
Mobile Application Coverage:
The 30% Curse and Ways Forward

Faridah Akinotcho
Univ. of British Columbia, Canada

faridah.akinotcho@alumni.ubc.ca

Lili Wei
McGill University, Canada

lili.wei@mcgill.ca

Julia Rubin
Univ. of British Columbia, Canada

mjulia@ece.ubc.ca

Abstract—Testing, security analysis, and other dynamic quality
assurance approaches rely on mechanisms that invoke the software
under test, aiming to achieve high code coverage. A large number
of invocation mechanisms proposed in the literature, in particular
for Android mobile applications, employ GUI-driven application
exploration. However, studies show that even the most advanced
GUI exploration techniques can cover only around 30% of a real-
world application. This paper aims to investigate “the remaining
70%”. By conducting a large-scale experiment involving two
human experts, who thoroughly explored 61 benchmark and
42 popular apps from Google Play, we show that achieving
a substantially larger coverage for real-world applications is
impractical even if we factor out known GUI-based exploration
issues, such as the inability to provide semantic inputs and the
right order of events. The main reasons preventing even human
analysts from covering the entire application include application
dependencies on remote servers and external resources, hard-
to-reach app entry points, disabled and erroneous features, and
software/hardware properties of the underlying device. Thus,
future investment in GUI-based exploration strategies is unlikely
to lead to substantial improvements in coverage. To chart possible
ways forward and explore approaches to satisfy/bypass these
“blockers”, we thoroughly analyze code-level properties guarding
them. Our analysis shows that a large fraction of the blockers could
actually be successfully bypassed with relatively simple beyond-
GUI exploration techniques. We hope our study can inspire
future work in this area; it also provides a realistic benchmark
for evaluating such work.

Index Terms—Testing, Mobile applications, Empirical studies

I. INTRODUCTION

In a variety of quality assurance scenarios, an independent
auditor is required to inspect applications (apps) written
by a third party. For example, Google Play Store analysts
review applications submitted to the store, to ensure they
meet the quality and security standards. Likewise, auditing
companies inspect third-party apps to identify security and
privacy violations. Such inspections often involve dynamic
analysis and, thus, rely on triggering the app under test.

To help trigger a large number of third-party applications
at scale, numerous GUI-based automated app exploration
techniques have been recently proposed [1]–[22]. Most of these
techniques generate user interface and system-level events to
trigger the application under test, simulating the ways users
interact with the application and device. For example, the
most basic yet most prominent of such techniques – Android
Monkey [1], which is part of the standard Android distribution,
generates pseudo-random streams of GUI events, such as clicks,

touches, or gestures, to drive the execution of the application.
Other techniques extend Monkey by selecting and prioritizing
the generated events, aiming to maximize code coverage and/or
bug detection frequency for the application under test.

With the continuous emergence of new and improved GUI-
based exploration strategies, a number of studies also compare
the capabilities of the emerging tools on a set of benchmark
applications [23]–[29]. The results of these studies show
that even the most advanced tools are able to cover only
around 30% of an industrial-scale application. They suffer from
several limitations, such as difficulties to produce semantically-
meaningful inputs (e.g., only zip codes in country-specific
formats are accepted) and order of events (e.g., the need to
add items to the shopping cart before checking out).

This paper deals with the question of why application
exploration techniques “hit a ceiling” of 30% and what the
possible ways forward are. To answer these questions, we factor
out known difficult-to-resolve issues, such as semantic inputs
and order of events, by employing two skilled human analysts
to perform a thorough manual exploration of a large number
of third-party apps. We treat these results as an intelligent
GUI-based exploration “tool”. As subject applications, we use
popular Android benchmark applications [23] and a set of 42
large and popular applications from Google Play. Aligned with
the third-party application analysis goal, our analysts explored
the applications in a black-box fashion, assuming only public
knowledge about the apps.

We also run two prominent and available GUI-based explo-
ration tools on the same set of subject applications: APE [13],
which was identified as one of the most performant tools in
several earlier studies [27], [29], and the most recent publicly
available tool – FastBot2 [21].

When comparing the coverage results obtained by automated
vs. manual exploration, we were surprised to observe that
humans could exceed the activity-level coverage achieved by
the tools only by a small fraction. Specifically, the average
coverage achieved by both tools combined is 22.4%, while
the coverage achieved by humans is 28.4%. Moreover, the
combined coverage of all tool and human runs is 29.6%, on
average. While we analyze the differences in automated and
manual results later in the paper, more importantly, these results
imply that further improving GUI-based exploration is unlikely
to result in a substantial increase in application coverage.

To understand the reasons for “the missing 70%”, we further
reverse-engineer and manually analyze a subset of our case
study applications, mapping out the reasons and code-level
properties preventing GUI-based exploration from reaching the
remaining activities. To the best of our knowledge, our work
is the first to perform a detailed analysis of applications’ code,
on a large set of popular Google Play applications, to explain
the low coverage results. It thus differs from the majority of
comparative studies that report on the limited abilities of GUI-
based exploration tools [23]–[30], without looking at code-level
application properties.

The results of our analysis show that dependencies on remote
servers and external resources, as well as hard-to-reach app
alternate entry points, disabled and erroneous features, and
the device software/hardware properties, are among the main
reasons preventing even human analysts from exploring a large
portion of an application. Luckily, we also observe that more
than 20% of the unreached activities can actually be triggered
with relatively simple beyond-GUI exploration techniques that
can start the activities programmatically. Another nearly 25%
of the “blockers” can be bypassed with techniques that generate
data parameters, albeit requiring the generation of String and
Object data types. We hope our study will inspire development
of such techniques, enabling a substantial breakthrough in
the efficiency of automated app exploration. Our work also
contributes a new benchmark of real-world applications, which
can be used to effectively evaluate and compare the techniques.
Data Availability. To support further work in this area, our
data and analysis results are available online [31].

II. BACKGROUND

In this section, we provide the necessary background on the
Android platform and on automated app exploration techniques.
Android Platform. Android is an open-source Linux-based
software stack created for a wide range of devices [32].
Android-native applications are written in Java or Kotlin and
are compiled into Dalvik Executable (DEX) bytecode. The
bytecode is further packaged with resource files to form an
Android Application Package (APK).

The Android Java API Framework (or, simply, the frame-
work) provides the interface between applications and lower-
level layers of the Android stack, such as Android Runtime,
Native C/C++ Libraries, Hardware Abstraction Layer, and
Linux Kernel. The framework exposes the entire feature set of
the Android OS to apps through APIs written in Java. These
APIs form the building blocks applications use to generate
user interfaces, manage data and resources on the device, and
manage the application lifecycle. Framework APIs can largely
be divided into callbacks and methods. Callbacks serve as entry
points into the apps; they are overridden by an app to implement
custom responses to events and are invoked by the framework
when a particular event occurs. For example, a Button::onClick
callback is invoked when a button is clicked. The framework
also invokes callbacks when the state of the device changes,
e.g., the network is disconnected, or when the application
lifecycle state changes, e.g., on creation or destruction. Unlike

callbacks, API methods are invoked by the apps directly, to
access functionalities exposed by the framework. For example,
TelephonyManager::getDeviceId is a framework method used
to obtain the unique identifier of the underlying device.

Android apps are built from four types of components:
activities, services, broadcast receivers, and content providers.
Activities serve as the primary interaction points between
the app and the user. Each app contains a main activity,
which serves as the main entry point into the app. Services
execute long-running background tasks, e.g., playing music
while the user is interacting with another activity. Broadcast
receivers respond to notifications from the system or other app
components, e.g., when the battery is low or a file download
is completed successfully. Content providers manage access to
data, e.g., for storing and retrieving contacts. Most Android
components must be explicitly declared in the Android Manifest
file to be launched (besides dynamic broadcast receiver that can
be registered and unregistered at runtime, and can only respond
to events while the app is running). Declared components can
only be launched within the scope of the app. To make a
component launchable by other apps, it must be explicitly
exported in the Manifest file. Such exported components can
serve as additional entry points into the app.

Transitions between Android components rely on Intents,
which specify, either explicitly (by name) or implicitly, the
target component to invoke and the data to be passed. Implicit
intents specify the type of interactions they handle via action
elements of intent-filters, which can be either standard Android
or custom developer-defined actions. Intents and intent filters
can also contain other fields, such as data and extras, which
carry extra information needed for the requested action.

The Android Debug Bridge (ADB) is a command-line tool
included in the Android Software Development Kit (SDK) to
facilitate communication with devices. It is used to install and
debug apps, send inputs/intents, start exported activities at
runtime, and more.

GUI-Based App Exploration. The vast majority of automated
app exploration techniques proposed in the literature are
GUI-based, simulating user interactions with apps’ graphical
interface. To further emulate user actions, these techniques
can also send device- or system-level events, such as screen
rotations or network connection status changes. Monkey [1], a
pseudo-random exploration tool developed by Google, is part
of the standard Android distribution and one of the earliest
yet most prominent techniques, despite its simple exploration
strategy. Aside from random approaches [3], [8], [11], more
sophisticated approaches use app models [4], [5], [10], [12],
[13], [17], [18], [21], evolutionary algorithms [6], [9], [16],
symbolic execution [2], [7], and deep learning [14], [19], [21].
APE [13] and FastBot2 [21] are prominent model-based and
reinforcement-learning-based approaches, which we evaluate
in Section IV-A.

2

III. METHODOLOGY

We now discuss our study methodology. Specifically, we
describe our app selection strategy and our experimental setup.
Our study is driven by the following research questions:
RQ1: How does the app activity-level coverage achieved by
humans compare with that of automated tools?
RQ2: What are the main reasons for unreachability in real-
world applications?
RQ3: What are the activation properties of unreached applica-
tion activities?

A. Experimental Setup: RQ1
App Selection. We started our analysis from the 68 open-source
applications in the AndroTest [23] dataset, which has become
a de facto standard benchmark used to evaluate numerous
existing approaches, e.g., [9], [10], [12]–[15], [20], [33], [34].
As this benchmark was created in 2015, newer versions of
the apps have become available throughout the years; these
apps are commonly used to evaluate more recent tools [16],
[35]. We thus collected the most recent version of each app
in the dataset from the open-source Android app repository,
F-Droid [36] (37 apps), from GitHub [37] (19 apps), and from
Google Code archives [38] (5 apps). We could not find source
code for four apps and thus excluded them from our analysis.
We further excluded three apps that crashed on startup. At
the end of this process, we obtained a set of 61 applications
spanning the years 2007 to 2023.

As only 14 of the 61 benchmark applications are currently
available on the official Google Play app store (all ranked
below 200 in popularity) and only four of the benchmark apps
are from 2023, we further collected our own dataset consisting
of popular contemporary apps on Google Play. Specifically,
in late 2023, we traversed the ordered list of the top 100 free
applications from the Google Play store in Canada. We filtered
out newly added apps with less than 500,000 downloads and
then selected the most popular app from each of the Google
Play categories, to ensure a representative sample that covers a
wide range of behaviors. This process resulted in the selection
of 20 apps from the list of 100 top free applications on Google
Play from 20 distinct categories.

After initial experiments with this dataset, a few months
later, we further extended it to include at least one app from
each of the 32 Google Play categories (all categories besides
Games). To this end, we sampled the most popular app from
each category. As the popularity of 10 apps did not change and
they were already included in our earlier sample, we extended
the dataset with 22 additional apps, producing a benchmark of
20+22=42 applications in total.
In summary, our selected apps can be divided into three groups:
1. 47 open-source apps from the AndroTest benchmark, which
range between 2007 and 2022 and do not appear on Google
Play. We refer to these apps as BenchNotGP.
2. 14 open-source apps from the AndroTest benchmark, which
range between 2012 and 2023 and are present on Google Play.
We refer to these apps as BenchGP; we further split them into
10 older apps from 2021-2022 and 4 newer apps from 2023.

3. 42 closed-source popular apps from Google Play in 2023.
We refer to these apps as TopGP.

The number and distribution of the benchmark apps by
years, as well as the average number of activities in each
set of benchmark apps, are summarized in the first three
columns of Table I. Table II provides details about the Google
Play apps. Specifically, the first six columns of the table
list the id we assigned to the apps, their names, number of
downloads, popularity rank, Google Play category, and the
number of activities. The full list of applications we considered
and additional details, e.g., their SDK levels and requested
permissions, can be found online [31].
Metrics. In both manual and human exploration, we measured
activity coverage by calculating the fraction of activities reached
during app exploration, out of the total number of activities
implemented by an app, as was done in earlier work [24], [25].
We picked this metric to be able to support our findings with
the manual unreachability analysis in RQ2 and RQ3, which
would be unfeasible to perform at a method- or statement-level:
most of our TopGP apps are multi-dex, i.e., contain more than
65,536 methods [39]. Moreover, low activity coverage generally
implies low method or statement coverage. Thus, we prioritize
addressing low activity coverage first.
Manual Exploration. For the manual exploration, the first
author of this paper and an externally recruited analyst
experienced with mobile app development independently ran
each application, aiming to systematically explore all visible
user interfaces while making an effort to provide semantically-
meaningful inputs. Consistent with our goal of supporting
automated quality assurance of third-party apps, the analysts
performed the exploration in a black-box manner, i.e., without
prior knowledge of the application’s code [40]. They aimed to
reach as much of the application functionality as possible and
were encouraged to follow the app prompts, e.g., to change
device settings or interact with other apps. The analysts were
equipped with a script that showed coverage achieved during
the exploration, to be used as an indication of progress. During
the exploration, the analysts also noted any “blockers” they
observed, i.e., conditions preventing them from proceeding
with the exploration. In case of blockers, they backtracked and
made an effort to explore other parts of the application. The
analysts were asked to stop exploration after spending five
minutes being unable to further increase app coverage.

As most TopGP and some BenchGP applications require
user authentication, each analyst created fresh accounts for each
of the available login options in an application (e.g., Google,
Facebook, and custom login). The analysts first explored the
app without logging in and then created the needed credentials
to log in in each of the available ways, to further explore the app.

TABLE I: Coverage for BenchNotGP and BenchGP
Benchmark (Year) #Apps

Avg. # of
Activities

% Reached Activities
Tools Manual Total

BenchNotGP (2007-2022) 47 6 81.5 88.7 88.7
BenchGP (2012-2022) 10 11.3 72.9 78.9 80.3
BenchGP (2023) 4 58.8 47.6 67.7 67.7
BenchGP (Total) 14 23.5 65.7 75.7 76.7

3

TABLE II: Coverage for Google Play Apps (TopGP)
ID App Name #Down-

loads
Popu-
larity Category #Acti-

vities
#Reached Activities (%)

Tools Manual Total

1 WhatsAppMessenger 5B+ 4 Communication 387 117 (30.2%) 131 (33.9%) 152 (39.3%)
2 SpotifyMusicandPodcasts 1B+ 36 Music & Audio 98 13 (13.3%) 31 (31.6%) 31 (31.6%)
3 Instagram 1B+ 25 Social Media 264 12 (4.5%) 17 (6.4%) 17 (6.4%)
4 TikTok 1B+ 6 Social Media 325 49 (15.1%) 79 (24.3%) 83 (25.5%)
5 Pinterest 500M+ 53 Lifestyle 30 13 (43.3%) 15 (50.0%) 15 (50.0%)
6 Uber-Requestaride 500M+ 23 Maps & Navigation 128 2 (1.6%) 2 (1.6%) 2 (1.6%)
7 AmazonPrimeVideo 500M+ 17 Entertainment 80 23 (28.8%) 35 (43.8%) 35 (43.8%)
8 Google Wallet 500M+ 8 Finance 69 3 (4.3%) 3 (4.3%) 4 (5.8%)
9 CapCut-VideoEditor 500M+ 8 Video Players 178 48 (27.0%) 54 (30.3%) 61 (34.3%)
10 SamsungSmartSwitchMobile 100M+ 20 Tools 51 10 (19.6%) 10 (19.6%) 10 (19.6%)
11 Duolingo 100M+ 51 Education 128 25 (20.3%) 26 (21.1%) 31 (24.2%)
12 AudibleAudioEntertainment 100M+ 32 Books & Reference 63 12 (19.0%) 18 (28.6%) 18 (28.6%)
13 CanvaDesignPhotoVideo 100M+ 31 Art & Design 29 7 (24.1%) 9 (31.0%) 10 (34.5%)
14 MicrosoftTeams 100M+ 15 Business 299 7 (2.3%) 8 (2.7%) 8 (2.7%)
15 Pluto TV 100M+ 2 Entertainment 13 1 (7.7%) 1 (7.7%) 1 (7.7%)
16 BumbleDatingFriendsapp 50M+ 73 Dating 199 11 (5.5%) 38 (19.1%) 42 (21.1%)
17 BeCloserShareyourlocation 10M+ >200 Parenting 16 5 (31.3%) 10 (62.5%) 10 (62.5%)
18 CardBoard 10M+ >200 Libraries & Demo 17 7 (41.2%) 8 (47.1%) 8 (47.1%)
19 FIFA+ - Your Home for Football 10M+ 70 Sports 35 7 (20.0%) 6 (25.7%) 8 (22.9%)
20 Expedia: Hotels, Flights & Car 10M+ 68 Travel & Local 84 26 (31.0%) 25 (39.3%) 29 (34.5%)
21 TemuShopLikeaBillionaire 10M+ 1 Shopping 31 9 (29.0%) 13 (41.9%) 13 (41.9%)
22 TheWeatherNetwork 10M+ 64 Weather 63 19 (30.2%) 25 (38.1%) 26 (41.3%)
23 PictureThis-PlantIdentifier 10M+ 25 Education 197 41 (20.8%) 37 (18.8%) 45 (22.8%)
24 Ticketmaster 10M+ 22 Events 110 9 (8.2%) 16 (14.5%) 18 (16.4%)
25 ShopAllYourFavoriteBrands 10M+ 19 Shopping 10 3 (30.0%) 3 (30.0%) 4 (40.0%)
26 Lensa 10M+ 1 Photography 46 27 (58.7%) 27 (63.0%) 32 (69.6%)
27 McDonaldsCanada 5M+ 14 Food & Drink 157 33 (21.0%) 35 (22.3%) 35 (22.3%)
28 FeverLocalEventsTickets 5M+ >200 Events 125 27 (21.6%) 36 (28.8%) 36 (28.8%)
29 SephoraBuyMakeupSkincare 5M+ 75 Beauty 130 42 (32.3%) 52 (40.0%) 56 (43.1%)
30 Wonder - AI Art Generator 5M+ 3 Art & Design 76 9 (11.8%) 8 (10.5%) 10 (13.2%)
31 AutoTrader-ShopCarDeals 1M+ >200 Auto & Vehicles 60 17 (28.3%) 24 (40.0%) 25 (41.7%)
32 MessengerLite-SMSLauncher 1M+ 93 Personalization 65 11 (16.9%) 18 (27.7%) 19 (29.2%)
33 LocalNews 1M+ 74 News & Magaz. 75 32 (42.7%) 36 (48.0%) 37 (49.3%)
34 AIMirrorAIArtPhotoEditor 1M+ 55 Photography 63 1 (1.6%) 5 (7.9%) 5 (7.9%)
35 AirCanada+Aeroplan 1M+ 53 Travel & Local 29 3 (10.3%) 4 (13.8%) 4 (13.8%)
36 FeelsyStressAnxietyRelief 1M+ 27 Health & Fitness 34 4 (11.8%) 7 (20.6%) 7 (20.6%)
37 ChatGPTpoweredChat-NovaAI 1M+ 5 Productivity 19 2 (10.5%) 3 (15.8%) 3 (15.8%)
38 REALTOR.caRealEstateHomes 500K+ >200 House & Home 15 8 (53.3%) 9 (60.0%) 9 (60.0%)
39 ShoppersDrugMart 500K+ >200 Medical 17 1 (5.9%) 2 (11.8%) 2 (11.8%)
40 VIZManga 500K+ >200 Comics 32 17 (53.1%) 17 (53.1%) 17 (53.1%)
41 CBCSportsScoresNews 500K+ 102 Sports 35 11 (31.4%) 11 (31.4%) 11 (31.4%)
42 PC Health 500K+ 14 Health & Fitness 29 6 (20.7%) 8 (27.6%) 8 (27.6%)
Average 93.1 22.4% 28.4% 29.6%

Both analysts were unable to create new credentials through
the mobile interface of one app only (app #14 – Microsoft
Teams) due to a documented bug with account creation in the
mobile version of the app [41]. We thus report the observed
coverage without logging in for this app.

Exploring an app took around 20 minutes, on average (min: 5,
max: 55). We provide detailed plots of the achieved application
coverage over time for each app and analyst online [31].
Automated Exploration. For the automated exploration, we
focused on tools that are available, able to process large-scale
applications, and able to run on a real device: close to half of
the closed-source TopGP applications cannot be installed on
emulators as these apps are suited to ARM architectures and
emulating ARM on x86 desktops is too slow for a realistic
exploration [25]). We ended up selecting two tools. The first is
APE [13] – an automated exploration tool that was shown to
outperform related techniques in a number of studies [27], [29]

and that was recently updated to a newer version as part of
the Themis project [29]. We further selected FastBot2 [21] – a
recent publicly available tool designed explicitly for industrial-
scale applications. We ran the single-device version of the tool
as our discussions with the authors showed that the multi-device
version is not part of the open-source implementation. Other
tools we considered, e.g., [14], [16], [17], [19], were excluded
either as we could not successfully run them in our setup or
as the coverage results reported in comparative studies [27],
[29] were lower than those of APE and FastBot2.

Consistently with the manual evaluation, we ran each tool
twice: once without any manual intervention and once after we
logged in into each app manually. To avoid cross-experiment
contamination, we used different credentials for the tools
and analysts runs. Each run was configured with a dynamic
timeout, i.e., we stopped exploration when no improvement
in coverage was achieved for one hour [12], [29]. Moreover,

4

tools could spontaneously stop their exploration, e.g., due to
saturation. On average, the tools spent around 95 minutes on
each app (min: 2, max: 261). The minimum exploration time
of 2 minutes corresponds to two BenchNotGP applications
for which exploration was interrupted by the tools due to
consistent crashes detected in the app, even after multiple
restarts. Detailed coverage reports for each tool are available
in our online appendix [31].

The experiments were conducted on a Google Pixel XL
running Android 10 (API level 29). We selected this model after
ensuring compatibility with all the TopGP applications, i.e., API
level 29 is within the minimum SDK and target SDK version
of each app. For 23 older BenchNotGPapps incompatible with
this model, we used emulators running the Android version
compatible with the app.

B. Experimental Setup: RQ2 and RQ3

App Selection. To better understand the reasons for low app
coverage and to extract patterns corresponding to the uncovered
app activities, we selected and manually analyzed the code of
11 benchmark and Google Play applications.

For the benchmark apps, we included the four most recent
open-source apps from the BenchGP dataset, all from 2023:
WordPress, MyExpenses, K9-Mail, and Wikipedia. We selected
these apps as (a) they include the largest number of unreached
activities among all benchmark apps and (b) being more recent,
do not include failures resulting from incompatible and missing
servers. For TopGP, due to the extensive manual effort required
to analyze reverse-engineered code of partially obfuscated large
closed-source apps, we focused on seven case study applications.
We selected these applications using a bin sorting technique:
we sorted our 42 applications by the total number of downloads,
divided them into seven bins of equal range, and randomly
selected one app as a representative for each bin. The resulting
set of applications is bold-faced in Table II and includes apps
#5 (Pinterest) – a platform to create and share digital content;
#10 (Samsung SmartSwitch) – a data transfer application; #15
(Pluto TV) – a free streaming app with access to hundreds of
TV channels and movies; #21 (Temu) – a shopping application,
which is also the most popular app on the Play Store; #27
(McDonald’s Canada) – a menu ordering application which also
provides access to promotional content; #33 (Local News) – an
app which delivers daily personalized news to users; and #42
(PC Health) – an app that provides a variety of health-related
services, such as tips, contents, prescriptions, communication
and booking appointments with health care providers.

We believe our selection of apps is diverse and representative.
The selected apps have 621 activities in total, out of which
363 are reached by neither humans nor tools (58.4%).
Manual Analysis. Unreached activities are guarded by con-
ditions. Understanding the properties of these conditions can
help devise strategies for triggering these activities in means
other than GUI-based. To help with this goal, we systematically
studied and characterize properties of conditions guarding the
execution of unreached activities.

To this end, we first decompiled APKs of closed-source
apps using JADX [42] – a decompiler for the Java program-
ming language. We also used JADX’s built-in deobfuscation
functionality to map obfuscated names to more readable
unique identifiers, which simplified the analysis of the code.
Then, for both open- and closed-source apps, we performed
a manual reachability analysis to identify paths leading to
each activity not reached during exploration, as shown in
Figure 1. Specifically, for each unreached activity, we searched
for statements launching the activity, i.e., invoking an API such
as startActivity (point 1 in Figure 1).

66

onCreate(…){…}

onClick(…){
m()

}

void m(){
if(getTime().equals(“2PM”))
startActivity(B, params)

}
}

//Caller Activity A

//class initialization
onCreate(…){

current = getTime()
}
onStart(…){…}

//Target Activity B

d

b

2

1

a

3

c

Fig. 1: Path analysis

Once located, we traversed
the paths (marked with 2 in
Figure 1) to the activity back-
wards until we reached the on-
Create method of the most im-
mediate caller activity (point 3
in Figure 1). To account for ac-
tivities started through implicit
intents or exported components,
we also searched for callers in
the manifest and resource files.
We leveraged knowledge from
the app’s manual exploration to
guide the search, e.g., using the
displayed text to aid locating the right activities.

If an activity had multiple callers, we sorted the obtained
paths by size and picked the shortest one for further analysis.
When the analysis of the selected path was inconclusive, we
tried the next path in order and declared “unknown” if none
of the path analysis provided conclusive results and there were
no paths left to analyze.

For each of the analyzed paths, we collected all conditional
checks of the path (e.g., the check a in Figure 1). Then, two
authors of the paper independently summarized the checks
in human-readable text descriptions (e.g., time-related), also
taking into the considerations “blockers” reported by the app
exploration analysts. We further used a card-sorting technique,
which is typically employed to organize information into
logical groups [43], [44], to derive a categorization of reasons
for unreachability. Specifically, the authors met to discuss
the produced descriptions (cards), refine their labels, merge
related labels when necessary, and group them into high-level
categories: reasons for unreachability described in Section IV-B.
Disagreements (around 5%) were resolved in a joined discussion
involving a third author.

Next, to analyze the code-level activation setup of unreached
activities, we analyzed the origin of information used in the
collected conditional checks (e.g., internal to the app or coming
from the Android platform). Furthermore, for each path, we
extracted the activity activation location, such as a callback in
code (b in Figure 1) or the manifest file, and its exported status.
We also inspected the target activity entry point (the onCreate
method of Activity B in Figure 1), to identify types and usage
pattern of data passed to the activity (c and d). Like with
the unreachability reasons, we used a card-sorting technique to

5

extract properties of conditions guarding unreached activities:
exported status, activation location, activation guards, and data
usage. These are described in Section IV-C. The app analysis
process took around 3-4 days per app, on average.

IV. RESULTS

A. RQ1: Application Coverage
The last three columns of Tables I and II show the coverage

results for benchmark and Google Play apps, respectively.
Specifically, we report the coverage achieved by (1) both tools,
combined, (2) both human analysts, combined, and (3) total
coverage achieved by tools and humans, combined. We refer
to these results as Tools, Manual, and Total, respectively. The
difference between the coverage results achieved by the two
tools is below 0.3%; the difference between the results achieved
by the human analysts is also very low (<0.1%), confirming
the reliability of our manual inspection. We use the Total
coverage achieved by all tools and humans collectively to
estimate the “best achievable result” and as a baseline for
unreachability investigation in RQ2 and RQ3 (Section IV-B).
Detailed coverage results for each tool and each human analyst
are available online [31].

Overall, the tools were unable to outperform the human
analysts. The average coverage achieved by the tools for
TopGP apps is 22.4%, while humans could reach 28.4%
coverage. As expected, we noted several issues preventing
the tools from achieving the same results as humans, including
the inability to provide semantic inputs (zip code in app #3
and a selfie image in app #16).

The performance of the tools also decreased as the size,
number of activities, and the set of features provided by the app
increased: they cover 81.5%, 65.7%, and 22.4% of activities, on
average, for BenchNotGP, BenchGP, and TopGP, respectively.

While humans could generally reach more activities than
tools, as they can bypass “semantic barriers” outlined above,
we also observed a few cases reached by tools and not humans
(5.6% of all reached activities). Such cases are caused by non-
deterministic app behaviors, errors humans did not trigger, and
human “exhaustion”. For example, in app #13, actions that are
visible after scrolling for more than 10 seconds were missed by
humans, who most likely assumed that such a long scrolling
action is redundant.

Yet, to our surprise, the human analysts only exceed the tools
coverage result by a relatively small fraction. When combining
the results of tools and humans, while the total coverage results
are relatively high for the benchmark apps, we observe a total
coverage of only 29.6%, on average, for TopGP apps. This
motivates the need to better understand reasons preventing
both automated and manual exploration from reaching the
remaining >70% portion of these applications. We explore this
next, focusing on a subset of seven apps from TopGP and four
recent, 2023, apps from BenchGP.
Answer to RQ1: While the activity-level app coverage is
relatively high for benchmark apps, especially those from 2007-
2022, neither human nor automated tools exceed 30% coverage,
on average, for newer popular Google Play apps.

B. RQ2: Reasons for Unreachability
By manually analyzing 363 unreached activities in our

selected subset of 11 apps, we identified 10 main reasons
preventing tools and human analysts from reaching 301 of
these activities. We could not reliably recover unreachability
reasons for the remaining 62 activities, as described below,
and, thus, mark them as “inconclusive”.

The first column of Table III lists the reasons for unreachabil-
ity that we identified; the second column shows the total number
and percentage of activities unreached for each particular reason
in all the analyzed apps, combined. The remaining columns
of the table show the breakdown of unreached activities for
each app individually. While the number of individual app
activities in each row adds up to the total number of activities
in a row, the number of activities in a column does not add up
to the total number of unreached activities. This is because an
activity can have multiple reasons for unreachability. Several
of the reasons we identified could only be observed in the
closed-source TopGP apps, alluding to the need to extend the
benchmark applications with a more comprehensive set of apps.
We now discuss each reason for unreachability in detail:
1. Server dependencies correspond to cases where app behav-
iors depend on the results of communication with a third-party
server, via HTTP or a socket, and constitute the largest reason
for unreachability in our case studies (14.3%).

The majority of server dependencies that we observed are
push-based, i.e., initiated by a server as a notification rather
than initiated by the app via an explicit (pull) request. For
example, Pluto TV sends catalog updates and displays in-
app advertisement when specific events occur on the server
side. Such server-side updates introduce non-determinism when
running an application and result in large portions of an
application that cannot be explored unless specific data is
received from the server.

Our analysis shows that applications often use third-party
libraries to receive server-side notifications. Moreover, these
libraries combine code written in Java with code written in
JavaScript. For example, Pluto TV, McDonald’s, and Samsung
Smart Switch use the com.braze marketing automation library
that manages push notifications, in-app messages, and other
forms of dynamic content. The library uses a JavaScript bridge
to define APIs invoked by a remote server and delegates the
invocations to Java methods, as shown in Figure 2.

For pull-based scenarios, the application typically fetches
structured data from the server to display it to the end user,
e.g., a list of available pharmacies in PC Health. Apps also
use information pulled from the server as a feature toggle
that enables/disables features on demand. For example, Pluto
TV, WordPress, and Temu load configurations from the server
at runtime to select which version of an activity to display.

1 var brazeBridge = {
2 logCustomEvent: function (name, properties) {
3 // invokes a Java method logCustomEvent
4 }};

Fig. 2: Server push-based dependencies in Pluto TV.

6

TABLE III: Reasons for Unreachability

Reasons
Total

(363/621
unreached)

WordPress
(72/111

unreached)

MyExpenses
(7/43

unreached)

K9-Mail
(13/33

unreached)

Wiki
(5/48

unreached)

Pinterest
(15/30

unreached)

SmartSwitch
(41/51

unreached)

PlutoTV
(12/13

unreached)

Temu
(18/31

unreached)

McDonalds
(122/157

unreached)

LocalNews
(38/75

unreached)

PCHealth
(21/29

unreached)
1. Server 52 (14.3%) 12 1 4 1 11 16 7
2. Alternate entry 50 (13.8%) 9 5 3 2 2 1 1 21 4 2
3. External resources 47 (12.9%) 1 12 5 29
3.1. Equipment 15 (4.1%) 1 12 1 1
3.2. Information 32 (8.8%) 4 28

4. Disabled 40 (11%) 2 1 1 1 1 1 1 32
4.1. For a version 30 (8.3%) 1 29
4.2. For a user 10 (2.8%) 1 1 1 1 1 1 1 3

5. Error handling 22 (6.1%) 3 1 1 4 2 2 1 4 2 2
6. Device 18 (5%) 1 1 2 1 8 1 3 1
6.1. Software 10 (2.8%) 1 1 2 1 4 1
6.2. Hardware 10 (2.8%) 6 1 3

7. Environment 9 (2.5%) 6 1 2
8. Usage patterns 3 (0.8%) 1 1 1
9. Transitive 71 (19.6%) 21 1 1 19 1 23 5
10. No caller 45 (12.4%) 22 1 1 1 1 1 2 1 12 3
Inconclusive 62 (17.1%) 5 4 2 7 2 8 24 4 6
Total 363 (100%) 72 7 12 5 15 41 12 18 122 38 21

Enforcing or simulating specific server behavior falls outside
of the capabilities of typical GUI-based exploration tools.
2. Alternate entry refers to activities started through entry
points other than the Android main activity. This includes
exported activities visible to other apps and activities started
through shortcuts or widgets. For example, the McDonald’s
app exports the UberDeepLinkHandlerActivity, which is called
via an implicit intent when the user interacts with McDonald’s
through Uber’s app delivery service.

Apps can also expose activities through external and deep
links – a mechanism that takes the user directly to the app
or a specific destination within an app. For example, the link
mcdmobileapp://aetcalendar?campaign=sigcrafted-launcher is
used in McDonald’s to show a promotional campaign which was
not triggered during manual and tool-assisted app exploration.
In our further analysis, we could confirm that the activity
can indeed be started through this link but displays an error
indicating that the data associated with the link is missing.

Identifying such alternate ways to invoke an activity, includ-
ing proper data types necessary for the activation, requires
extensive analysis of the app and configuration files and is,
again, beyond the scope of a typical GUI-based exploration
tool. In our case studies, this reason caused unreachability in
13.8% of the cases.
3. External resources are dependencies on equipment and
information not readily available at testing time. This is another
major reason contributing to the lack of reachability in our
case studies (12.9%). For example, Samsung Smart Switch
requires a secondary phone to enable an activity that transfers
data; McDonald’s ordering features all require valid payment
information, which restricts access to 28 activities in this app.

The interactions with external resources are typically imple-
mented using GUI-, hardware- and sensors-related framework
methods, often in third-party libraries. While straightforward
semantic inputs can often be provided by a human running
the app, such user-specific and, often, sensitive information
is much harder and more expensive to generate, limiting the
exploration of such apps.

4. Disabled are cases where an activity is explicitly
“blocked”, either for a particular version of the app or
for a particular user. In our case studies, 11% of unreached
activities are in this category.

We observe that application developers reuse the same code
to create different versions of an application. For example,
the McDonald’s app contains a number of country-specific
configuration files that determine the features that will be
available for a specific app version. As the Canadian JSON
configuration file does not include the surveyEnabled key, none
of the survey-related activities can be reached. This key is
included in other configuration files, e.g., for Slovakia. In fact,
based on this configuration file, 29 activities were disabled in
the Canadian version of the app, primarily for location-specific
campaigns and promotions.

We also observe apps that include debugging activities and
other non-user-facing functionality, which are disabled for the
app end-users. For example, Pinterest includes a view only
available to developers. Testing such activities requires enabling
the corresponding flags in configuration files and/or code and
cannot be “expected” from GUI-based exploration tools.
5. Error handling refers to activities that handle unexpected
and erroneous cases. For example, all but one app in our
dataset include the PlayCoreMissingSplitsActivity activity from
Google’s com.google.android.play.core library, which deals
with corrupted installations of applications that rely on Dy-
namic Delivery or Split APKs to distribute app components.
This activity can only be activated when the installation of the
application was incomplete. As an example of a custom error
recovery, Pinterest contains an activity that is started only if a
crash occurred in the previous application launch. Such errors
are hard to predict and simulate at testing time, contributing to
the limited app reachability (6.1% of unreachable activities).
6. Device refers to dependencies on certain software or
hardware specifications, which were not satisfied during ex-
ploration. This reason led to 5% of all unreachable activities.
Software properties correspond to content, configurations, or
applications that must be present on the device for an activity
to be reached. While a human tester could deduce some of

7

such properties by interacting with the app, we were unable to
do so in 2.8% of the cases. For example, one of the Pinterest
activities can only be reached by sharing content with another
app, Line. However, this option only becomes visible if Line
is already installed on the device.

1 public void onClick(View v) {
2 Intent i;
3 if(SystemInfoUtil.isSamsungDevice()){
4 i = new Intent(this, IntroduceSamsungActivity.

class);
5 }
6 else if { ... }
7 startActivity(i);
8 }

Fig. 3: Device hardware properties in Samsung Smart Switch.
Device hardware properties are immutable characteristics

specific to the device type. Apps display particular content
depending on such device characteristics (2.8% of the unreached
activities). For example, Samsung Smart Switch displays
different activities depending on whether it is running on
a Samsung phone or another Android device, as shown in
Figure 3. It also checks for the device’s locale to deal with
access restrictions, e.g., for certain countries where the Google
Play store is unavailable. Similarly, Temu contains activities
that are only displayed on devices with at least 600 dpi (i.e.,
large-screen devices, like tablets).

Checks conditioned on software and hardware properties are
typically implemented by retrieving info from Android API
methods and evaluating it against a set of pre-defined values. In
practice, to design an appropriate test setup, an analyst would
need to know the correct device and software specifications,
which would be challenging in our target scenario, i.e., for
testers without deep prior knowledge of the app.
7. Environment describes the situation of the user and its
surroundings, such as being at a certain location or using the
app during a specific date/time interval. For example, the user
must be at the pickup location and retrieve their order, to trigger
the McDonald’s activity that changes the status of the order
to “completed”. Similarly, one can only chat with a PC Health
agent during pre-defined operating hours, which fell outside
of our testing time. Apps also use internally-timed events to
redirect users to certain activities, e.g., for periodically claiming
gifts in McDonald’s.

To facilitate environment checks, apps use Android frame-
work methods to retrieve information, such as the current time
and location; they also register callbacks that trigger actions
even when the app is not running, e.g., for alarms and location
updates. Enforcing proper environment constraints at third-
party testing time is challenging as testing budgets are typically
limited and such testers cannot simply move to the right location
or wait for days/months. Moreover, satisfying environment
dependencies might require domain-specific knowledge, such
as where the pickup location is and what the operating hours
are. In our analysis, 2.5% of activities were unreached for
reasons in this category.
8. Usage patterns refer to dependencies on the type and
frequency of app usage. For example, PC Health keeps track of

1 public boolean completedEnoughHealthJourneys(){
2 return SharedPreferences.getInt("

numJourneysCompleted", -1) >= 5;
3 }
4 public void promptUserForStoreRating(Activity a){
5 if(completedEnoughHealthJourneys()){
6 startActivity(new Intent(a,

PlayCoreDialogWrapperActivity.class))
7 }
8 } Fig. 4: Usage pattern check in PC Health.

the user’s completed health journey activities in persistent local
storage; it then checks if the user has completed at least five
activities before asking the user to rate the app. Figure 4 shows
an example of such a check. Similarly, Pluto TV checks for
the number of times the user switched channels prior to asking
for feedback. In our analysis, 0.8% of unreached activities
depended on the usage patterns; they were not reached during
the exploration due to the limited time budget and lack of
knowledge about such application-specific use.
9. Transitive are activities that do not require additional
configuration and data parameters but would be reached if their
caller activity were successfully reached during exploration.
We observe that 19.6% of the unreached activities in our case
studies belong to this category.
10. No caller refers to cases where no entry point triggering
the activity under test was found in the app. This occurs in
12.4% of the cases and mainly corresponds to activities that are
either used as interfaces/superclasses for other activities or that
are deprecated. For example, 30 of the WordPress activities
that could not be mapped to a caller context mainly consist of
features that have been migrated to an auxiliary app, JetPack,
and that will be removed in future versions of WordPress
according to its documentation [45]. Another type of activities
in this category, annotated with @Deprecated (i.e., outdated),
mostly originate from common libraries and not (yet) removed
by the library developers, although the libraries already include
newer versions of the activities.

Inconclusive are 62 activities for which we could not reliably
confirm the reasons for unreachability by analyzing the code:
either because we could not build the complete path to the
statement launching an activity or because we could build
the path but could not resolve the constraints on the path.
This mostly happened in highly-obfuscated applications, with
around one-third of the cases likely originating from third-
party libraries. It could be that at least some of these cases
correspond to code that is not supported on the device or in an
app, e.g., many activities of Google’s augmented reality SDK,
com.google.ar.code, used by both McDonald’s and Pinterest
for scanning features they implement, are only enabled on a
subset of devices.
Answer to RQ2: The main reasons preventing GUI-based
testing from covering a large portion of an app include app
dependencies on remote servers and external resources, as well
as app alternate entry points, error-handing and disabled code,
and device software/hardware properties. Further improvements
in GUI-based exploration strategies will not lead to substantial
improvements in application coverage.

8

Activation Location: 185 (100%)

A
ct

iv
at

io
n

 P
ro

p
er

ti
es

 (
1

8
5

 A
ct

iv
it

ie
s)

Exported: 31 (16.8%)

Manifest: 36 (19.5%)

Code: 149 (80.5%)

GUI/Lifecycle: 114 (61.6%)

Other Android: 25 (13.5%)

App-specific: 10 (5.4%)

Activation Guards: 138 (74.6%)

Enforcement: 138 (74.6%)

In Code: 117 (63.2%)

In Resources: 21 (11.4%)

Restriction: 138 (74.6%)

Mandatory: 91 (49.2%)

Discretionary: 47 (25.4%)

Data: 143 (77.3%)

Type: 143 (77.3%) Exec. Dependencies: 52 (28.1%)

Parameters: 123 (66.5%)

Format: 143 (77.3%)

Primitive: 107 (57.8%)

Objects: 86 (46.5%)

Strings: 69 (37.3%)

Fig. 5: Activation Properties

C. RQ3: Activation Properties

To characterize activation properties of unreached activities,
we analyzed all activities considered in RQ2, excluding those
where no calling path was found, i.e., activities in the No
Caller and Inconclusive categories, as well as activities in the
Transitive category as their activation is straightforward given
their caller activity is triggered. That is, we analyzed the total
of 363-45-62-71=185 activities. As discussed in Section III-B,
we extracted four main activation properties: exported status,
activation location, activation guards, and data usage, and
further broke them into sub-properties. Figure 5 shows our
categorization scheme, together with the number of activities
in each category. We describe them next.
1. Exported states whether an activity is exported in the
manifest file. Only exported activities can be activated directly
via the ADB prompt. In our analysis, less than 20% of the
activities are exported by the apps, limiting the applicability
of tools that rely on this type of activation.
2. Activation Location describes where the activity is launched
(point 1 in Figure 1): either in code (80.5% of the analyzed
activities) or in the Manifest file (19.5%). For the in-code
location, we further separate activities launched from GUI
or lifecycle callbacks, such as onClick or onResume (61.6%);
other Android callbacks, such as onReceive for system-wide
broadcasts (13.5%); or App-specific callbacks, such as sockets
or cross-language events, as in Figure 2 (5.4%). When building
tools that help increase application coverage, app-specific
callbacks could be harder to identify than generic Android-
based locations.
3. Activation Guards describe the properties of conditions
constraining the launch of an activity, such as specific time
or location. In our analysis, only 76.4% of activities have
any activation constraints, which means that the remaining
activities could be launched without any condition-related
restrictions (these activities could still rely on data parameters,
as described in the next category). For the activities that do have
activation constraints, we distinguish between the constraints’
Enforcement location and Restriction type. In 63.2% of the
cases, the enforcement location is in code, i.e., appear as a
conditional statement, such as if and while (point a in Figure 1).
In 11.4% of cases, the enforcement location is in resources,
e.g., the activities are flagged as disabled in the Manifest or

TABLE IV: Activation Properties
Exported Activation

Location
Activation

Guards Data #Activities
(%)

Straightforward Activation: 42 Activities (22.7%)
1 Yes Manifest None No 8 (4.3%)
2 Yes GUI/Lifecycle Code-enforced, Discretionary No 1 (0.5%)
3 Yes Manifest Resource-enforced, Discretionary No 1 (0.5%)
4 No Manifest None No 4 (2.2%)
5 No GUI/Lifecycle None No 2 (1.1%)
6 No GUI/Lifecycle Code-enforced, Discretionary No 19 (10.2%)
7 No GUI/Lifecycle Resource-enforced, Discretionary No 7 (3.8%)

Data Support: 45 Activities (24.3%)
8 Yes Manifest None Yes 20 (10.8%)
9 No Manifest Nome Yes 2 (1.1%)
10 No GUI/Lifecycle/OtherAndroid None Yes 7 (3.8%)
11 No GUI/Lifecycle/OtherAndroid Code-enforced, Discretionary Yes 13 (7%)
12 No GUI/Lifecycle Resource-enforced, Discretionary Yes 3 (1.6%)
Data Support + Location Resolution: 7 Activities (3.8%)
13 No App-specific None Yes 4 (2.2%)
14 No App-specific Code-enforced, Discretionary Yes 3 (1.6%)
Data Support + Guards Resolution: 88 Activities (47.6%)
15 Yes Manifest Resource-enforced, Mandatory Yes 1 (0.5%)
16 No GUI/Lifecycle/OtherAndroid Code-enforced, Mandatory Yes 78 (42.2%)
17 No GUI/Lifecycle Resource-enforced, Mandatory Yes 9 (4.9%)
Data Support + Location Resolution + Guards Resolution: 3 Activities (1.6%)
18 No App-specific Code-enforced, Mandatory Yes 3 (1.6%)

other resource files. For example, in the Pinterest app, the
‘android:enabled’ property of a button is set to false in the
production version of the app and, thus, can not be clicked by
users to reach a developer-only debugging activity.

For the restriction type, we deem a restriction mandatory
if it corresponds to a “hard constraint” and an activity cannot
be triggered if the constraint is not met. For example, in the
SmartSwitch app, a secondary device must be present for the
majority of activities to be activated. We deem the restriction
discretionary if it corresponds to a “soft constraint” – a choice
in the app to show an activity only under specific circumstances.
For example, in McDonald’s, an advertisement activity is only
shown to users located in California, as part of a promotional
campaign. However, the activity’s actual content is independent
of the location and would still display correctly even if shown
elsewhere, i.e., the constraint on the location does not impact
the behavior of the activity when launched. In our analysis,
we observe that the restrictions are mandatory in 49.2% of
the cases and are discretionary (and thus can be more easily
bypassed by the app exploration tools) in 25.4% of the cases.
4. Data refers to the information an activity relies on once it is
launched. Only 77.3% of activities in our analysis rely on any
data. For those, we distinguish between data of two different
Types: data passed as Parameters in Intent fields (point c
in Figure 1) and data retrieved as Execution Dependencies
via global state, i.e., through APIs, shared variables, or
shared preferences (point d in Figure 1). Furthermore, both
parameters and execution dependencies can have different
Format: Primitives, Strings, and Objects. We collect this
information as primitive types are easier to generate when
launching an activity than parameters of type String and,
even more so, Object. Yet, an activity would typically have
parameters of multiple types.
Combinations of Properties. After discussing each property
individually, it is important to understand how these properties
are combined, e.g., when an activity has both activation
guards and data. Overall, there are more than 200 different

9

TABLE V: Used Data Types
Primitives only 18 (9.8%)
Primitives + Strings 40 (21.6%)
Primitives + Strings + Objects 85 (45.9%)

combinations of the aforementioned properties, not all of which
are present in our analyzed apps. Table IV summarizes the
existing combinations, grouping them into five sections we
identified, according to our perceived easiness of triggering
activities of each types by the current/future tools that extend
beyond GUI-based app exploration. More details about all
combinations is in our online appendix [31].

The first column of the table assigns each combination type
a unique id, to ease the discussion. The next four columns
summarize the categories of each combination based on the
description above. To simplify presentation, we treat data as a
binary feature, i.e., with or without data, and further elaborate
on data in Table V. In the last column, we present the number
and the percentage of unreached activities in each combination.

Based on our analysis, we identified three main sources of
exploration difficulty: (1) the ability to identify the activation
location and then explicitly trigger the activity outside of its
“normal” execution context, (2) the ability to resolve activation
guards, and (3) the ability to provide the right data for the
execution. These are marked by circles on the right-hand side
of the section name: a full circle means “relatively difficult”
and an empty circle – “easier”).

Activities in the first section of the table (rows 1-7, 22.7%)
have either none or discretionary guards and rely on no data.
Furthermore, they are activated from the commonly known
Android callbacks and the Manifest file. Such activities can be
triggered either directly via ADB (exported activities in rows
1-3) or by generating a custom activation file that starts the
activities programmatically, similar to the mechanism employed
by FlowDroid [46] (unexported activities in rows 4-7). We
consider these cases to be the easiest targets for techniques
that extend beyond GUI-based app exploration, which could
identify the activities in the application code and subsequently
trigger their execution.

All the remaining sections include activities that rely on data.
Table V breaks down the required data by types, where we
consider Primitives only (the simplest data to generate when
triggering an activity, 9.8% of all cases), Primitives and Strings
(21.6%), and Primitives + Strings + Objects (the most difficult
case, 45.9%). The table shows that, in the majority of cases
which require data generation, dealing with variables of types
Strings and Object is necessary. This was already attempted
by some beyond-GUI exploration tools [35], [47].

With the right data generated, the second section of Table IV
(rows 8-12, 24.3% of activities) lists activities that can be
triggered in a relatively straightforward manner because, like
in the data-free case, these activities are triggered from the
commonly known Android locations and have no mandatory
guards. The remaining sections of the table bring additional
complexities: the need to resolve activation location (rows 13-
14, 3.8% of activities), the need to satisfy mandatory activation

guards (rows 15-17, 47.6%), and the combination of the above
(row 18, 1.6%).
Answer to RQ3: More than 20% of all unreached activities
can be triggered in a rather straightforward manner, e.g., via
ADB or simple injected calls. Almost 25% of the remaining
activities can be triggered provided the necessary data is gener-
ated, albeit requiring the generation of String and Object data
types. Triggering the remaining activities requires sophisticated
techniques that can analyze app-specific custom callbacks and
resolve nontrivial constraints guarding activity execution.

V. DISCUSSION AND IMPLICATIONS

Our analysis demonstrates that future investment in GUI-
based app exploration techniques, i.e., techniques that simulate
user interactions with apps’ user interface, might not be fruitful
to “break the ceiling” of around 30% coverage for large Google
Play applications. To efficiently cover such applications – a
necessary step in many functional and security testing scenarios,
we envision the following three directions:
1. Analyze applications to identify activation conditions of
untriggered activities, as we did manually in RQ3. Such an
approach will enable (a) interactive decisions on which activa-
tion strategy to use for each case and (b) for cases that cannot
be triggered automatically, delegation to human analysts while
providing sufficient information about the required activation
conditions (e.g., modifications of the mobile OS version or
app environment). Effectively, such an approach will also
help setting up a realistic application-specific coverage “upper-
bound”, instead of blindly striving for practically unachievable
100% coverage.
2. Develop automated techniques for triggering activities
using an appropriate activation strategy: simply via ADB, by
generating code-level activation, or by forcing the original
application on the execution path leading to the activity.
3. Develop techniques to generate (or extract from the applica-
tion code) data values needed for successful activation.

A number of existing approaches, often used in security,
performance, and concurrency testing domains, aim to address
points 2 and 3 above. In fact, in our work, we identified and
classified 22 relevant techniques [33], [35], [47]–[66], which
are described in more detail in the online appendix [31]. In a
nutshell, these techniques introduce a variety of complicated
activity triggering and value generation procedures, based on
app, framework, and device manipulation. For example, one
line of work modifies the control flows of a program to steer
execution towards a desired point of interest. Another type
of techniques customize the Android OS to inject events at
the framework layer. The techniques use heuristic, symbolic-
execution-based, and dynamic-value-harvesting strategies to
generate the required data types.

However, among the 22 identified techniques, 16 are outdated
and not compatible with the latest Android versions, and the
remaining six are not publicly available. Out of these six, we
contacted the authors of the two latest techniques, CAR [47]
and COLUMBUS [35], but they indicated that the tools are not

10

ready for public release yet. Moreover, even when available,
existing literature reports on numerous crashes induced by the
invasive nature of such techniques [35], [47], [64], [67].

We believe that the complicated strategies these techniques
employ make them hard to deploy, maintain, and upgrade
to newer versions of the Android operating system. As a
way forward, we thus suggest future research to invest in
automatically extracting types of unreached activities (point 1
above) and then “staging” activation by focusing on activities
that can be triggered with the most lightweight triggering
strategy first. Such an approach can also avoid application
crashes – an unfortunate side effect of “one-size-fits-all”
exploration tools.

Our analysis shows that even the first stage of such an
approach can increase application coverage by close to 25%,
which is substantial, given the overall average coverage of 30%
in large real-world applications. The most promising to apply
at this stage would be techniques that support direct activity
invocation via ADB or instrumentation of the application to
activate its components, e.g., [48], [49], [55], [59], [65], [66].

Next, activities that use only primitive data could be invoked.
We believe such a staged addition of “safe-to-activate” activities
will result in a substantial increase in app coverage without
associated crashes and tooling-related faults.

VI. THREATS TO VALIDITY

The main threat to the internal validity of our results stems
from the manual analysis we performed: when identifying rea-
sons or properties for unreachability, we could have missed or
misinterpreted some relevant dependencies or implementation
patterns. To mitigate this threat, we cross-validated all findings
between at least two authors of this paper, involved additional
researchers from our group, and extensively discussed the
categorization we present in this work. We thus believe that
our results are reliable. Moreover, we believe that the diversity
of reasons and conditions identified in our dataset is a good
indicator of the quality/usefulness of the data produced in
this work. For the external validity, our findings might not
generalize beyond the dataset we considered. We mitigated
this threat by carefully designing the data collection process to
include a diverse set of real-world apps with large user bases,
as well as popular benchmarks for testing tool evaluation. We
thus believe that our data is representative.

VII. RELATED WORK

We discuss related work among two dimensions: work that
empirically compares app exploration techniques and work that
provides insights into reasons for low coverage.
Comparison of GUI-based Exploration Techniques. Choud-
hary et al. [23] propose the first comparative study of GUI-
based tools on 60 open-source apps, along several dimensions,
such as ease of use, code coverage, and fault detection. The
authors explicitly exclude tools that do not focus on app
coverage, e.g., triggering crashes, and report that Monkey
performed the best (around 45% coverage), despite being
random. Wang et al. [25] extend this study with newer tools

and apps from the Google Play Store and report a decrease
in tool performance on industrial apps (around 30% coverage).
While these studies focus on tool performance comparison, our
work aims to explain such low observed performance.
Insights on Reasons for Low Coverage. A few authors [29],
[30], [68] identify issues that automated tools cannot deal
with, such as complex event sequences and app settings. Our
work factors out challenges of inefficient GUI exploration and
focuses on the remaining reasons for low application coverage.
Azim and Neamtiu [5] leverage human input through a study
with seven users who achieve around 30% coverage, on average.
The authors report that the incomplete exploration by the users
is mainly due to the lack of knowledge of application features
or lack of interest. In contrast, our work involves skilled human
analysts (incentivized by the desire to explore a large fraction
of a mobile application, to reduce the effort of manual analysis).
Furthermore, we perform a detailed code-level analysis for the
reasons of limited coverage.

The work closest to ours is probably by Zheng et al. [24],
who propose a GUI-based tool built on top of Monkey and
manually analyze uncovered activities on one industrial app,
WeChat. The authors identify reasons such as lack of login or
financial information, historical data, dead activity, etc., and
tool-specific reasons (e.g., text inputs, system events). They also
discuss the need for developer-provided seed data and rules as
testing efforts. By extending our analysis to more than one app,
we were able to identify challenges not reported by Zheng et
al., such as the need to satisfy certain environmental properties,
usage patterns, and error-handling scenarios. We also augment
findings of Zheng et al. around hardware properties, interface-
only cases, and deep link routing in the alternate entry category.
Moreover, we provide a fine-grained classification of code-level
conditions required to trigger different types of activities.

VIII. CONCLUSION

In this paper, we compared the activity-level coverage
achieved by state-of-the-art Android GUI-based application
exploration techniques with that of skilled human analysts.
To our surprise, the tool and the human analysts reached a
similar level of coverage. This result indicates that improving
application coverage by investing in GUI-based exploration
strategies that trigger applications in a way similar to a human
might not bring substantial improvements. Further work should
thus rather focus on approaches for reaching the remaining
70% of the applications. To make progress in this direction,
we performed a detailed manual code-level analysis of 11
large and recent applications, extracting reasons for the lack
of reachability and suggestions for the staged application of
relatively simple beyond-GUI activation strategies. We hope
our work will inspire future techniques on both measuring the
achievable app-specific reachability and making steps towards
achieving it.
Acknowledgments. We thank Louie Tang and Kevin Liu from
UBC, and Siddharth Gupta from IIT Patna, for their help in
cross-validating the analysis results. We also thank the anony-
mous reviewers whose comments helped us improve the work.

11

REFERENCES

[1] “Monkey,” https://developer.android.com/studio/test/other-testing-tools/
monkey, 2023.

[2] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated Concolic
Testing of Smartphone Apps,” in Proc. of the International Symposium
on the Foundations of Software Engineering (ESEC/FSE), 2012, pp.
1–11.

[3] A. Machiry, R. Tahiliani, and M. Naik, “DynoDroid: An Input Generation
System for Android Apps,” in Proc. of the Joint Meeting on Foundations
of Software Engineering (ESEC/FSE), 2013, pp. 224–234.

[4] W. Choi, G. Necula, and K. Sen, “Guided GUI Testing of Android Apps
with Minimal Restart and Approximate Learning,” ACM Sigplan Notices,
vol. 48, no. 10, pp. 623–640, 2013.

[5] T. Azim and I. Neamtiu, “Targeted and Depth-First Exploration for
Systematic Testing of Android Apps,” in Proc. of the International
Conference on Object-Oriented Programming Systems Languages &
Applications (OOPSLA), 2013, pp. 641–660.

[6] R. Mahmood, N. Mirzaei, and S. Malek, “EvoDroid: Segmented
Evolutionary Testing of Android Apps,” in Proc. of the International
Symposium on Foundations of Software Engineering (ESEC/FSE), 2014,
pp. 599–609.

[7] N. Mirzaei, H. Bagheri, R. Mahmood, and S. Malek, “Sig-Droid:
Automated System Input Generation for Android Applications,” in Proc.
of the International Symposium on Software Reliability Engineering
(ISSRE), 2015, pp. 461–471.

[8] X. Zeng, D. Li, W. Zheng, F. Xia, Y. Deng, W. Lam, W. Yang, and T. Xie,
“Automated Test Input Generation for Android: Are We Really There
Yet in an Industrial Case?” in Proc. of the International Symposium on
Foundations of Software Engineering (ESEC/FSE), 2016, pp. 987–992.

[9] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective Automated
Testing for Android Applications,” in Proc. of the International Sympo-
sium on Software Testing and Analysis (ISSTA), 2016, pp. 94–105.

[10] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, Stochastic Model-based GUI Testing of Android Apps,”
in Proc. of the Joint Meeting on Foundations of Software Engineering
(ESEC/FSE), 2017, pp. 245–256.

[11] Y. Li, Z. Yang, Y. Guo, and X. Chen, “DroidBot: a Lightweight UI-
Guided Test Input Generator for Android,” in Proc. of the International
Conference on Software Engineering Companion (ICSE-C), 2017, pp.
23–26.

[12] D. Lai and J. Rubin, “Goal-driven Exploration for Android Applications,”
in Proc. of the International Conference on Automated Software
Engineering (ASE). IEEE, 2019, pp. 115–127.

[13] T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J. Lu, and Z. Su,
“Practical GUI Testing of Android Applications via Model Abstraction
and Refinement,” in Proc. of the International Conference on Software
Engineering (ICSE), 2019, pp. 269–280.

[14] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Humanoid: A Deep Learning-
based Approach to Automated Black-box Android App Testing,” in Proc.
of the International Conference on Automated Software Engineering
(ASE), 2019, pp. 1070–1073.

[15] J. Qin, H. Zhang, S. Wang, Z. Geng, and T. Chen, “Acteve++: An
Improved Android Application Automatic Tester Based on Acteve,” IEEE
Access, vol. 7, pp. 31 358–31 363, 2019.

[16] Z. Dong, M. Böhme, L. Cojocaru, and A. Roychoudhury, “Time-travel
Testing of Android Apps,” in Proc. of the International Conference on
Software Engineering (ICSE), 2020, pp. 481–492.

[17] J. Wang, Y. Jiang, C. Xu, C. Cao, X. Ma, and J. Lu, “ComboDroid:
Generating High-quality Test Inputs for Android Apps via Use Case
Combinations,” in Proc. of the International Conference on Software
Engineering (ICSE), 2020, pp. 469–480.

[18] W. Guo, L. Shen, T. Su, X. Peng, and W. Xie, “Improving Automated
GUI Exploration of Android Apps via Static Dependency Analysis,” in
Proc. of the International Conference on Software Maintenance and
Evolution (ICSME), 2020, pp. 557–568.

[19] M. Pan, A. Huang, G. Wang, T. Zhang, and X. Li, “Reinforcement
Learning Based Curiosity-driven Testing of Android Applications,” in
Proc. of the International Symposium on Software Testing and Analysis
(ISSTA), 2020, pp. 153–164.

[20] A. Romdhana, A. Merlo, M. Ceccato, and P. Tonella, “Deep Rein-
forcement Learning for Black-Box Testing of Android Apps,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 31, no. 4, pp. 1–29, 2022.

[21] Z. Lv, C. Peng, Z. Zhang, T. Su, K. Liu, and P. Yang, “FastBot2:
Reusable Automated Model-based GUI Testing for Android Enhanced
by Reinforcement Learning,” in Proc. of the International Conference
on Automated Software Engineering (ASE), 2022, pp. 1–5.

[22] Y. Lan, Y. Lu, Z. Li, M. Pan, W. Yang, T. Zhang, and X. Li, “Deeply
Reinforcing Android GUI Testing with Deep Reinforcement Learning,”
in Proc. of the International Conference on Software Engineering (ICSE),
2024.

[23] S. R. Choudhary, A. Gorla, and A. Orso, “Automated Test Input
Generation for Android: Are We There Yet?” in Proc. of the International
Conference on Automated Software Engineering (ASE), 2015, pp. 429–
440.

[24] H. Zheng, D. Li, B. Liang, X. Zeng, W. Zheng, Y. Deng, W. Lam,
W. Yang, and T. Xie, “Automated Test Input Generation for Android:
Towards Getting There in an Industrial Case,” in Proc. of the International
Conference on Software Engineering: Software Engineering in Practice
Track (ICSE-SEIP), 2017, pp. 253–262.

[25] W. Wang, D. Li, W. Yang, Y. Cao, Z. Zhang, Y. Deng, and T. Xie,
“An Empirical Study of Android Test Generation Tools in Industrial
Cases,” in Proc. of the International Conference on Automated Software
Engineering (ASE), 2018, pp. 738–748.

[26] H. N. Yasin, S. H. A. Hamid, R. J. R. Yusof, and M. Hamzah, “An
Empirical Analysis of Test Input Generation Tools for Android Apps
through a Sequence of Events,” Symmetry, vol. 12, no. 11, p. 1894, 2020.

[27] W. Wang, W. Lam, and T. Xie, “An Infrastructure Approach to Improving
Effectiveness of Android UI Testing Tools,” in Proc. of the International
Symposium on Software Testing and Analysis (ISSTA), 2021, pp. 165–176.

[28] W. Wang, W. Yang, T. Xu, and T. Xie, “Vet: Identifying and Avoiding UI
Exploration Tarpits,” in Proc. of the Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2021, pp. 83–94.

[29] T. Su, J. Wang, and Z. Su, “Benchmarking Automated GUI Testing
for Android Against Real-World Bugs,” in Proc. of the Joint European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE), 2021, pp. 119–130.

[30] F. Behrang and A. Orso, “Seven Reasons Why: an In-depth Study of the
Limitations of Random Test Input Generation for Android,” in Proc.of
the International Conference on Automated Software Engineering (ASE),
2020, pp. 1066–1077.

[31] F. Akinotcho, L. Wei, and J. Rubin. (2024) Supplementary Materi-
als. https://resess.github.io/artifacts/MobileCoverage.

[32] G. Dev., “Platform Architecture,” https://developer.android.com/guide/
platform, 2023.

[33] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome, and
D. Poshyvanyk, “Automatically Discovering, Reporting and Reproducing
Android Application Crashes,” in Proc. of the International Conference
on Software Testing, Verification and Validation (ICST). IEEE, 2016,
pp. 33–44.

[34] T. A. T. Vuong and S. Takada, “A Reinforcement Learning Based
Approach to Automated Testing of Android Applications,” in Proc. of
the International Workshop on Automating TEST Case Design, Selection,
and Evaluation (A-TEST), 2018, pp. 31–37.

[35] P. Bose, D. Das, S. Vasan, S. Mariani, I. Grishchenko, A. Continella,
A. Bianchi, C. Kruegel, and G. Vigna, “COLUMBUS: Android App
Testing Through Systematic Callback Exploration,” in Proc. of the
International Conference on Software Engineering (ICSE), 2023.

[36] “F-Droid,” https://f-droid.org/, 2023.
[37] “Github,” https://github.com, 2023.
[38] “Google Code Archives,” https://code.google.com/archive/, 2023.
[39] G. Dev., “Multi-dex over 64k methods,” https://developer.android.com/

build/multidex#about, 2024.
[40] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé, and J. Klein, “Automated

Testing of Android Apps: A Systematic Literature Review,” IEEE
Transactions on Reliability (TR), vol. 68, no. 1, pp. 45–66, 2018.

[41] “Bug Report,” https://techcommunity.microsoft.com/t5/microsoft-teams/
cannot-access-microsoft-teams/m-p/1212804#M46636, 2020.

[42] skylot, “JADX,” https://github.com/skylot/jadx, 2021.
[43] N. Nurmuliani, D. Zowghi, and S. P. Williams, “Using Card Sorting

Technique to Classify Requirements Change,” in Proc. of the International
Requirements Engineering Conference (RE), 2004, pp. 240–248.

[44] E. F. Cataldo, R. M. Johnson, L. A. Kellstedt, and L. W. Milbrath,
“Card Sorting as a Technique for Survey Interviewing,” Public Opinion
Quarterly, vol. 34, no. 2, pp. 202–215, 1970.

[45] “WordPress: Migration to JetPack,” https://wordpress.com/blog/2023/02/
15/switch-to-the-new-jetpack-mobile-app/, 2023.

12

https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/studio/test/other-testing-tools/monkey
https://resess.github.io/artifacts/MobileCoverage
https://developer.android.com/guide/platform
https://developer.android.com/guide/platform
https://f-droid.org/
https://github.com
https://code.google.com/archive/
https://developer.android.com/build/multidex#about
https://developer.android.com/build/multidex#about
https://techcommunity.microsoft.com/t5/microsoft-teams/cannot-access-microsoft-teams/m-p/1212804#M46636
https://techcommunity.microsoft.com/t5/microsoft-teams/cannot-access-microsoft-teams/m-p/1212804#M46636
https://wordpress.com/blog/2023/02/15/switch-to-the-new-jetpack-mobile-app/
https://wordpress.com/blog/2023/02/15/switch-to-the-new-jetpack-mobile-app/

[46] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, “FlowDroid: Precise Context, Flow, Field,
Object-sensitive and Lifecycle-aware Taint Analysis for Android Apps,”
ACM Sigplan Notices, vol. 49, no. 6, pp. 259–269, 2014.

[47] M. Y. Wong and D. Lie, “Driving Execution of Target Paths in Android
Applications with (a) CAR,” in Proc. of the ACM Asia Conference on
Computer and Communications Security (ASIACCS), 2022, pp. 888–902.

[48] R. Bhoraskar, S. Han, J. Jeon, T. Azim, S. Chen, J. Jung, S. Nath,
R. Wang, and D. Wetherall, “Brahmastra: Driving Apps to Test the
Security of Third-party Components,” in Proc. of the USENIX Security
Symposium (USENIX), 2014, pp. 1021–1036.

[49] G. Hu, X. Yuan, Y. Tang, and J. Yang, “Efficiently, Effectively Detecting
Mobile App Bugs with AppDoctor,” in Proc. of the Ninth European
Conference on Computer Systems, 2014, pp. 1–15.

[50] A. Abraham, R. Andriatsimandefitra, A. Brunelat, J.-F. Lalande, and
V. V. T. Tong, “GroddDroid: A Gorilla for Triggering Malicious
Behaviors,” in Proc of the International Conference on Malicious and
Unwanted Software (MALWARE), 2015, pp. 119–127.

[51] J. Schütte, R. Fedler, and D. Titze, “ConDroid: Targeted Dynamic Anal-
ysis of Android Applications,” in Proc. of the International Conference
on Advanced Information Networking and Applications (AINA), 2015,
pp. 571–578.

[52] Wong, Michelle Y and Lie, David, “IntelliDroid: A Targeted Input
Generator for the Dynamic Analysis of Android Malware.” in Proc. of
the Network and Distributed System Security Symposium (NDSS), 2016,
pp. 1–15.

[53] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden, “Harvesting
Runtime Values in Android Applications that Feature Anti-analysis
Techniques.” in Proc. of the Network and Distributed System Security
Symposium (NDSS), 2016.

[54] S. Rasthofer, S. Arzt, S. Triller, and M. Pradel, “Making Malory Behave
Maliciously: Targeted Fuzzing of Android Execution Environments,” in
Proc. of the International Conference on Software Engineering (ICSE),
2017, pp. 300–311.

[55] W. Song, X. Qian, and J. Huang, “EHBDroid: Beyond GUI Testing for
Android Applications,” in Proc. of the 32nd Conference on Automated
Software Engineering (ASE), 2017, pp. 27–37.

[56] X. Wang, S. Zhu, D. Zhou, and Y. Yang, “Droid-AntiRM: Taming
Control Flow Anti-analysis to Support Automated Dynamic Analysis of
Android Malware,” in Proc. of the Annual Computer Security Applications
Conference (ACSAC), 2017, pp. 350–361.

[57] L. Xue, Y. Zhou, T. Chen, X. Luo, and G. Gu, “Malton: Towards On-
Device Non-Invasive Mobile Malware Analysis for ART.” in Proc of the

USENIX Security Symposium (USENIX), 2017, pp. 289–306.
[58] L. L. Zhang, C.-J. M. Liang, Y. Liu, and E. Chen, “Systematically Testing

Background Services of Mobile Apps,” in Proc. of the International
Conference on Automated Software Engineering (ASE), 2017, pp. 4–15.

[59] C. Zuo and Z. Lin, “SmartGen: Exposing Server URLs of Mobile
Apps with Selective Symbolic Execution,” in Proc. of the International
Conference on World Wide Web (WWW), 2017, pp. 867–876.

[60] L. Bello and M. Pistoia, “Ares: Triggering Payload of Evasive Android
Malware,” in Proc. of the International Conference on Mobile Software
Engineering and Systems (MOBILESoft), 2018, pp. 2–12.

[61] X. Wang, Y. Yang, and S. Zhu, “Automated Hybrid Analysis of Android
Malware through Augmenting Fuzzing with Forced Execution,” IEEE
Transactions on Mobile Computing (TMC), vol. 18, no. 12, pp. 2768–
2782, 2018.

[62] R. Jabbarvand, J.-W. Lin, and S. Malek, “Search-Based Energy Testing
of Android,” in Proc. of the International Conference on Software
Engineering (ICSE), 2019, pp. 1119–1130.

[63] S. Shi, X. Wang, and W. C. Lau, “MoSSOT: An Automated Blackbox
Tester for Single Sign-on Vulnerabilities in Mobile Applications,” in
Proc. of the ACM Asia Conference on Computer and Communications
Security (ASIACCS), 2019, pp. 269–282.

[64] D. Wu, D. He, S. Chen, and J. Xue, “Exposing Android Event-based
Races by Selective Branch Instrumentation,” in Proc. of the International
Symposium on Software Reliability Engineering (ISSRE), 2020, pp. 265–
276.

[65] J. Yan, H. Liu, L. Pan, J. Yan, J. Zhang, and B. Liang, “Multiple-entry
Testing of Android Applications by Constructing Activity Launching Con-
texts,” in Proc. of the International Conference on Software Engineering
(ICSE), 2020, pp. 457–468.

[66] A. Liu, C. Guo, N. Dong, Y. Wang, and J. Xu, “DALT: Deep Activity
Launching Test via Intent-Constraint Extraction,” in Proc. of the
International Symposium on Software Reliability Engineering (ISSRE),
2022, pp. 482–493.

[67] A. Salem, M. Hesse, J. Neumeier, and A. Pretschner, “Towards Empiri-
cally Assessing Behavior Stimulation Approaches for Android Malware,”
in International Conference on Emerging Security Information, Systems
and Technologies (SECUREWARE), 2019, pp. 47–52.

[68] F. Thung, I. C. Irsan, J. Liu, and D. Lo, “Towards Benchmarking
the Coverage of Automated Testing Tools in Android Against Manual
Testing,” in Proc. of the IEEE/ACM 11th International Conference on
Mobile Software Engineering and Systems, 2024, pp. 74–77.

13

	Introduction
	Background
	Methodology
	Experimental Setup: RQ1
	Experimental Setup: RQ2 and RQ3

	Results
	RQ1: Application Coverage
	RQ2: Reasons for Unreachability
	RQ3: Activation Properties

	Discussion and Implications
	Threats to Validity
	Related Work
	Conclusion
	References

