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ABSTRACT

This paper investigates the problem of classifying Android appli-
cations into malicious and benign. We analyze the performance
of a popular malware detection tool, Drebin, and show that its
correct classification decisions often stem from using benign rather
than malicious features for making predictions. That, effectively,
turns the classifier into a benign app detector rather than a malware
detector. While such behavior allows the classifier to achieve a high
detection accuracy, it also makes it vulnerable to attacks, e.g., by
a malicious app pretending to be benign by using features similar
to those of benign apps. In this paper, we propose an approach for
deprioritizing benign features in malware detection, focusing the
detection on truly malicious portions of the apps. We show that
our proposed approach makes a classifier more resilient to attacks
while still allowing it to maintain a high detection accuracy.
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1 INTRODUCTION

The popularity of mobile phones has increased rapidly in the past
decade. Together with the increased popularity, their wide adop-
tion greatly stimulated the growth of mobile malware. A number
of approaches have recently emerged to support Android malware
detection [1, 2, 4, 5, 13, 14, 16, 17, 21, 22, 26, 27, 29]. Most approaches
rely on extracting application (app) features and then training a
machine learning classifier to distinguish between benign and ma-
licious apps based on these features. They are typically evaluated
on malware from the Malware Genome Project [28], Drebin [4],
AMD [25], and VirusTotal Academic [23] datasets and on contem-
porary benign apps from the Android Google Play app store. The
results of the evaluation show high malware detection abilities,
typically with an accuracy of 90% and above.
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To reproduce and study the reasons behind these high detec-
tion ratios, we experimented with a popular malware detection
tool Drebin [4], which captures Android app characteristics by ex-
tracting features from the app’s code and Android manifest file and
further uses SVM [8] as the underlying classifier. We choose Drebin
as it is known for its high accuracy and runtime efficiency [14, 18].
We used malicious apps from six recent snapshots of the VirusTotal
Academic dataset [23] that were available to us (2016–2019). For
benign apps, we sampled the AndroZoo repository [3], selecting
apps that appeared in Google Play, were deemed benign by all anti-
viruses on VirusTotal, and corresponded in years to our malicious
samples. We refer to the produced dataset as VT.

We performed time-aware experiments [19], training Drebin
on malware and benign samples from earlier years and testing it
on later years, while controlling for the size of the training and
testing sets (see Section 2 for details). Our experiments showed a
very high detection accuracy (F-measure of 96%), consistent with
reports in earlier work. However, when interpreting the model
learned by the tool and studying apps used in training and testing,
we observed that the classification decisions are often based on the
presence/absence of features deemed benign by the classifier rather
than those deemed malicious.

Problem Description. Despite the high accuracy, this learned
pattern is ineffective and even harmful. We demonstrate that by
defining and executing two types of attacks: (1) a lightweight
mimicry attack [24], where the attacker is assumed to be able to
collect a surrogate dataset of representative benign samples (e.g.,
from Google Play) and to know the feature space used for clas-
sification and (2) a black-box invasion attack, where the attacker
has access to benign samples but not the classifier feature space.
For both attacks, we show that malicious apps can easily bypass
detection just by adding features commonly used by benign apps
in the surrogate dataset.

To investigate the reasons behind the success of the attacks, we
inspected the most frequent features used by benign and malicious
apps of our dataset, collectively. Figure 1 shows the difference
between the fraction of malicious and benign apps using each of
the 200most frequent features in the VT dataset. Intuitively, popular
features more common in malicious apps appear above the x-axis,
popular features more common in benign apps appear below it, and
the length of the bar represents the magnitude of the difference in
feature appearances in malicious vs. benign apps.

The figure shows that 59 of the most frequently-used features
(29.5%) originate primarily from benign apps. Moreover, almost
half of them appear in 30%–50% more benign than malicious apps.
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Figure 1: 200 most popular features in the training dataset

Some examples of such features include user account management
to avoid re-authentication, notifications and pop-up messages, and
logging used for debugging purposes. These features reflect func-
tionalities that are beneficial for users and app developers. Malware
developers do not have incentives to include such functionalities:
their goals are rather to minimize interactions with the user, stimu-
late re-authentication for stealing user credentials, etc. They also
do not intend to troubleshoot and improve their app, as long as the
malicious behavior can occur. As a result, features corresponding
to these behaviors are missing in malware datasets.

A classifier learning from such data is likely to assign high benign
weights to features predominately used in benign. While that helps
to achieve a high detection accuracy, it opens the door to attacks, i.e.,
simply adding benign functionality to malicious apps, such as pop-
up messages and logging, can flip the detection from malicious to
benign. In fact, the API responsible for successful re-authentication
is the 12th highest-weighted benign feature learned by Drebin.
Adding this feature by itself to the previously correctly classified
malware from the VT dataset flips the detection result in 127 out of
4404 cases.
Main Idea and Novelty. To address this problem, we propose to
deprioritize features originating predominantly from benign apps, en-
suring that the classification decisions are made based on malicious
rather than benign indicators. The main insight behind our work is
that malicious apps are capable of including behaviors similar to
those of benign apps (in addition to the malicious payload). Learn-
ing benign indicators thus increases the attack surface and should
be avoided.

Specifically, we propose an approach that decreases the number
and the weights of benign features learned by an SVM classifier,
improving its reliability while maintaining high detection accuracy.
Our work targets benign features only and thus differs from prior
approaches that address the problem by manipulating the space of
both malicious and benign features, e.g., Demontis et al. [9] who
improve the robustness of Drebin by evenly distributing all feature
weights and Chen et al. [7] who transform the binary feature space
into continuous probabilities encoding the distribution in each class
(either benign or malicious).

Additional approaches proposed in earlier work suggest to train
a one-class classifier (an outlier detector) on either benign samples

Table 1: Samples –VT dataset

Year #M/#B Samples Malware Size (MB) Benign Size (MB)
2016 1,544/1,544 3.0 9.1
2017 5,019/5,019 5.3 11.7
2018 4,513/4,513 3.0 12.4
2019 200/200 3.2 13.0

only [5] or malicious samples only [1]. The former approach is
not effective as it will mostly learn benign features and will deem
malware having such features benign. The latter approach will
have a similar problem and can deem benign apps malicious. Our
work differs as we train a classifier on features extracted from
both malicious and benign samples while using features extracted
from benign samples as counter-examples, i.e., examples of “non-
maliciousness”, rather than major factors in classification decisions.
Our preliminary evaluation of the proposed approach shows that it
is effective for identifying malware in presence of benign behaviors.

In what follows, we describe our experimental setup, our ap-
proach, and preliminary results supporting the ideas proposed in
this work.

2 EXPERIMENTAL SETUP

Subject Datasets. To construct a set of recent malware samples,
we collected samples from the VirusTotal dataset [23]. The com-
plete dataset contains around 1.5 billion samples. For academic
purposes, VirusTotal provides snapshots of randomly selected sam-
ples, known as VirusTotal Academic. We acquired six academic
snapshots between the years 2016 and 2019 and removed samples
duplicated in these snapshots.

We collected benign samples from AndroZoo [3] – a popular
repository with over 9.5 million Android apps from various markets.
We randomly sampled benign apps from AndroZoo, ensuring the
apps are from the same time period as our malicious samples. If
there were multiple versions of an app, we collected the latest
sample. To ensure all our apps were truly benign, we additionally
filtered for apps that were not detected by any of the anti-viruses
on VirusTotal. The overall distributions of samples and the average
size of a sample (apk file), per year, is given in Table 1.

We performed time-aware experiments, training on samples
from earlier years and testing on samples from later years [17,
19]. Specifically, we trained on apps from 2016–2017 (13,126 apps
in total) and tested on apps from 2018–2019 (9,426 apps in total).
We refer to these datasets as training and testing, respectively. To
perform a uniform experiment and to avoid biasing the classifiers
toward either malicious or benign apps, we chose to perform our
experiments on a balanced dataset using a 50-50 ratio [2].
Malware Classification. Drebin [4] is one of the first approaches
for Android malware detection. Yet, it is still one of the most accu-
rate and performant. It uses a lightweight static analysis to extract
eight different types of features from the app bytecode and manifest
file: requested permissions, such as permission to access the Internet
or device info; permissions actually used by the app; main app com-
ponents [11], such as activities and services; used hardware compo-
nents [10], such as Bluetooth and camera; used intent filters [12],



On Benign Features in Malware Detection ASE’20, September 21–25, 2020, Virtual Event, Australia

which are responsible for the inter- and intra-component commu-
nication; API calls guarded by permissions; suspicious API calls,
such as getDeviceId(); and network addresses encoded in the
app. Drebin further embeds all features into a multi-dimensional
vector space, where each dimension is either 0 or 1, and uses that
as input to a linear Support Vector Machine (SVM) [8]. The authors
of the tool shared the implementation of the feature extraction
component with us and we implemented the training and testing
part in consultation with the authors.

3 PROPOSED APPROACH

We now present our approach for deprioritizing benign features
in malware detection, called BClean. Similar to existing feature
normalization techniques, e.g., [15], BClean operates on the vector
space V of feature values extracted from malicious and benign
apps in the training dataset. It transforms V into an augmented
vector space V ′, while modifying (some of) the values. However,
unlike existing normalization techniques, BClean focuses only
on features that appear in more benign than malicious apps in
the training dataset (i.e., features below the x-axis in Figure 1),
aiming to prevent the classier from deeming these features as strong
indicators of “benignness”.

As discussed earlier, Drebin extracts binary features – either
0 or 1 – which indicate the presence or absence of a particular
feature in an app. It then uses linear SVM to find the hyperplane
that maximizes the margin between the malware and benign classes.
SVM assumes that the data it works with is in a standard range (0
to 1 in case of Drebin); otherwise the values have to be normalized
because features in different ranges skew classification accuracy:
for example, when the values of feature f1 range from 0 to 1000
and of feature f2 – from 0 to 1, f1 becomes more important and
dominates f2 when looking for the hyperplane.

We leverage that property to reduce the importance of the fea-
tures that appear predominantly in benign samples. Our approach
is inspired by the Inverse Document Frequency (IDF) metric used in
information retrieval for reflecting the importance of a word given
the collection of documents by assigning lower weights to words
that appear in many documents [20]. Similarly, BClean captures
the importance of a feature in the training dataset by assigning
lower weights to features that appear in more benign than mali-
cious apps. It does so proportionally to the difference in appearance
of that feature between the classes. Specifically, given a feature f
with a value fv (either 0 or 1) that appears in f#B benign and f#M
malicious training samples, BClean transforms fv as follows:

BClean(f ) =


fv
f#B − f#M

if f#B > f#M

fv otherwise

As the values of f#B and f#M are constant for a given training
dataset, the value of f is modified consistently in all feature vectors
extracted from the training samples. Moreover, features used more
frequently in benign vs. malicious apps get proportionally smaller
values, deprioritizing these features for SVM.

4 PRELIMINARY EVALUATION

We evaluate the accuracy and reliability of our proposed solution
under the two attacks described below. We compare it with the
baseline Drebin implementation (denoted by Orig) and with an
implementation where we applied the standard IDF normalization
instead of BClean (denoted by IDF).

4.1 Attack Models

We define two types of attacks. The first is a lightweight mimicry
attack [6, 24], where the attacker is assumed to know the feature
space and be able to collect a surrogate dataset of representative
benign samples (e.g., from Google Play). We apply the attack on
all malware samples from our VT training dataset. For the benign
surrogate dataset, we use samples from VT testing as these samples
are representative benign applications from Google Play within the
appropriate time range. We assume the attacker extracts features
used by apps from this dataset, orders them by the frequency of
usage, and then injects features to malicious samples based on that
order, aiming to make malicious samples look more benign. Our
attack is lightweight as the attacker is assumed to have no access
to a dataset of malicious samples.

In the black-box invasion attack, the attacker is only able to collect
the surrogate dataset of benign apps (as described above) but has
no access to the classifier feature space. The attacker then combines
a malicious sample with a randomly picked benign app, aiming
to hide the malicious behavior. This is a simpler, more brute-force
attack, which can be easily executed in practice. To evaluate the
attack, we pair each malware sample in the VT testing dataset with
a benign sample in our surrogate dataset; we refer to the produced
dataset as VTA (for VT-augmented).

4.2 Results

To assess detection accuracy, we calculated precision (P), recall
(R), and F-Measure (F) achieved by each solution when detecting
malware. Precision represents the ratio of malicious samples that
are correctly predicted as malicious out of all samples predicted as
malicious. Recall represents the ratio of malicious samples that are
correctly predicted as malicious out of all truly malicious samples.
F-measure is a harmonic mean aiming to balance between precision
and recall, calculated as 2 × P×R

P+R .
The first three rows in Table 2 show the accuracy measures for

the Orig, IDF, and BClean solutions. Consistently with experi-
ments reported by prior work, we obtained a very high detection
accuracy for Orig (99% precision, 94% recall, and 96% F-measure)
and the accuracy of both IDF and BClean solutions is equivalently
high (97% and 96% F-measure, 95% and 93% recall, respectively), at-
testing to the high ability of all these solutions to separate malicious
and benign samples in the training data.

Performance under mimicry attack. To focus on malware
detection capabilities and fairly compare different solutions under
this attack, we fix the benign samples misclassification rate at 1%
for each solution, and calculate the recall while varying the number
of injected features. Figure 2 shows the results of this experiment,
where the x-axis shows the number of injected features (from 0 to
200) and the y-axis shows the detection rate (recall).
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Table 2: Accuracy of Orig, IDF, and BClean

Solution Training and Testing of VT
P R F

Orig 99 94 96
IDF 99 95 97

BClean 99 93 96

Solution Black-Box Evasion Attack
P R F

Orig 98 67 80
IDF 99 63 77

BClean 99 88 93

While the detection rate of both Orig (solid line) and IDF (dotted
line) rapidly decreases, dropping to 50% after just 24 infected fea-
tures, BClean maintains a high detection rate of above 80% until
108 injected features and drops to below 50% at around 140 injected
features, attesting to the improved resilience of BClean against
the mimicry attack.

When inspecting the reasons for that improvement of BClean
when compared with the baseline approaches, we observed that the
20 most frequent features in the benign surrogate dataset (which
are used for the attack first) are also frequently used in the training
dataset: they rank from #1 to #68 in the list of most frequent features.
Almost 85% of them (17 out of 20) appear in more benign than
malicious training apps (below the x-axis in Figure 1). As such, Orig
and IDF are more likely to deem these features strongly benign for
classification purposes.

In fact, we calculated the fraction of these 20 features that are
placed in the upper 10th percentile of all benign features learned by
a solution. We use this metric because one cannot directly compare
feature weights between different solutions as the weights are not
normalized. For Orig and IDF, 11 (55%) and 14 (70%) of the 20 most
frequent features in the benign surrogate dataset, respectively, are in
the upper 10th percentile of all benign features learned by amodel in
training. However, BClean successfully deprioritized these features,
placing only 2 of them (1%) in the upper 10th percentile.

As one example, the feature corresponding to the re-authentication
scenario described in the introduction appears in 2% malicious and
50% benign application in the training dataset. In the trained model,
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Figure 2: Mimicry attack on VT

it is ranked as the 12th top benign feature by Orig, 24th by IDF,
and only 7716th by BClean, which is able to successfully reduce
the importance of this feature.

Furthermore, we calculated the fraction of the 200 most frequent
features used in benign apps (and injected in this attack) that are in
the upper 10th percentile of all benign features learned by a solution.
Our calculations show that only 25 of these features (13%) are in
the upper 10th percentile of benign features learned by BClean,
while this number is 85 (43%) and 56 (28%) for the Orig and IDF
solutions, respectively. This demonstrates the effect of applying
BClean and its ability to reduce the importance of frequent benign
features used in classification decisions.

Performance under black-box evasion attack. Rows 4–6 in
Table 2 show the accuracy of all three models when classifying
the VTA samples produced in the black-box attack. The overall
F-measure achieved by Orig under the attack is 80% (vs. 96% for
the original testing experiment in row 1 of the table), with a recall
of 67% (vs. 94% in row 1). The F-measure and recall of IDF also drop
to 77% and 63%, respectively (vs. 97% and 95% in row 2 of the table).
However, the F-measure and recall of the BClean solution remains
high under this attack as well, at 93% and 88%, respectively (vs. 96%
and 93% in row 3 of the table).

Pairing malicious and benign apps for the VTA dataset adds 39
features on average to each malicious sample; on average, only 2 of
these features are in the upper 10th percentile of benign features
learned by BClean, while this number is 14 and 10 for the Orig
and IDF solutions, respectively. As features added under this attack
are not as effective in flipping the detection accuracy as features
selected in mimicry attack, the detection accuracy for Orig and
IDF does not drop as low as in the experiment in Figure 2.

Yet, the drop for these solutions is still substantial while BClean
is able to maintain a high accuracy also under these brute-force
attack model that can easily be carried out by the most naïve at-
tacker. This experiment, again, demonstrates the effectiveness of
our solution to sustain attacks by deprioritizing benign features
used in detection.

5 CONCLUSION

In this paper, we investigated the problem of using benign features
for malware detection. Our work shows that the high detection
accuracy of machine-learning-based approaches trained on datasets
commonly used in academic literature does not necessarily stem
from a real ability to detect malware. Instead, these approaches
effectively become benign detectors, which makes them prone to
evasion attacks. We proposed an approach for de-prioritizing be-
nign features used in malware detection and compared it with two
baseline techniques, w.r.t. to both accuracy and resilience to attacks.
The results of our experiments show that our proposed approach
is efficient for achieving accurate and reliable detection outcomes,
outperforming the baseline techniques in two different types of at-
tacks. As part of our future work, we intend to apply our technique
to additional malware classifiers and datasets of malicious samples.
We also intend to further investigate and interpret the reasons for
correct classification decisions, i.e., by separating between cases
where malware is correctly classified based on its similarity to other
malware vs. cases where malware is correctly classified based on
the lack of benign features.
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