100%

where ci is a cluster in the produced architecture A and cj is
a cluster in the ground-truth architecture B. The denominator
is used to normalize the entity overlap in the numerator by the
number of entities in the larger of the two clusters, ensuring
that c2c provides the most conservative value of similarity
between the two clusters.

To summarize the extent to which clusters of a decomposition
match ground-truth clusters, c2ccvg calculates the fraction of
clusters that are thcvg-similar to at least one cluster in the
ground truth, where thcvg is a threshold that can be set to a
certain percentage, e.g., 10% or 50%. More formally,

c2ccvg(A,B) =
|simC(A,B)|

|B| × 100%

simC(A,B) = {ci|(ci ∈ A|∃cj ∈ B) ∧ c2c(ci, cj) > thcvg)}

Similar to prior work [44], we assessed the cluster-level
accuracy using three different thresholds: 50% (high similarity),
33% (moderate similarity), and 10% (some similarity).

C. Runtime Environment

We used five virtual machines (VM) running in a proprietary
compute cluster consisting of three physical machines with
Intel Xeon E5-2640 v4 @ 2.40GHz and Intel Xeon E5-2680
v4 @ 2.40GHz processors. Each VM runs an Ubuntu 16.04
operating system and has 4 cores and 16 GB of RAM.

V. RESULTS

We now describe the results of our evaluation for each of the
research questions. We further summarize lessons learned from
our experience and outline suggestions for future research.

A. RQ1: Usefulness

Table II shows the total number of consensus groups (Ĉ),
the number and fraction of the consensus groups that are
also preserved in the expected architecture (ĈP), and the
number and fraction of the consensus groups that are split
by the union-based decomposition (ĈSU). We present this
information for each case study application and for BUNCH
and spectral clustering algorithms, separately. Furthermore, for
spectral clustering, we present the results with k set to the
number of clusters in the ground-truth architecture and k set
to the number of clusters produced by BUNCH.

The table shows that a large fraction of consensus groups –
86%, 63.7%, and 75.5% on average for BUNCH, Spectral
(k=GT), and Spectral (k=Bunch), respectively, are also pre-
served in the expected architecture. This confirms our assump-
tion that identifying elements of consensus groups is valuable
for improving the clustering results.

Furthermore, the union-based decomposition splits a non-
negligible number of consensus groups. A large fraction of

7

TABLE II: Usefulness of Consensus-based Groups

Case Study Bunch-NAHC Spectral (k=GT) Spectral (k=Bunch)

consensus
groups, Ĉ

(%) in
Expected, ĈP

split by Union,
ĈSU

consensus
groups, Ĉ

(%) in
Expected, ĈP

split by Union,
ĈSU

consensus
groups, Ĉ

(%) in
Expected, ĈP

split by Union,
ĈSU

total in Expected total in Expected total in Expected
Bash 10 7 (70%) 5 5 (100%) 14 9 (64%) 4 2 (50%) 7 4 (57%) 1 1 (100%)
Hadoop 65 49 (75%) 7 4 (57%) 107 59 (55%) 21 9 (43%) 62 47 (76%) 14 14 (100%)
ArchStudio 73 65 (89%) 12 11 (92%) 105 73 (70%) 39 21 (54%) 90 75 (83%) 21 18 (86%)
Mozilla Firefox 301 281 (93%) 53 50 (94%) 170 118 (69%) 66 35 (53%) 322 291 (90%) 68 61 (90%)
X-wiki 410 364 (89%) 72 59 (82%) 363 87 (24%) 149 18 (12%) 659 308 (47%) 233 128 (55%)
PartsUnlimited 10 10 (100%) 0 0 (0%) 7 7 (100%) 1 1 (100%) 10 10 (100%) 2 2 (100%)

Average 144.8 129.3 (86%) 24.8 21.5 (70.8%) 127.7 58.3 (63.7%) 46.7 14.3 (52%) 191.7 122.5 (75.5%) 56.5 37.3 (88.5%)

these consensus groups (70.8%, 52%, and 88.5%, for the
three different approaches, respectively) indeed appear in the
expected architecture and thus need to be preserved. This
suggests an opportunity for improving architectural recovery
techniques by preserving agreements between decompositions
produced by individual relationships.

To answer RQ1, the consensus-based strategy of combining
information induced by decompositions performed by individ-
ual relationships appears useful. It has the potential to improve
the quality of architectural recovery techniques that aim to
consider multiple relationships simultaneously.

B. RQ2: Performance
To further investigate whether “locking together” elements

of consensus groups (including those that are not preserved in
the expected architectures) is worthwhile, we calculated the
similarity between the obtained and expected decompositions.
Table III shows the results for all considered similarity metrics,
for each evaluated case study and approach. In particular,
the “mega-rows” correspond to the subject applications we
considered and, for each application, we further list the evalu-
ated similarity metrics and the number of clusters produced
by each decomposition. The columns correspond to different
decomposition approaches we used: by individual relationship
types (static and name-based similarity), using the union-based
approach, and using the consensus-based approach.

The results show that, w.r.t. the MoJoFM metric, the
consensus-based approach outperforms union in all but two
cases: the PartsUnlimited project decomposed with BUNCH,
where both approaches produce identical decompositions, and
the Mozilla Firefox project decomposed with Spectral (k=GT).

The decomposition produced by the consensus-based ap-
proach is not as good as the one produced by union for Mozilla
Firefox because the majority of relevant consensus groups in
this case, i.e., those present in the expected architecture, are
relatively small, containing less than 10 elements each (3.6
elements on average). At the same time, there is an exceptional
number of very large consensus groups, with 11 to 150 elements
each (33.3 elements on average) that are not in the expected
architecture. Keeping elements of these large consensus groups
together comes at a price for the consensus-based approach,
for all of the metrics. Consensus groups are also less accurate
in this case as the expected architecture has largely unbalanced
clusters (average size: 52.2, min: 1, max: 701, median: 22).

Interestingly, when running the Spectral clustering with a
larger k, i.e., k=Bunch, the consensus groups become smaller
and more precise: 90% of the 322 identified consensus groups

are present in the expected architecture and these groups range
between 2 and 7 in size (average 2.2).

The value of the a2a metric is higher for union- than for
the consensus-based decomposition in three experiments: Bash
with both Spectral (k=GT) and (k=Bunch) and Mozilla Firefox
with Spectral (k=Bunch). For Bash, the reason lies in duplicates:
by keeping consensus groups together, the consensus-based
approach ends up placing nine duplicated elements in three
different clusters while both the union-based and the expected
decompositions place these elements in two clusters only. As
a2a is sensitive to duplicates, moving two of the elements from
the “extra” cluster to both of their designated locations causes
the consensus-based approach to have lower values here, albeit
only slightly.

For Mozilla Firefox, the value of the metric is lower for the
consensus-based approach because the metric assigns a higher
weight to the cluster join operation, translating it into a set of
moves. Consider, for example, the case where four elements
from one expected cluster are split into two produced clusters:
{a,b} and {c,d}. Unifying them takes one join operation but
two moves. As the expected clusters are relatively unbalanced
for Mozilla Firefox, per the discussion above, and as keeping
consensus groups together typically results in more balanced
clustering for Spectral, having to move many elements to
larger clusters causes the value of a2a to be lower for the
consensus-based decomposition.

Finally, the results of the c2ccvg metric show that, in the
majority of cases, clusters produced by the consensus-based
approach are more similar to the expected clusters than
those produced by the union-based approach. An exception
is, again, Bash, for all clustering approaches, as well as
PartsUnlimited for Spectral (k=Bunch), where the value of
c2ccvg 10% metric is lower for the consensus-based than for
union-based decomposition. Upon further inspection, as Bash
has a relatively small number of relatively “dense” clusters,
low-quality clusters can pass the 10% threshold of the c2ccvg

10% metric more easily, as they include just a few elements
from at least one of the expected clusters. These clusters do not
pass a higher similarity threshold though, as evident from the
values of c2ccvg 33% and 50% metrics. That is, the union-based
approach produces fewer clusters that are highly similar to the
clusters in the expected decomposition in this case study as
well, but the large number of low-similarity clusters, together
with relatively large expected clusters, “inflate” the value of this
metric. This is also the case for the decomposition produced
by Spectral (k=Bunch) for PartsUnlimited.

8

TABLE III: Similarity Between Obtained and Expected Results for Different Decomposition Types

Case
Study

Bunch-NAHC Spectral (k=GT) Spectral (k=Bunch)

Static Name Union Consensus Static Name Union Consensus Static Name Union Consensus

Bash

MojoFM 58.14 32.43 48.29 52.02 54.49 22.97 63.46 68.27 59.8 24.32 48.08 50
a2a 75.46 33.92 75.38 75.87 78.89 32.28 83.99 83.29 75.12 33.3 75.67 75.4
c2c_cvg 10% 38.81 30 31.96 30 78.57 35.71 71.42 71.42 37.31 30 33.33 32.22
c2c_cvg 33% 11.94 10 11.34 12.22 35.71 0 28.57 42.86 14.93 3.33 10 12.22
c2c_cvg 50% 1.49 0 0 2.22 14.29 0 21.43 35.71 2.99 0 0 1.11
Clusters 67 30 97 90 14 14 14 14 67 30 90 90

Hadoop

MojoFM 46.04 37.82 42.18 42.71 52.16 36.26 39.02 41.48 46.04 36.84 42.36 43.41
a2a 71.33 68.18 72.06 72.31 72.46 68.34 72.54 72.64 71.43 68.21 72.71 72.78
c2c_cvg 10% 53.4 58.24 56.27 56.31 82.09 67.16 71.64 73.13 54.85 53.85 51.94 53.88
c2c_cvg 33% 27.67 25.27 26.04 27.18 29.85 31.34 26.87 28.35 32.52 24.73 26.21 27.67
c2c_cvg 50% 3.39 4.39 4.19 4.37 8.96 7.46 8.96 5.97 5.34 3.85 5.83 5.34
Clusters 206 182 215 206 67 67 67 67 206 182 206 206

Arch-
Studio

MojoFM 58.45 55.62 58.44 61.28 73.02 57.12 61.63 63.23 61.33 53.18 59.33 60.75
a2a 82.15 80.44 82.78 82.97 85.64 80.76 83.76 83.96 82.62 80.6 82.77 83.24
c2c_cvg 10% 53.89 48.66 54.17 54.19 89.47 63.15 66.67 70.18 50.78 46.52 53.63 53.07
c2c_cvg 33% 28.5 27.3 28.13 29.05 61.4 26.32 35.09 31.58 26.94 24.6 25.7 27.93
c2c_cvg 50% 8.29 5.88 6.77 7.82 35.09 8.77 14.03 14.03 13.47 6.42 7.82 10.61
Clusters 193 187 193 179 57 57 57 57 193 187 179 179

Mozilla
Firefox

MojoFM 72.41 64.07 68.65 71.01 77.41 68.23 74.56 68.41 72.5 55.13 63.96 64.71
a2a 79.09 74.08 78.63 79.41 89.88 82.89 89.03 87.51 79.41 73.75 79.52 78.84
c2c_cvg 10% 19.68 17.42 17.16 19.44 67.16 70.15 77.61 65.67 20.83 15.94 17.9 18.74
c2c_cvg 33% 4.89 3.51 4.23 5.03 53.73 49.25 56.72 37.31 4.74 3.07 4.48 4.48
c2c_cvg 50% 1.72 1.61 1.37 1.81 41.79 28.36 35.82 23.88 1.87 1.75 1.82 2.1
Clusters 696 684 804 715 67 67 67 67 696 684 715 715

X-wiki

MojoFM 52.54 48.53 52.07 54.79 50.59 33.13 31.61 34.59 58.3 41.86 52.81 59.3
a2a 72.64 74.54 74.47 74.6 68.42 66.01 65.19 65.81 61 63.56 61.54 62.36
c2c_cvg 10% 16.59 18.25 17.82 22.3 65.79 36.84 39.27 55.26 19.01 15.19 21.24 21.64
c2c_cvg 33% 2.42 3.29 3.35 3.69 30.26 10.53 6.58 6.58 3.4 2.95 3.69 5.54
c2c_cvg 50% 0.44 0.34 0.22 0.66 11.84 1.32 1.32 2.63 0.76 0.79 1.45 2.11
Clusters 910 882 926 758 76 76 76 76 910 882 758 758

Parts-
Unlimited

MojoFM 63.33 90.32 71.43 71.43 76.67 54.84 82.86 82.86 56.67 90.32 71.43 77.14
a2a 58.12 63.91 63.79 63.79 63.27 59.21 69.49 69.91 57.26 63.91 63.37 66.26
c2c_cvg 10% 84.62 100 83.33 83.33 100 100 100 100 92.31 100 91.67 75
c2c_cvg 33% 15.38 71.43 16.67 16.67 100 60 100 100 15.38 71.43 16.67 33.33
c2c_cvg 50% 0 14.3 8.33 8.33 0 20 60 80 0 14.3 8.33 8.33
Clusters 13 7 12 12 5 5 5 5 13 7 12 12

For ArchStudio and Hadoop, with c2ccvg 33% and 50%,
respectively: both these applications have a very large number
of small clusters in the expected decomposition (the median
number of elements is 3 and 4, respectively). Thus, union-
based decompositions for the Spectral approach, which tend
to generate many clusters of size 1, have an advantage here.

We also note that the quality of decompositions produced by
Spectral (k=GT) are higher than the other approaches for the
majority of strategies, case studies, and metrics. We believe it is
largely because decompositions produced by this configuration
contain the same number of clusters as the expected architecture
while the other configurations produce decompositions with
vastly more clusters.

To answer RQ2.1, the consensus-based approach con-
sistently produces decompositions that are more similar to
the expected architecture than the union-based approach. For
BUNCH, all but one metric for one of the case studies is higher
for consensus-based decompositions. For Spectral, MoJoFM
prefers consensus-based decompositions as they induce more
balanced clusters that are easier to join. The results are mixed
w.r.t. metrics that give higher weight to the join operations,
such as a2a and c2ccvg.

For the runtime of the approaches, Spectral finishes in a
matter of a few minutes for all applications and strategies. The
increased benefits in accuracy of the consensus-based strategy
with BUNCH comes at the price of increased execution time
because our consensus-based approach relies on decomposing

the applications by individual relationships first, as shown
in Figure 2. Yet, the execution time of the consensus-based
decomposition itself is, in fact, shorter than that of the
union-based because certain moves are prevented by “locking”
consensus group elements together. For example, it took 2 hours
and 20 minutes for the union-based approach to decompose the
Bash application while the consensus-based decomposition took
one hour only. It is prefaced by 2 hours and 32 minutes total
time taken to perform decompositions by static and name-based
similarity relationships. Overall, the execution time of both
consensus and union approaches for BUNCH ranges between
several minutes (PartsUnlimited), several hours (Bash), several
days (Hadoop and ArchStudio), and several weeks (X-wiki
and Mozilla Firefox).

To answer RQ2.2, all decompositions that use spectral
clustering terminate within several minutes. For BUNCH,
consensus-based strategy increases the overall execution time
compared with the union-based strategy by 55.6%, on average.

C. Lessons Learned and Possible Next Steps

Our analysis of case studies and decomposition results lead to
the following observations and suggestions for future research:

1. While the general-purpose clustering technique that we
used in our analysis was extremely efficient w.r.t. execution
time, selecting a proper number of desired clusters can largely
affect the quality of the produced results. Future work could
look at more appropriate general-purpose clustering techniques

9

and map their properties w.r.t. the architectural recovery task.
Exploring ways to pipeline approaches, e.g., to start from a
spectral decomposition as the initial population for BUNCH,
could be another subject of possible future work.

2. When focusing on architectural-recovery-specific clustering,
we observed that the number of clusters in decompositions
produced by BUNCH is always an order of magnitude higher
than in the expected results. As merging distinct clusters could
be considered a simpler operation than finding and organizing
related elements (as also reflected in the MoJoFM metric),
we believe this design decision is reasonable. Yet, future
work could focus on approaches that produce less fine-grained
decompositions, as decompositions with hundreds of clusters
could be difficult to handle in practice.

3. We also observed that, for BUNCH, the consensus-based
approach consistently produces a smaller number of clusters
than the union-based approach, resulting in a number of clusters
closer to the number of clusters in the expected decomposition.
Moreover, consensus groups induce more reliable clustering
results, albeit at the expense of longer execution time. Future
work could focus on how to perform decomposition by multiple
types of relationships simultaneously, thus decreasing execution
time while keeping the benefits of consensus. Such work could
draw inspiration from consensus-based clustering approaches
studied in other areas [16], [31], [51], [67], [68].

4. Our current evaluation is limited to considering only two
relationships at a time. Further work is needed to evaluate
the usefulness of the consensus-based approach for more than
two types of relationship. Specifically, identifying “agreements”
between a larger number of relationships will inevitable result
in smaller, yet, more reliable consensus groups. Additional
experiments are needed to assess whether these groups are
of a reasonable size and whether they would be preserved
by the union-based decomposition in any case. While our
current experience indicates that union-based decompositions
often split consensus elements apart, future work is needed to
investigate the properties of clustering approaches that cause
such behavior.

5. Finally, the quality and usefulness of decompositions is
highly sensitive to the evaluation metric used. Specifically,
consensus-based decompositions outperformed union-based
w.r.t. the MoJoFM metric in the majority of cases but did not
perform as well for the a2a and c2ccvg metrics for the spectral
clustering. We believe it is important to adjust the approach to
the needs of the architect performing the decomposition.

VI. LIMITATIONS AND THREATS TO VALIDITY

For external validity, our results may not generalize
beyond our selected case study applications. We attempted
to mitigate this threat by selecting a variety of popular open-
source applications with different functionalities, sizes, and
programming paradigms. We thus believe our selection of
applications is reliable.

Another important factor that may affect the validity of our
results is the accuracy of the expected decomposition used

for our case studies. We mitigated this threat by borrowing
case studies from existing literature, where knowledgeable
developers and architects have aided in the production of the
expected architectures. Yet, as there does not necessarily exist a
unique, correct architecture for a system [21], [34], our results
might not generalize for target architectures that reflect different
decompositional goals.

Finally, our results could also be affected by the selection
of clustering algorithms we experiment with. We attempted
to mitigate this threat by using popular third-party clustering
approaches, both from the architectural recovery community
and the general-purpose machine learning field.

For internal validity, deficiencies of the underlying tools
our approach uses, such as the static analysis techniques we
utilized in our work, might have affected the accuracy of the
results. We controlled for this threat by manually analyzing all
the considered cases and confirming their correctness.

VII. RELATED WORK

A number of authors studied the quality of architectural
recovery techniques and, specifically, the use of relationships
in architectural recovery. For example, Abreu and Goulao [22],
Bavota et al. [19], as well as Candela et al. [23] investigated how
class coupling, as captured by structural, dynamic, semantic,
and logical coupling measures, aligns with developers’ percep-
tion of coupling. Similarly, Lutellier et al. [43], [44] explored
the impact of relationships on architectural recovery approaches,
focusing on structural relationships only. Garcia et al. [33]
performed a comprehensive analysis of software architecture
recovery techniques showing a relatively low accuracy for most
of the analyzed approaches. None of these works focused on
exploring approaches for combining multiple relationships, as
we do in our study.

The clustering ensemble concepts from the field of machine
learning and data science are also related to our work [16],
[31], [51], [67], [68]. The main idea in these techniques is
to combine multiple partitionings of a set of objects into a
single consolidated clustering without accessing the features
or algorithms that determined these partitionings, which can
be translated into our problem of combining decompositions
performed by multiple individual relationship types. While
these techniques were previously applied in multiple domains,
such as social network clustering, exploring their applicability
for architectural recover is a subject of possible future work.

VIII. CONCLUSION

In this paper, we defined and explored different strategies
for combining multiple relationship types during architectural
recovery and microservice extraction processes. We introduced
a new consensus-based strategy for combining relationships and
empirically demonstrated that it outperforms the union-based
strategy in the majority of cases. We discussed the advantages
and disadvantages of each strategy and outlined directions for
possible future work.
Acknowledgments: This work has been partially supported by
IBM Canada.

10

REFERENCES

[1] “Apache Hadoop,” https://hadoop.apache.org/.
[2] “ArchStudio 4,” https://github.com/isr-uci-edu/ArchStudio4.
[3] “Bash v4.2,” https://github.com/bminor/bash/releases/tag/bash-4.2.
[4] “Comparing Software Architecture Recovery Techniques Using Accurate

Dependencies – Ground Truth Architectures,” https://www.cs.purdue.edu/
homes/lintan/ArchRecovery/.

[5] “Most common english words,” https://www.textfixer.com/tutorials/
common-english-words.txt.

[6] “Mozilla Firefox Developer Preview, version 1.9.3a4,” https://ftp.mozilla.
org/pub/firefox/releases/devpreview/1.9.3a4/.

[7] “Natural Language Toolkit,” https://www.nltk.org/.
[8] “Parts Unlimited MRP,” https://github.com/microsoft/

PartsUnlimitedMRP.
[9] “Parts Unlimited MRP Microservices,” https://github.com/microsoft/

partsunlimitedMRPmicro.
[10] “Powered by Apache Hadoop,” https://cwiki.apache.org/confluence/

display/HADOOP2/PoweredBy.
[11] “Understand, SciTools,” https://scitools.com, [Online; accessed on 2022].
[12] “XWiki Platform,” https://github.com/xwiki/xwiki-platform.
[13] M. Abdullah, W. Iqbal, and A. Erradi, “Unsupervised Learning Approach

for Web Application Auto-Decomposition into Microservices,” Journal
of Systems and Software (JSS), vol. 151, pp. 243–257, 2019.

[14] J. Ahn, E. Boerstra, and J. Rubin. (2022) Supplementary Materials.
https://resess.github.io/artifacts/CombiningRelationships/.

[15] O. Al-Debagy and P. Martinek, “Dependencies-based Microservices
Decomposition Method,” International Journal of Computers and
Applications, pp. 1–8, 2021.

[16] T. Alqurashi and W. Wang, “A New Consensus Function Based on
Dual-similarity Measurements for Clustering Ensemble,” in International
Conference on Data Science and Advanced Analytics (DSAA), 2015, pp.
1–9.

[17] P. Andritsos and V. Tzerpos, “Information-theoretic software clustering,”
IEEE Transactions on Software Engineering, vol. 31, no. 2, pp. 150–165,
2005.

[18] L. Baresi, M. Garriga, and A. De Renzis, “Microservices Identification
Through Interface Analysis,” in European Conference on Service-Oriented
and Cloud Computing (ESOCC 2017), 2017, pp. 19–33.

[19] G. Bavota, B. Dit, R. Oliveto, M. D. Penta, D. Poshyvanyk, and A. D.
Lucia, “An Empirical Study on the Developers’ Perception of Software
Coupling,” in International Conference on Software Engineering (ICSE),
2013, pp. 692–701.

[20] F. Beck and S. Diehl, “Visual comparison of software architectures,”
Information Visualization, vol. 12, no. 2, pp. 178–199, 2013.

[21] I. Bowman, R. Holt, and N. Brewster, “Linux as a Case Study:
Its Extracted Software Architecture,” in International Conference on
Software Engineering, 1999, pp. 555–563.

[22] F. Brito e Abreu and M. Goulao, “Coupling and Cohesion as Modulariza-
tion Drivers: Are We Being Over-Persuaded?” in European Conference
on Software Maintenance and Reengineering (CSMR), 2001, pp. 47–57.

[23] I. Candela, G. Bavota, B. Russo, and R. Oliveto, “Using Cohesion
and Coupling for Software Remodularization: Is It Enough?” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 25, no. 3, 2016.

[24] L. Carvalho, A. Garcia, T. E. Colanzi, W. K. G. Assunção, J. A. Pereira,
B. Fonseca, M. Ribeiro, M. J. de Lima, and C. Lucena, “On the
Performance and Adoption of Search-Based Microservice Identification
with toMicroservices,” in IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2020, pp. 569–580.

[25] M. Chatterjee, S. K. Das, and D. Turgut, “WCA: A Weighted Clustering
Algorithm for Mobile Ad Hoc Networks,” Cluster Computing, vol. 5,
no. 2, pp. 193–204, 2002.

[26] F. R. Chung, “Spectral Graph Theory,” CBMS, American Math Society,
1997.

[27] A. Corazza, S. Di Martino, V. Maggio, and G. Scanniello, “Investigating
the Use of Lexical Information for Software System Clustering,” in
European Conference on Software Maintenance and Reengineering
(CSMR), 2011, pp. 35–44.

[28] D. Escobar, D. Cárdenas, R. Amarillo, E. Castro, K. Garcés, C. Parra, and
R. Casallas, “Towards the Understanding and Evolution of Monolithic
Applications as Microservices,” in XLII Latin American Computing
Conference (CLEI), 2016, pp. 1–11.

[29] S. Eski and F. Buzluca, “An Automatic Extraction Approach: Transition to
Microservices Architecture from Monolithic Application,” in Proceedings
of the 19th International Conference on Agile Software Development
(XP’18): Companion, 2018, pp. 1–6.

[30] B. S. Everitt, S. Landau, and M. Leese, Cluster Analysis, 4th ed. Wiley
Publishing, 2009.

[31] A. L. N. Fred and A. K. Jain, “Combining Multiple Clusterings Using
Evidence Accumulation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 27, no. 6, pp. 835–850, 2005.

[32] J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, and Yuanfang
Cai, “Enhancing Architectural Recovery Using Concerns,” in IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2011, pp. 552–555.

[33] J. Garcia, I. Ivkovic, and N. Medvidovic, “A Comparative Analysis of
Software Architecture Recovery Techniques,” in International Conference
on Automated Software Engineering (ASE), 2013, pp. 486–496.

[34] J. Garcia, I. Krka, C. Mattmann, and N. Medvidovic, “Obtaining Ground-
Truth Software Architectures,” in International Conference on Software
Engineering (ICSE), 2013, pp. 901–910.

[35] J. A. Hartigan and M. A. Wong, “A K-Means Clustering Algorithm,”
Journal of the Royal Statistical Society, vol. 28, pp. 100–108, 1979.

[36] A. Jain, K. Nandakumar, and A. Ross, “Score Normalization in
Multimodal Biometric Systems,” Pattern Recognition, vol. 38, no. 12,
pp. 2270–2285, 2005.

[37] W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, and Q. Zheng, “Service
Candidate Identification from Monolithic Systems based on Execution
Traces,” IEEE Transactions on Software Engineering (TSE), 2019.

[38] A. K. Kalia, J. Xiao, C. Lin, S. Sinha, J. J. Rofrano, M. Vukovic,
and D. Banerjee, “Mono2Micro: An AI-based Toolchain for Evolving
Monolithic Enterprise Applications to a Microservice Architecture,” in
Tool Demos of ESEC/FSE, 2020, pp. 1606–1610.

[39] L. J. Kirby, E. Boerstra, Z. J. Anderson, and J. Rubin, “Weighing
the Evidence: On Relationship Types in Microservice Extraction,” in
International Conference on Program Comprehension (ICPC), 2021, pp.
358–368.

[40] D. M. Le, P. Behnamghader, J. Garcia, D. Link, A. Shahbazian, and
N. Medvidovic, “An Empirical Study of Architectural Change in
Open-Source Software Systems,” in Conference on Mining Software
Repositories, 2015, pp. 235–245.

[41] K.-S. Lee and C.-G. Lee, “Identifying Semantic Outliers of Source Code
Artifacts and Their Application to Software Architecture Recovery,” IEEE
Access, vol. 8, pp. 212 467–212 477, 2020.

[42] J. Lewis and M. Fowler, “Microservices: a Definition of This New
Architectural Term,” https://www.martinfowler.com/articles/microservices.
html, 2014.

[43] T. Lutellier, D. Chollak, J. Garcia, L. Tan, D. Rayside, N. Medvidovic,
and R. Kroeger, “Comparing Software Architecture Recovery Techniques
Using Accurate Dependencies,” in International Conference on Software
Engineering (ICSE), 2015, pp. 69–78.

[44] ——, “Measuring the Impact of Code Dependencies on Software
Architecture Recovery Techniques,” IEEE Transactions on Software
Engineering, vol. 44, pp. 159–181, 2017.

[45] S. Mancoridis, B. Mitchell, Y.-F. Chen, and E. Gansner, “Bunch: A
clustering tool for the recovery and maintenance of software system
structures,” 02 1999, pp. 50 – 59.

[46] O. Maqbool and H. Babri, “Hierarchical Clustering for Software
Architecture Recovery,” IEEE Transactions on Software Engineering,
vol. 33, no. 11, pp. 759–780, 2007.

[47] T. Matias, F. F. Correia, J. Fritzsch, J. Bogner, H. S. Ferreira, and
A. Restivo, “Determining Microservice Boundaries: A Case Study Using
Static and Dynamic Software Analysis,” in Software Architecture, 2020,
pp. 315–332.

[48] G. Mazlami, J. Cito, and P. Leitner, “Extraction of Microservices from
Monolithic Software Architectures,” in International Conference on Web
Services (ICWS), pp. 524–531.

[49] J. Misra, K. Annervaz, V. Kaulgud, S. Sengupta, and G. Titus, “Software
Clustering: Unifying Syntactic and Semantic Features,” in Working
Conference on Reverse Engineering, 2012, pp. 113–122.

[50] B. S. Mitchell and S. Mancoridis, “On the automatic modularization of
software systems using the Bunch tool,” IEEE Transactions on Software
Engineering, vol. 32, no. 3, pp. 193–208, March 2006.

[51] S. Monti, P. Tamayo, J. P. Mesirov, and T. R. Golub, “Consensus
Clustering: A Resampling-Based Method for Class Discovery and
Visualization of Gene Expression Microarray Data,” Machine Learning,
vol. 52, no. 1-2, pp. 91–118, 2003.

11

https://hadoop.apache.org/
https://github.com/isr-uci-edu/ArchStudio4
https://github.com/bminor/bash/releases/tag/bash-4.2
https://www.cs.purdue.edu/homes/lintan/ArchRecovery/
https://www.cs.purdue.edu/homes/lintan/ArchRecovery/
https://www.textfixer.com/tutorials/common-english-words.txt
https://www.textfixer.com/tutorials/common-english-words.txt
https://ftp.mozilla.org/pub/firefox/releases/devpreview/1.9.3a4/
https://ftp.mozilla.org/pub/firefox/releases/devpreview/1.9.3a4/
https://www.nltk.org/
https://github.com/microsoft/PartsUnlimitedMRP
https://github.com/microsoft/PartsUnlimitedMRP
https://github.com/microsoft/partsunlimitedMRPmicro
https://github.com/microsoft/partsunlimitedMRPmicro
https://cwiki.apache.org/confluence/display/HADOOP2/PoweredBy
https://cwiki.apache.org/confluence/display/HADOOP2/PoweredBy
https://scitools.com
https://github.com/xwiki/xwiki-platform
https://resess.github.io/artifacts/CombiningRelationships/
https://www.martinfowler.com/articles/microservices.html
https://www.martinfowler.com/articles/microservices.html

[52] O. Mustafa, J. M. Gómez, M. Hamed, and H. Pargmann, “GranMi-
cro: A black-box based approach for optimizing microservices based
applications,” in From Science to Society, 2018, pp. 283–294.

[53] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On Spectral Clustering: Analysis
and an Algorithm,” in International Conference on Neural Information
Processing Systems: Natural and Synthetic, 2001, p. 849–856.

[54] C. Patel, A. Hamou-Lhadj, and J. Rilling, “Software Clustering Using
Dynamic Analysis and Static Dependencies,” in European Conference
on Software Maintenance and Reengineering (CSMR), 2009, pp. 27–36.

[55] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. VanderPlas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine Learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

[56] I. Pigazzini, F. A. Fontana, and A. Maggioni, “Tool Support for the
Migration to Microservice Architecture: An Industrial Case Study,” in
Software Architecture, 2019, pp. 247–263.

[57] A. Rathee and J. Chhabra, Software Remodularization by Estimating
Structural and Conceptual Relations Among Classes and Using Hierar-
chical Clustering, 2017, pp. 94–106.

[58] Z. Ren, W. Wang, G. Wu, C. Gao, W. Chen, J. Wei, and T. Huang,
“Migrating Web Applications from Monolithic Structure to Microservices
Architecture,” in Asia-Pacific Symposium on Internetware (Internetware),
2018, pp. 1–10.

[59] M. Schmitt Laser, N. Medvidovic, D. M. Le, and J. Garcia, “ARCADE:
An Extensible Workbench for Architecture Recovery, Change, and
Decay Evaluation,” in European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2020,
p. 1546–1550.

[60] scikit learn, “User Guide: Clustering,” https://scikit-learn.org/stable/
modules/clustering.html.

[61] A. Selmadji, A.-D. Seriai, H. L. Bouziane, C. Dony, and R. O. Mahamane,
“Re-architecting oo software into microservices,” in European Conference
on Service-Oriented and Cloud Computing (ESOCC), 2018, pp. 65–73.

[62] A. Shokoufandeh, S. Mancoridis, T. Denton, and M. Maycock, “Spectral
and Meta-heuristic Algorithms for Software Clustering,” Journal of
Systems and Software, vol. 77, no. 3, pp. 213–223, 2005.

[63] H. Sözer, “Evaluating the Effectiveness of Multi-level Greedy Modularity
Clustering for Software Architecture Recovery,” in Software Architecture,
2019, pp. 71–87.

[64] StackOverflow, “Is there a way to enforce that a set of points are
assigned to the same class when clustering in sklearn or other clustering
library?” https://stackoverflow.com/questions/67151897/is-there-a-way-
to-enforce-that-a-set-of-points-are-assigned-to-the-same-class-wh.

[65] I. Stavropoulou, M. Grigoriou, and K. Kontogiannis, “Case Study on
Which Relations to Use for Clustering-Based Software Architecture
Recovery,” Empirical Software Engineering, vol. 22, no. 4, p. 1717–1762,
2017.

[66] H. Streekmann, Clustering-Based Support for Software Architecture
Restructuring. Wiesbaden, Germany: Springer Vieweg Verlag, 2011.

[67] A. Strehl and J. Ghosh, “Cluster Ensembles – A Knowledge Reuse
Framework for Combining Multiple Partitions,” Journal of Machine
Learning Research, vol. 3, pp. 583–617, 2002.

[68] S. Swift, A. Tucker, V. Vinciotti, M. Nigel, C. Orengo, X. Liu, and
P. Kellam, “Consensus Clustering and Functional Interpretation of Gene-
expression Data,” Genome Biology, vol. 5, no. 11, p. R94, 2004.

[69] D. Taibi and K. Systä, “From Monolithic Systems to Microservices: a
Decomposition Framework Based on Process Mining,” in 8th Interna-
tional Conference on Cloud Computing and Services Science (CLOSER),
2019.

[70] N. Teymourian, H. Izadkhah, and A. Isazadeh, “A fast clustering algorithm
for modularization of large-scale software systems,” IEEE Transactions
on Software Engineering, 2020.

[71] V. Tzerpos and R. Holt, “ACDC: An Algorithm for Comprehension-
Driven Clustering,” 02 2000, pp. 258–267.

[72] S. Wu, Score Normalization, 2012, pp. 19–42.
[73] Zhihua Wen and V. Tzerpos, “An Effectiveness Measure for Software

Clustering Algorithms,” in IEEE International Workshop on Program
Comprehension (WPC), 2004, pp. 194–203.

12

https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
https://stackoverflow.com/questions/67151897/is-there-a-way-to-enforce-that-a-set-of-points-are-assigned-to-the-same-class-wh
https://stackoverflow.com/questions/67151897/is-there-a-way-to-enforce-that-a-set-of-points-are-assigned-to-the-same-class-wh

	Introduction
	Strategies for Combining Relationships
	Union-based Strategy
	Consensus-based Strategy

	Instantiation of the Approach
	Selected Relationship Types
	Clustering Algorithms

	Evaluation Setup
	Subject Applications
	Metrics
	Runtime Environment

	Results
	RQ1: Usefulness
	RQ2: Performance
	Lessons Learned and Possible Next Steps

	Limitations and Threats to Validity
	Related work
	Conclusion
	References

