
Kuber: Cost-Efficient Microservice Deployment
Planner

Harshavardhan Kadiyala
Univ. of British Columbia, Canada

devkhv129@ece.ubc.ca

Alberto Misail
Univ. of British Columbia, Canada

titomisa@student.ubc.ca

Julia Rubin
Univ. of British Columbia, Canada

mjulia@ece.ubc.ca

Abstract—The microservice-based architecture – a SOA-
inspired principle of dividing backend systems into indepen-
dently deployed components that communicate with each other
using language-agnostic APIs – has gained increased popularity
in industry. Realistic microservice-based applications contain
hundreds of services deployed on a cloud. As cloud providers
typically offer a variety of virtual machine (VM) types, each
with its own hardware specification and cost, picking a proper
cloud configuration for deploying all microservices in a way that
satisfies performance targets while minimizing the deployment
costs becomes challenging.

Existing work focuses on identifying the best VM types
for recurrent (mostly high-performance computing) jobs. Yet,
identifying the best VM type for the myriad of all possible
service combinations and further identifying the optimal subset of
combinations that minimizes deployment cost is an intractable
problem for applications with a large number of services. To
address this problem, we propose an approach, called KUBER,
which utilizes a set of strategies to efficiently sample the neces-
sary subset of service combinations and VM types to explore.
Comparing KUBER with baseline approaches shows that KUBER
is able to find the best deployment with the lowest search cost.

I. INTRODUCTION

Microservice-based architecture is a SOA-inspired principle
of building complex backend systems as a composition of
small, loosely coupled components that communicate with
each other using language-agnostic APIs [1]. This architectural
principle is now becoming increasingly popular in industry due
to its advantages, such as greater software development agility,
elasticity, and a pay-per-consumption deployment model. Re-
alistic microservice-based applications contain tens or even
hundreds of services. Running them continuously in public
clouds [2], [3] induces significant expenses [4], [3]. As cloud
providers typically offer a variety of virtual machine (VM)
types, each with its own hardware specification and cost, iden-
tifying a proper deployment configuration for microservice-
based applications – one that satisfies performance targets
while minimizing the deployment costs, becomes an important
yet challenging release engineering task [5], [6], [7].

Existing work focused on identifying the cheapest yet
performant VM types for recurrent (mostly, high-performance
computing) jobs. This is typically done either by prediction-
based approaches that estimate the execution time of a job
on each target VM type based on pre-existing data [8], [9],
[10], or by sample-based approaches which perform runtime
sampling of job execution on a carefully selected subset of

VMs and extrapolating this data on the remaining VMs [7],
[11], [12], [13]. However, microservice-based applications
bring additional complexity: it is not practical to explore all
possible service combinations and then find the right subset
of combinations that leads to the optimal deployment.

Front-end

User

Payment
Order

Cart

CatalogueUser

Shipping

Fig. 1: A demo application:
Sock Shop [14].

Consider, for example, the
Sock Shop microservice-based
demo application [14] in Fig-
ure 1, which contains seven
services and is deployed on
Amazon EC2 [15] – a cloud
infrastructure offering more
than 300 different VM types with a variety of hardware
options [16]. Even though Amazon provides recommendations
for how each VM type should be used and designated only
50 VM types for microservice-based applications, the space
of all possible deployment configurations is still very large,
e.g., the services Cart, Catalogue, Shipping could be combined
and placed together on one VM, placed individually on three
different VMs of the same type, or placed on three different
VMs of three different types.

Finding the right VM type for each service combination
depends on whether the services have competing CPU /
memory / network requirements and on the capabilities of the
particular VMs. A straightforward solution to this problem is
to test all service combinations on all VM types. However,
exploring the space of all combinations is exponential in
the number of services: even for an application with seven
services, there are 127 combinations, which quickly grows to
millions for an application with only 20 microservices.

To further complicate matters, even if the performance
of all service combinations on all possible VMs is known,
finding the optimal subset of combinations that minimizes
deployment cost is a non-trivial task by itself. In our example,
services Cart, Catalogue, Shipping can be combined and
placed together on a certain VM or can be further combined
with services Orders and Payment and placed on a more
expensive VM. In fact, this problem of finding the optimal
deployment translates to the weighted independent domination
(WID) problem, which is known to be NP-hard [17] and is thus
intractable for applications with a large number of services.

In this paper, we propose a sample-based approach for
addressing this problem, called KUBER, which relies on (a)
a set of strategies for carefully selecting service combinations

and VM types to sample and (b) a deployment mechanism to
efficiently test the performance of the chosen combinations on
a VM. We choose to follow a sample- rather than a prediction-
based approach as our and others’ experience, e.g., [7], shows
that prediction-based approaches fail to accurately capture the
correlation between workloads and VM capacity. We also
confirm this claim in our evaluation.

KUBER performs an efficient search in the space of possible
combinations and VM types by relying on three main insights:
1. The partial ordering of service combination allow KUBER
to exclude a large number of VM types that will not meet
the performance targets. For example, if a service combination
{Shipping, Orders, User} does not meet the performance target
on a certain VM type, any superset of this combination, e.g.,
{Shipping, Orders, User, Carts}, will not meet the target on
that VM type either. KUBER thus implements logic for keeping
and propagating prior execution results to future combinations.
2. Executing a service combination of a particular VM type
is only worthwhile if the obtained solution has the potential
to decrease the overall deployment cost. For example, it is
not worthwhile to check whether the service combination
{Shipping, Orders, User} meets a performance target on a VM
that costs $4 if it is already established that each individual
service can work on a VM costing $1 each. KUBER thus
employs several strategies to efficiently narrow down the space
of considered configurations.
3. The nature of our problem enables efficient improvements
in existing heuristic approaches for solving the WID prob-
lem [18], scaling it to microservice-based applications of
realistic size and complexity.

We evaluated KUBER on four open-source benchmark
microservice-based applications, comparing it with baseline
sample-based approaches which do not use combination/VM
selection strategies and a prediction-based approach built on
top of existing work. Our evaluation shows that KUBER
outperforms the baseline approaches, finding the best deploy-
ment configuration faster and with the lowest search cost.
Moreover, the differences between the approaches become
more pronounced as the size of the applications grow.

Contributions. The paper makes the following contributions:
1. It formulates the problem of picking a proper cloud config-
uration for deploying microservice-based applications.
2. It proposes a sample-based approach for addressing this
problem, implemented in a tool called KUBER. KUBER
consists of a set of strategies for minimizing the number
of runtime experiments, an efficient solution for collecting
performance data at runtime, and a problem-domain-inspired
approach for improving the scalability of an existing heuristic
WID solution, so it can be applied to applications of realistic
size and complexity.
3. It evaluates the effectiveness of KUBER on four case-studies,
comparing it with a number of baseline approaches.
4. It makes our implementation and evaluation setup publicly
available to facilitate replication and further research [19].

II. BACKGROUND

In this section, we provide a short overview of microservice-
based application development and deployment.

A. Microservice-based Applications

Microservice-based architectures are closely related to
service-oriented architectures (SOA), which is a style of soft-
ware design where services represent application components
that communicate over a network [20]. Microservices aim
at shortening the development lifecycle while improving the
quality, availability, and scalability of applications at runtime.
Another major advantage of microservice-based architectures
is independent deployment, which reduces the coordination
effort needed to align on common application delivery cycles
and also leads to independent scaling at runtime [21].

A microservice-based development style is often used for
in latency-critical applications, such as user-facing websites,
where decreased performance leads to decreased user satis-
faction and loss of business [22]. In such cases, it is common
for developers to specify performance targets as part of their
applications’ service-level agreement (SLA) – a commitment
between a service provider and a client. Performance targets
are usually evaluated on a p-th percentile (e.g., the 99th or
95th percentile) of all requests the service receives [23].

B. Cloud Infrastructure

Cloud providers, such as Amazon AWS [16] and Microsoft
Azure [24], offer customers compute resources running on the
providers’ physical infrastructure. Specifically, they provide a
wide range of Virtual Machine (VM) types, which differ in the
processor architecture (e.g., Intel vs. AMD, CPU vs. GPU) and
size (e.g., 2 vs. 16 CPU cores). VM types are grouped into
families; VMs in a family typically have the same underlying
architecture and differ by their size. At the time of writing,
AWS provides more than 300 VM types grouped into more
than 40 families [16]; Azure provides more than 400 VM types
grouped into more than 50 families [25].

To increase utilization and achieve better cost-efficiency,
multiple VMs are typically hosted on the same physical
machine and thus share CPU, caches, memory, storage, and
networking devices. While cloud providers guarantee certain
resources, such as CPU, memory capacity, and storage, by
dedicating them to a particular VM, other resources are shared
by VMs running on the same physical machine [26]. Increased
load on a physical machine might cause VM interference,
which results in performance degradation for applications
running on these VMs [27], [28].

Moreover, developers have the option to co-locate multiple
workloads/microservices on the same VM. OS-level virtualiza-
tion solutions, such as Docker containers [29], help enable co-
location of microservices by providing fault and dependency
isolation, thereby preventing failures in one service from prop-
agating to others. As containers do not guarantee performance
isolation between workloads, when services running on the
same VM rely on a particular shared resource, they face
service-level interference [30].

2

Combin. VM Type:
Price ($)

{!1} VM1: 2

{!2} VM1: 2

{!3} VM1: 2

{!1, !2} VM2: 3

{!1, !3} VM3: 10

{!2, !3} VM3: 10

{!1, !2, !3} VM3: 10

(a) Input data

{!3}

10

10

3

2 2

2

10

{!1, !2, !3}

{!2, !3}

{!1, !3}

{!1, !2}

{!2}{!1}

(b) WID Graph and Solu-
tion

Fig. 2: Weighed Independent Domination (WID).

Unlike the case of VM-level interference, no guarantees on
the performance of interfering services are available and it is
up to the development team to decide which co-locations of
microservices are desirable given the performance targets. If
a shared resource is heavily utilized by co-located services,
none of the services gets all the resources they need to meet
the required performance target.

III. APPROACH

We now discuss our approach for finding a desired deploy-
ment configuration for a microservice-based application.

A. Problem Statement

We assume as input an application S with n services S1, ...,
Sn, where each service Si has ij APIs, denoted by Si:A1, ...,
Si:Aij . We say that each API Si:Aj has a performance target
(e.g., measured in terms of time to process a request); we
denote the performance target of Si:Aj by Si:Atj .

We also assume as input a compute cluster VM with m
VM types VM1, ..., VMm, where each VM type has its
own hardware specification and cost; we denote the cost for
VMi by VMi

c. We say that a service combination π, formed
by colocating a subset of S on the same VM, satisfies the
performance target if the performance targets of all APIs of
all services in π are satisfied on that VM.

Our goal is to find a deployment configuration Λ for S,
which maps service combinations of S to target VM types,
such that: (a) every Si ∈ S is part of exactly one service
combination π in Λ; (b) every service combination π in Λ
is mapped to a VM on which the performance target of π is
satisfied; and (c) there is no other configuration Λ′ such that
the total cost of all VM types in Λ′ is lower than in Λ.

That is, we aim at finding the cheapest deployment config-
uration that can co-locate multiple services on the same VM
and that satisfies the performance targets of all services in S.

B. A First-Approximation Solution

Our experience and prior work show that there is no direct
correlation between the cost and the performance of a service
on a VM [8]. The most obvious solution to the problem of
finding cheapest deployment configuration is thus to first order
all VM types in VM by their cost and then run each service
combination in S on each VM type one by one, until the
cheapest VM type for each service combination is found. We
refer to this solution as Sort and Find (SF).

Once the best VM type for each service combination is
determined, we need to identify a subset of combinations that
satisfy the conditions above. More formally, given a mapping
of service combinations to the cheapest VM type for which
each service combination satisfies its performance target, we
need to find the subset of combinations that includes each
service once and only once and has the lowest possible de-
ployment cost. Consider, for example, an application with only
three services, S1, S2, and S3, which is deployed on a cluster
with three VM types, VM1, VM2, VM3. Let us assume that
the cost of these VM types are 2, 3, and 10, respectively.
There are seven possible service combinations. For illustration
purposes, Figure 2a shows, for each combination, the cost of
the cheapest VM type for which the performance target is
satisfied. Multiple deployment options are possible for this
example: each of the services could be deployed individually
on different instances of VM1; the overall cost of this solution
would be 6. A cheaper deployment would be to deploy the
combination {S1, S2} on VM2 and {S3} on VM1; the cost
of this solution would be 5. A deployment that contains service
combinations {S1, S2} and {S1, S3} would be invalid as S1

would be deployed more than once. Similarly, a deployment
that contains the service combination {S1, S2} only would be
invalid as S3 would not be deployed.

The problem of finding the cheapest valid deployment
given the mapping from a service combination to its cheapest
working VM type (like in Figure 2a) can be translated into the
Weighed Independent Domination (WID) problem [17]. The
input to WID is a weighted undirected graph G = (V,E),
where nodes v ∈ V and edges e = (v, u) ∈ E have non-
negative weights w(v) ≥ 0 and w(v, u) ≥ 0, respectively.
WID then finds a subset of nodes D ⊆ V which satisfy
the following criteria: (1) Independent: no two nodes in D
are adjacent. (2) Dominant: any node in V is either in D
or adjacent to a node in D. (3) Least Weight: D mini-
mizes the following cost function: f(D) =

∑
u∈D w(u) +∑

v∈V \Dmin{w(v, u), for u ∈ D and (v, u) ∈ E}, which
is the sum of the weights of the nodes in D plus the sum of
the weights of the minimum-weight edges connecting nodes
in V \D to nodes in D.

To rephrase the deployment detection problem as WID, we
define V to be the set of all possible service combinations.
We place an edge between a pair of nodes in V iff their
corresponding combinations have at least one service in com-
mon. We set the node weights to be the cost of the cheapest
VM type on which the combinations meet their performance
target. We do not use edge weights and thus set them all to 0.
Figure 2b shows such graph for the mapping in Figure 2a.

A solution D produced by the WID algorithm (highlighted
in grey in the example in Figure 2a) results in a cheapest valid
deployment Λ: (1) By the Independent property, every Si ∈
S is part of at most one service combination in Λ because if
a service is part of a combination that was chosen in D, no
other service combination that contains the service is in D.
(2) By the Dominant property, every Si ∈ S is part of at least
one service combination in Λ because the service combination

3

Combination
Optimiser

Execution
Engine Controller

deploy

performance
data

Combination
Selector

Deployment
Planner

Application Cluster

…
=

Deployment

Log

…

Application test

test
\

Fig. 3: KUBER overview.

{Si} is either in D or one of its adjacent nodes (that also
contain Si) is in D. (3) By the Least Weight property, there is
no other Λ′ such that the total cost of all VM types in Λ′ is
lower than in Λ because WID’s cost function translates to the
sum of the weights of all nodes in D, i.e., their deployment
cost. Thus, minimizing this function means that no other valid
deployment with lower costs exists.

As WID is an NP-hard problem [17], we rely on an iterative
greedy algorithm by Davidson et al., which approximates the
result and was shown to outperform existing work [18]. In a
nutshell, the algorithm starts from greedily selecting an initial
set of nodes in D and then iteratively improves the initial
result by taking a random subset of nodes out of D (partial
destruction phase) and greedily completing it to form a valid
solution again (reconstruction phase).

Davidson et al. evaluated their approach on randomly gen-
erated graphs of varying sizes (between 100 and 1000 nodes).
Yet, our graphs tend to be substantially larger (more than a
million service combinations for an app with 20 services) and
much more dense (as many nodes share common services);
we thus modify and adapt this approach to our scenario, as
discussed in Section III-C.

C. Kuber Solution

An overview of KUBER, which further extends the approach
outlined in the previous section, is shown in Figure 3. KUBER
consists of two main parts. The first part, Combination Opti-
mizer, improves the SF solution with a more efficient selection
of service combinations to explore. The second part, Execution
Engine takes care of service deployment and runtime data
collection. We now discuss these two components in detail.

Combination Optimizer. The SF solution performs a runtime
experiment for every non-empty subset of S, i.e., P(S)-1 times.
Such runtime experiments are costly, with respect to both time
and budget. To reduce this cost, Combination Optimizer relies
on a number of strategies, summarized in Algorithm 1.

It first initializes a set of variables: the map M , which
keeps, for each service combination, the cheapest VM type
where the performance target of the combination is satisfied
(line 3); Λ, which keeps the best deployment configuration
identified so far (line 4); and Λc, which keeps the cost of that
deployment (line 5). The algorithm then computes the set of
all non-empty service combinations of the input application S
and sorts them by the number of services in a combination,

i.e., first the combinations with one service, then combinations
with two services, etc. (line 6). It iterates over all combinations
in order and, for each combination, explores all VM types
in order (lines 7-30). Before collecting performance data for
each combination π on a VM v, it checks that the following
conditions hold:
Condition 1 (lines 10-12): If the cheapest working VM type
for at least one subset of services π̄ ⊂ π is more expensive
than v, that implies that the performance target of π̄ was not
met on v. As adding more services to π̄ cannot improve the
performance of services that are already in that set, π cannot
meet its performance target on that VM type either, and this
runtime experiment can be skipped altogether. For example,
the algorithm will skip executing the service combination {S1,
S2, S3} on VMi if a subset of services, say {S1, S2}, does
not meet the performance target on that VM type.
Condition 2 (lines 13-17): If executing π cannot lead to a
deployment that is cheaper than the current solution, executing
the experiment is unnecessary and can be skipped as well. To
estimate whether the experiment has a chance to improve the
cost of the current solution, we conservatively assume that
still unexplored combinations have a chance to meet their
performance target on certain VM types. More specifically, for
each still unexplored combination, we utilize our knowledge
about best VM types selected for its subset combinations (if
any) and optimistically assume that the target combination will
work on the most expensive of those VM types (lines 33-40).

Like in the previous case, we leverage the idea to or-
der all explored combinations by size, making sure smaller
combinations are executed earlier and their performance data
can be propagated to larger combinations. Moreover, we
conservatively pick the cheapest possible VM type (or VM1

for combinations of one service) to ensure we do not skip any
experiments that have a chance to lead to a better deployment
placement in the future. For example, if S1 and S2 meet
their performance targets on VM2 and VM4, respectively,
we optimistically assume that a still unexplored combination
{S1, S2} will meet its performance target on VM4.

We rely on the Deployment Planner component to decide
whether an experiment is worthwhile to execute. It accepts
as input a map M (from a combination to its best VM type)
and an experiment of interest m; it calculates the deployment
solution using our extended version of the WID algorithm
(described below) or returns ∅ if at least one of the services
does not have any VM type mapped to it yet. When m is
given, the method ensures that m is part of the produced
solution. Otherwise, it returns any solution for the given map
of combinations.

To decide whether to execute an experiment (π, v), we pass
to the Deployment Planner a map containing all previously
explored and optimistically projected service combinations,
as well as the experiment of interest (line 14). We only
proceed to actually executing the experiment if placing π on v
could indeed lead to a cheaper deployment that includes this
placement. We continue to the next combination otherwise, as
placing π on even a more expensive VM type cannot further

4

1 Input: Application S = {S1, ..., Sn},
Cluster VM = {VM1, ..., VMm} (ascending order by VM cost)
Output: Deployment Λ

2 begin
3 M ← ∅ . A map of combination best VM type
4 Λ ← ∅ . No solution yet
5 Λ c ←∞ . Upper bound for current solution cost
6 Π← P(S) \∅ . All non-empty combinations of services in S, arranged by the

number of services in a combination
7 while π ∈ Π do
8 π = popFirst(Π) . Fetch and remove the first combination in Π

9 foreach v ∈ VM do
10 if ∃π̄ ⊂ π such that M(π̄) = v̄ ∧ v̄c > vc then

. Condition 1: One of the subsets of π did not meet the performance
target on v, hence π cannot meet the performance target on v ⇒
proceed to the next VM type

11 continue
12 end
13 M ′ = OptimisticGuess(Π,M) . Optimistically find the best

possible VM type for unexplored combinations
. Deployment under this assumption

14 Λ’ ← DeploymentPlanner(M ∪M ′, (π, v))
15 if cost(Λ’) ≥ Λc then
16 break . Condition 2: Solution does not lead to a better

deployment ⇒ explore next combination.
17 end
18 execute(π, v) . Collect runtime performance data
19 if performance targets of π is satisfied on v then
20 M [π]← v . This is the cheapest VM type for π
21 Λ ← DeploymentPlanner(M, ∅) . current best
22 Λc ← cost(Λ) . current best cost
23 Λ’ ← DeploymentPlanner(M ∪M ′, ∅)
24 if cost(Λ’) 6< Λc then
25 return Λ . Condition 3: No better solution is possible
26 end

. The cheapest VM type for π is found⇒ explore next combination
27 break
28 end
29 end
30 end
31 return Λ
32 end
33 Procedure OptimisticGuess(Π, M)
34 begin
35 M ′ ← ∅
36 foreach π ∈ Π do
37 M ′[π]← the most expensive VM type of all subsets of π

in M or VM1 if non of the subsets is in M
38 end
39 return M ′

40 end
Algorithm 1: Combination Optimizer.

improve the cost (lines 15-17).
If placing π on v has the potential to lead to a better solution,

we proceed to executing the experiment and collecting real
performance data (line 18). For combinations that satisfy the
performance target on the given VM type, we update the
combination to best VM type map (line 20) and then rely
on the Deployment Planner again to calculate the best current
solution and its cost (lines 21-22). This time, we only pass
M as the parameter as we are interested in the best possible
realistic solution rather than a solution that contains (π, v) or
that relies on predicted data.
Condition 3 (lines 23-26): Finally, when a combination π can
successfully run on a VM type v, the algorithm checks whether
any further improvements are still possible. To this end, it
uses the Deployment Planner again, this time passing it the

map containing both executed and projected combinations
(line 23). If no solution that can improve the cost of current
deployment (with or without the executed combination π) is
possible, the algorithm terminates and returns the current result
(lines 24-26). Otherwise, it proceeds to exploring the next
combination in order (line 27), as the cheapest VM type for
this combination is already identified.
Deployment Planner. As discussed in Section III-B, we build
up on the algorithm by Davidson et al. [18] for heuristically
solving the WID problem. When computing a solution (in both
initial and reconstruction phases), this algorithm iteratively and
greedily chooses the next node to be one that has the highest
ratio between the number of edges to remaining candidate
nodes and the weight of the node. The rationale for this
decision is to choose a dominant node (one that has a large
number of edges) with a low weight. For the example in
Figure 2b, the first node picked would be {S1, S2} as it has
five edges to the neighbor nodes and a weight of 2, giving a
ratio of 2.5 – larger than that of any other node. Then, the
selected node and all its neighbors are removed from the set
of possible candidates, to satisfy the Independent property. For
the example in Figure 2b, that would remove all but the node
{S3}; that node is selected next to complete the solution.

This algorithm does not scale well for inputs of our size.
E.g., for apps with 20 services, the number of nodes would
be more than a million and it will contain more than half
a trillion edges; storing this information explicitly is not
possible at this scale. Our main observation is that our graph
has a very particular structure – its nodes are the service
combinations and edges represent a partial order over the set
of combinations. To choose the next node in every iteration,
we mainly need to know the number of other candidate nodes
a node is connected to. Moreover, when a particular node
is selected, we only need to compute and remove from the
set of future candidates all other nodes it is connected to.
Using our knowledge about the graph structure, we adapt the
algorithm by Davidson et al. [18] to compute this information
on-demand, without explicitly storing the underlying graph,
thus improving the algorithm’s scalability.

Assuming that a certain number of nodes has already been
selected to be part of the solution, let R be a subset of services
that have not yet been included in any of these nodes. Let r
be the number of these services, i.e., r = |R|. The number
of nodes remaining for selection is then 2r − 1. Let v be a
candidate node; it can have edges to at most all still unselected
nodes composed from services in R but itself: 2r − 1− 1.

To calculate the exact number of neighbors of v, we consider
the services it contains. Assuming there are r′ such services,
there are r − r′ services in R that are not part of v and there
are 2r−r

′ − 1 nodes composed from these services. As two
nodes have an edge only if they share at least one service, v
has no edges connecting it to any of these nodes. As such, v
has (2r − 1− 1)− (2r−r

′ − 1) = 2r − 2r−r
′ − 1 edges.

We use this formula to calculate the number of edges
for each remaining candidate node and pick the one with
the maximal ratio. In Figure 2b, when the algorithm starts,

5

R = {S1, S2, S3} and r = 3. For the node {S1, S2}, r′ = 2,
thus, the number of neighbors is 23 − 23−2 − 1 = 5.

After a node is selected, we compute the remaining can-
didates by leveraging the fact that nodes are adjacent only if
they share at least one service. Thus, the remaining candidates
are nodes that do not share any service with the selected node
v, i.e., the power set of all services in R minus the services in
v. In our example, when {S1, S2} is selected, the remaining
nodes are formed by all the combination of S3, which is the
combination {S3} itself.

Execution Engine. This component is responsible for per-
forming the runtime experiments and collecting the perfor-
mance data for each service combination π on a VM type v
(line 18 in Algorithm 1). To accurately collect such data, we
must deploy π on v in isolation. Yet, services in π interact with
the rest of the system, i.e., S \π. To ensure the performance
of the services in π is not negatively affected by “lagging”
services of the rest of the system, we deploy each remaining
service in S \π in isolation, on a separate instance of the
least expensive VM type (VM1). The Controller component
in Figure 3 takes care of such deployment.

We assume as input a set of tests that exercise the input
application. To collect response times of APIs of the services
in π, Controller executes these tests and, for each API of a
service in π, captures the incoming request and the response
times. Since the response time of an API depends not only
on its own execution time but also on the response times
of the outbound service it triggers, we measure and subtract
the response times of such calls, as was also done in earlier
work [31]. For the example in Figure 1, when measuring the
response time of API of the Order service, we subtract from
its execution time the response times of the outbound calls to
the Payment and Shipping services.

D. Implementation

We use a private cluster with three physical machines. Two
of the machines have an Intel Xeon E5-2640 v4 @ 2.40GHz
processor with 40 cores, 128 GB of RAM, 25 MB cache, and
63 GB/s Memory bandwidth. The third machine has an Intel
Xeon E5-2680 v4 @ 2.40GHz processor with 56 cores, 256
GB of RAM, 35 MB Cache, 76 GB/s Memory bandwidth.

We create and manage VMs using the OpenNebula cloud
computing platform [32] deployed on a separate machine.
We use Kubernetes cluster manager [33] and Istio monitoring
system [34] to deploy and monitor microservices. We use
Istio’s logging functionality to store the execution time of each
API in a time series database.

Finally, our implementation of the Combination Optimizer
and Execution Engine components is written in Python and
takes around 5000 lines of code. Our system implementation is
publicly available to facilitate further research in this area [19].

IV. EVALUATION SETUP

The goal of our evaluation is to answer the following
research questions:

TABLE I: VM Types
VM
Type

AWS VM
Type

CPU
Cores

RAM
(GB)

US$ /
Hour

VM1 A1.medium 1 2 0.0255
VM2 M6g.medium 1 4 0.0385
VM3 A1.large 2 4 0.051
VM4 M6g.large 2 8 0.077
VM5 A1.xlarge 4 8 0.102
VM6 T3.micro 2 1 0.1104
VM7 T3.small 2 2 0.1208
VM8 M6g.xlarge 4 16 0.154
VM9 T3.large 2 8 0.1832
VM10 A1.2xlarge 8 16 0.204
VM11 M6g.2xlarge 8 32 0.308

RQ1 (Selection Strategies): How effective are the configura-
tion and VM selection strategies applied by KUBER?
RQ2 (Sampling vs. Prediction): How effective is KUBER
when compared with a baseline prediction-based approach?

We now discuss our experimental setup, including our se-
lection of VM types, subject applications, and baseline ap-
proaches for comparison. To facilitate reproducibility, our
experimental package is available online [19].

VM Types. We used the three physical machines in our
private cluster to simulate a number of VM types from
Amazon EC2. Specifically, we choose three different families
of VMs suggested for microservice-based applications: the
basic A1 family, which provide cost savings for CPU-intensive
workloads; the more expensive T3 family, which provides
burstable general-purpose instances, thus increasing the price
of each VM type; and the higher-performance M6g family.

We picked four VM types from each family (12 VMs in
total), starting from a VM type on which all services of our
subject applications can boot and run individual. That excluded
the smallest VM type from the T3 family: T3.nano with only
0.5 GB of RAM. We could not simultaneously simulate two of
the selected VM types in our cluster: T3.medium and A1.large,
because they both have 2 CPU cores and 4 GB of RAM. We
thus excluded T3.medium from our analysis. The resulting 11
VM types, together with their mapping to the corresponding
Amazon EC2 instance, the number of CPU cores, RAM size,
and the cost per hour (as of January 2020) are given in Table I.

We deployed all the VMs corresponding to the same VM
type family onto the same physical machine, allocating our
largest physical machine (56 cores, 256 GB of RAM) to the
M6g family and the remaining two machines (40 cores, 128
GB of RAM) to the T3 and A1 families. The obtained size
and the capacity of our cluster is similar to prior work [7].
Subject Applications. We used a recent benchmark of
microservice-based applications, called DeathStarBench [31].
It consists of three applications: Hotel Reservation, Media Ser-
vice, and Social Network. In addition, we used a popular open-
source microservices demo application called Sock Shop [14].
We selected these applications because they are explicitly
designed to represent real-world systems, are deployable onto
a Kubernetes cluster, and include test suites allowing us to
effectively trigger services/APIs.

6

TABLE II: Subject Applications
Benchmark #Services #APIs Avg. #APIs/Service
Hotel Reservation 8 14 2
Media Service 11 29 3
Social Network 12 27 2
Sock Shop 7 42 6

Table II shows, for each application, the number of services
it contains, the total number of APIs, and the average number
of APIs per service. Overall, our applications contain between
7 and 12 services, with 14 to 42 APIs in total, and 2 to 6 APIs
per service, on average. As the performance of an application
varies based on the number of requests it receives (the API
load provided by the test) and the volume of data stored in
its associated database(s), we applied the following strategy to
populate applications with realistic data.

For Hotel Reservation, which allows the users to obtain
information and rates of nearby hotels, check hotels’ avail-
ability during a given time period, make reservations, and also
obtaining recommendations for hotels matching their selection
criteria, we populate the hotel information database with real-
world data from Yelp’s Hotels Dataframe [35]. It contains
438 hotels and 172,159 hotel reviews. Similarly, for Media
Service, which allows users to browse movie information, and
then rent, stream, review, and rate movies, we use data from a
real movies database, TMDB [36], which contains information
about 5,000 movies and 5,000 casts.

Similar to Twitter, in the Social Network application, users
can create posts embedded with text, media, and links, can tag
users, and broadcast posts to their followers. The application
uses three separate databases for persisting user profiles, posts,
and media. We load the profiles database from existing social
network data [37] with 962 users and 18,800 relations (repre-
senting followers). The volume of posts and media databases
does not affect the performance of the application and we thus
only use them for data generated at runtime.

Finally, for Sock Shop, an e-commerce application allowing
users to browse and buy socks, we first searched for all socks
sold by Amazon [38]. We learned that Amazon sells around
40,000 types of socks at the time of writing; we thus loaded
the database with the same number of items.

Each of our subject applications contains a test suite pro-
vided by the developers, which simulates its typical usage
scenario. For example, the test suite of Hotel Reservation sim-
ulates the scenario where the user logs in into the application,
searches for a hotel, gets hotel recommendations, and reserves
a hotel. We set the number of concurrent users served by each
application to 165, as specified by DeathStarBench. We define
a workload for an application as a set of API calls made by
concurrent users under the test.
Performance Targets. We use API execution time to represent
API performance, with high performance translating to low
execution time. To set the performance target for an API,
we follow existing work that typically selects targets within a
certain percentage of the best possible performance [39]. We
thus assumed that the largest VM type (in all dimensions) has
the best performance [40] and, without loss of generality, set

the targets to be 50% of that performance. That is, we set the
individual API performance targets to be twice their execution
time on VM11. Such selection ensures that performance target
can be reached on some but not all VM types.

Runtime Environment. Given 165 concurrent users and our
database load, all user requests terminate within two minutes
of execution on any VM type. We thus picked two minutes
execution time for each test. Deploying and booting services
on the right configuration of VMs takes another five minutes.
We reset the VMs and repeat each experiment three times, to
avoid performance variability due to underlying infrastructure.
Thus, the total execution time of each experiment is 21
minutes. To avoid any performance bottlenecks, we make sure
to deploy the test scripts and all external dependencies of each
microservice, including databases.

As the WID algorithm is evolutionary, it requires a time
limit to stop performing iterations. We experimented with the
algorithm, running it on the largest set of combinations in our
subjects set for 30 minutes. Our experiments showed that the
best solution is achieved within one minute and minimal to
no improvements are achieved afterwards. We thus set one
minute as a time limit for the algorithm.

Baseline Approaches. To answer RQ1, we implemented
the basic SF approach described in Section III-B. We then
augmented it with each of the three conditions described in
Section III-C one-by-one, producing three different implemen-
tations, which we refer to as SF1, SF2, and SF3. We compared
these approaches with KUBER, which uses a combination of
all three conditions simultaneously.

To answer RQ2, we implemented an approach that borrows
and adapts ideas from a prominent prediction-based approach,
PARIS [8], making it work in the microservices context. The
goal of PARIS is to predict the performance of a service on
a VM type. It does so by profiling a set of benchmarks that
are assumed to be similar to the real applications of interest.
For each benchmark, PARIS collects resource utilization (e.g.,
CPU usage) and performance information on all VM types,
scaling it relatively to a few reference VM types (typically
two). Then, to predict the performance of a service, PARIS
collects features of the service by running it on the reference
VM types and uses an ML-based model to predict performance
on the remaining VM types based on the service similarity
with the benchmarks.

To directly apply PARIS for predicting the best VM type for
a service combination, we would need profiling information
from all various combinations of benchmark services, which
is untenable in our setting. We thus use individual benchmarks
to predict the performance of combinations. To fairly evaluate
the prediction properties of the approach, without relying on
our ability to chose benchmarks similar to services in our
dataset, we opted to use individual services themselves as
benchmarks to train the model. That is, we run single services
in isolation on each VM type and collect resource utilization
and performance data. We use this data to train an ML-based
model similar to the one used by PARIS. Then, to predict

7

the performance of a combination of services π, we execute
π on only two VM types and use the model to predict the
performance on the remaining VM types. To validate the
prediction, we execute a runtime experiment on the cheapest
VM where π is predicted to work and continue to the next
predicted VM type, if the performance target is not met.
Further, we apply conditions 1-3 to make sure we do not
disadvantage this approach when comparing it with KUBER.
We refer to the obtain approach as P (for prediction).
Measures and Metrics. For each approach, we calculate the
cost of the deployment configuration Λ it finds. While AWS
prices VMs per hour, microservice-based applications run for
several days, months, or even years. Thus, without loss of
generality, we calculate the cost of deployment per month.
That is, when comparing the deployment cost found by the
approaches, we multiply the hourly cost of each VM type in
Λ by 24 hours and 30 days.

As the quality of the solution identified by each of the ap-
proaches improves as a function of the number of experiments
it performs, we calculate the deployment cost identified by
each approach as functions of: (1) the search cost, which
represents the amount of money (in US dollars) spent in
finding a solution and includes the cost of VMs used during the
experiments, and (2) the total execution time, which represents
the time (in hours) taken by an approach and includes the time
of runtime experiments and WID execution.

V. RESULTS

Figures 4a-4d show, for each subject, the deployment cost
achieved by each of the evaluated approaches as a function
of the invested search cost. The baseline for the graphs,
i.e., point x=0, is a deployment that places each individual
service on the most expensive VM type. We do not depict
this solution in the figure to avoid clutter, starting from the
point where each approach found the cheapest working VM
for each individual service. For example, for the Sock Shop
application in Figure 4d, the cost of such deployment is $312
and it takes $2 to find this solution.

We mark with a cross the point on each graph where the
corresponding approach terminates and we list the (search cost,
deployment cost) values at this point, for clarity. E.g., for the
Sock Shop application, KUBER terminated after spending $6,
identifying a deployment that costs $238. SF1 spends $13 to
find the same deployment, and SF3 spends $27. While SF
found the same deployment after spending $27, this approach
continues to run and explore additional combinations. We
stopped approaches which take substantially longer to termi-
nate and do not show their termination points in the figure.
Figures 4e-4h show similar information: the deployment cost
achieved by each approach as a function of its execution time.

RQ1 (Selection Strategies). All approaches evaluated in this
research question perform exhaustive search over the space
of combinations. Thus, given enough time and budget, they
all arrive at the optimal solution. Yet, comparing KUBER
with SF1, SF2, SF3, and SF shows that the combination of

conditions that KUBER employs is the most beneficial for
finding lowest-cost deployment at minimal search cost and
execution time: KUBER spends $12 on average (min: 4, max:
24) and runs for 54 hours on average (min: 26, max: 103).
In comparison, SF1 spends $64 on an average (min: 13, max:
140) and runs for 174 hours on average (min: 38, max: 357);
SF2 spends more than $94 on an average (min: 25, max:
>150); SF3 spends more than $57 on an average (min: 15,
max >150); and SF – more than $144 on an average (min:
126 for Sock Shop, not shown in the figure to avoid clutter,
max >150). These three approaches also execute for hundreds
hours on average. In fact, the total execution time of all the
experiments is more than four months. A detailed breakdown
of time spent by each approach in each of the phases (setting
up VMs for the experiments, executing the experiments, and
running the WIP algorithm) is available online [19].

The differences between the approaches are more pro-
nounced as the size of the applications grows. For example,
for Sock Shop, which is the smallest subject application with
only seven services, the search cost of KUBER is 53% lower
than that of its closest competitor, SF1; for Social Network,
the largest application with 12 services, the difference is 82%.
Similarly, the execution time of KUBER is lower than that of
SF1 by 32% for Sock Shop and by 71% for Social Network.

Our experiments show that without any termination condi-
tion, SF continues executing experiments that do not improve
the overall deployment cost, even if it arrives at the optimal
solution, like in the case of Hotel Reservation, Media Service,
and Sock Shop applications. SF3 mitigates this issue by
inducing a stopping condition (Condition 3 in Section III-C)
when no better solution is possible, which, in fact, stopped
the executing in all these cases. For the Social Network
application, the largest in our dataset, SF does not reach
the optimal solution within the allocated time. Even though
this application is larger than Media Service by only one
service, it has double the number of combinations (4096 vs.
2048 combinations for Social Network and Media Service,
respectively), which increases search cost and execution time.

SF1 is the only approach besides KUBER that reaches the
optimal solution for Social Network, demonstrating that the
pruning technique preventing SF1 from running combinations
that are expected to fail (because their subset already failed on
the same VM type; Condition 1) is the most effective strategy
to reduce the number of unnecessary experiments.

SF2 (Condition 2), by itself, performs worse than SF1, but
it helps eliminate a small number of experiments on very
costly VM types while SF1 eliminates a large number of
lower-cost non-working VM types via propagation of negative
results. For example, the cheapest VM type for which the
Order service in Sock Shop can meet its performance target
is VM10; the compilation of Payment and User services can
work on VM1; and the combination of all three services
together does not meet the performance target on any of the
given VM types. For that combination, SF1 will not perform
runtime experiments for VM1-VM9 and will check VM10

and VM11. While SF2 will execute experiments on VM1-

8

70

80

90

100

110

120

130

140

150

160

170

180

0 20 40 60 80

Search Cost ($)

($4, $83)($15, $83)

($21, $83) ($25, $83)

($71, $92)

(a) Hotel Reservation

240

260

280

300

320

340

360

380

400

420

440

0 20 40 60 80 100

Search Cost ($)

($12, $257) ($33, $257) ($82, $257)

($97, $309)

(b) Media Service

220

240

260

280

300

320

340

360

380

400

0 50 100 150

Search Cost ($)

($24, $238) ($140, $238)($70, $238)

(c) Social Network

230

240

250

260

270

280

290

300

310

320

0 10 20 30 40 50 60

Search Cost ($)

($6, $238)($13, $238)

($27, $238)

($25, $238)

($52, $238)

1

2

3

(d) Sock Shop

70

80

90

100

110

120

130

140

150

160

170

180

0 50 100 150 200

Execution Time (h)

(28h, $83) (91h, $83)(82h, $83)

(186h, $83)

(197h, $92)

(e) Hotel Reservation

240

260

280

300

320

340

360

380

400

420

440

0 50 100 150 200 250

Execution Time (h)

(57h, $257) (220h, $257)

(247h, $309)

(138h, $257)

(f) Media Service

220

240

260

280

300

320

340

360

380

400

0 100 200 300 400 500

Execution Time (h)

(103h, $238) (357h, $238)(267h, $238)

(g) Social Network

230

240

250

260

270

280

290

300

310

320

0 50 100 150

Execution Time (h)

(26h, $238) (38h, $238)

(95h, $238)

(66h, $238) (189h, $238)

(h) Sock Shop

Fig. 4: Search cost (a-d) and execution time (e-h) comparison.

VM10, it will determine that placing the combination of these
three services on VM11 (which costs $0.308 per hour) is more
expensive than placing them on VM1 and VM10 separately
($0.0255+$0.204=$0.2295) and will eliminate this experiment.

Interestingly, the search cost for SF1 is lower than that of
SF3 for the Social Network and Sock Shop applications but
is higher than SF3 for Hotel Reservation and Media Service.
That is because in Social Network and Sock Shop, there are
a few highly interfering services. Placing them on the same
VM would require an expensive VM type to ensure they meet
their performance target. In fact, the optimal solution for both
of these applications involves a combination of three services
placed on VM10. SF1 thus has an advantage due to its ability
to skip executing many combinations of size three or more
that contain pairs of these services, as such pairs are already
known to interfere on VM types cheaper than VM10. As
a result, SF1 reaches the optimal solution faster than SF3,
which continues exploring such non-working combinations.
On the contrary, in Hotel Reservation and Media Service,
many service pairs works well on cheaper VM types but larger
combinations require costlier VM types. For example, the
optimal deployment for Hotel Reservation includes four pairs
of services placed on a VM1 and three instances of VM3.
Thus, SF3 can quickly determine that additional experiments
increase the cost of deployment and stop the execution while
SF1 will keep running these experiments.

Answer to RQ1: Conditions employed by KUBER allow it to
arrive at optimal deployments with the minimal search cost
and execution time for all our subject applications. This is
because its Condition 1 (SF1) helps eliminate many relatively
cheap experiments, Condition 2 (SF2) helps eliminate a few
relatively expensive experiments, and Condition 3 (SF 3)
provides a global stopping condition. The savings achieved
by KUBER increase as the number of services grows.

RQ2 (Sampling vs. Prediction). Comparing the performance
of KUBER to that of P shows that P found a costlier solution
for two out of four subjects: Media Service and Hotel Reserva-
tion. This is due to inaccuracies in predicting optimal VM type
for combinations. For Media Service, P provided incorrect
predictions for 20% of combinations it tried, resulting in (a)
unnecessary executions and (b) missing some VM types that
could have worked in practice. In fact, for combinations that
were not predicted correctly, P made two wrong predictions
on average, with only a third being a successful one. It also
missed 14 correct placements and, as a result, missed the
optimal deployment cost by 20% ($309 vs. $257). For Hotel
Reservation, the obtained solution was 11% more expensive
than the optimal one found by KUBER ($92 vs. $83). In this
case, P provided incorrect predictions for 7% of combinations,
making one wrong predictions on average.

In all four case studies, including Sock Shop and Social
Network applications where P was able to identify the optimal
solutions, the search induced higher cost and longer execution
time: P spent $66 vs. $12 for KUBER, on average (450%
increase) and executed for 194 hours vs. 53 hours for KUBER,
on average (266% increase). The increase in search cost is
more substantial than in execution time because incorrect
predictions lead the approach to skip less expensive and
execute costlier experiments. For example, in Sock Shop, P
incorrectly predicts the combination of the Order and User
services not to meet its performance target on the cheaper
VMs, VM2 and VM3, and executes on a costlier VM10.

Answer to RQ2: Prediction errors cause P to both execute
unnecessary experiment and miss experiments that can lead
to optimal deployments. As a result, KUBER is able to find
a substantially less costly deployment for one of the subject
applications. KUBER converges on a solution with lower
execution time and search cost for all subject applications.

9

VI. LIMITATIONS AND THREATS TO VALIDITY

For external validity, our results may be affected by the
selection of applications that we used and may not generalize
beyond our subjects. We attempted to mitigate this threat by
using a set of benchmark applications provided by a highly
cited related work on microservices. As we used applications
of reasonable size and complexity, we believe our results are
reliable. Yet, while in all our subject applications KUBER was
able to find the optimal deployment, more experiments are
needed to decide on the appropriate search budget for larger
applications, e.g., with hundreds of services, as reaching the
optimal deployment in these cases in infeasible. Moreover, our
selection of performance targets could influence our results.
We mitigated this threat by applying the same target calcula-
tion method to all applications and compared approaches.

For internal validity, our implementation of KUBER, the
WID algorithm, and our re-implementation of PARIS as part of
building the P solution could have deficiencies. We controlled
for the threat by having two authors of this paper reviewing
each other’s code. Two authors of the paper also manually and
independently analyzed the obtained results, discussing their
findings and any possible inconsistencies. We also make our
implementation and evaluation setup publicly available [19] to
encourage validation and replication of our results.

The main limitation of our approach is that it currently
finds the optimal deployment for a fixed workload produced
by an application test. In practice, the workload can fluctuate
over time and, thus, autoscaling is used to automatically
increase/decrease the number of instances of each service [41].
As re-running KUBER from scratch every time autoscaling
takes place, future work on identifying the optimal deployment
incrementally, during autoscaling, is needed. Moreover, when
evaluating the performance of a particular service combina-
tion, KUBER deploys other services on separate machines,
increasing the costs. Future work could investigate approaches
to mitigate this problem, e.g., by mocking of other services.

VII. DISCUSSION AND RELATED WORK

We discuss existing work for efficiently finding a cost-
effective VM type where an application (task/job/service)
satisfies its performance target along three main categories:
Prediction-based approaches [9], [42], [43], [8], [44], aim
to infer performance of an application by assessing its sim-
ilarity with previously profiled benchmarks. For example,
AROMA [9] extracts resource consumption patterns from a
set of benchmark jobs runs them in a staging cluster of low-
capacity VMs using a reduced workload, and further clusters
the jobs by the extracted patterns. It then runs a new job in the
staging cluster, uses the obtained signature to determine the
similarity of the job with a particular cluster, and applies the
cluster’s trained ML model to predict performance of that job.
PARIS [8], which was extensively discussed in Section IV,
uses a prediction-based approach but, instead of running a job
on a staging cluster with a smaller workload, runs it on a subset
of VM types and infers its performance on other VM types.

Prediction-based approaches heavily rely on similarity of the
profiled workloads with each other. As our evaluation shows,
assuming such similarity can lead to erroneous predictions.
Moreover, in the context of microservice-based applications,
profiling various possible combinations of services becomes a
challenging and expensive task by itself.
White-box sampling-based approaches [45], [46], [47], [10]
do not rely on similarity with other, previously profiled
benchmarks but rather assume certain application properties,
e.g., that computation scales linearly with data. They mainly
work by building analytical performance models specific to an
application, executing workloads in a carefully selected subset
of VMs and estimating performance of the same workload
for different configurations (e.g., on other VMs or for larger
input data). For example, Ernest [10] builds a mathematical
performance model of a job based on the behavior of a job
on small samples of data and then predicts its performance on
larger data and cluster size. Such approaches are not easily ex-
tendable beyond applications with fixed internal structure, e.g.,
Spark jobs, and thus have limited applicability for general-
purpose applications, like microservices.
Black-box sampling-based approaches [7], [11], [48] do not
assume any application properties or similarity to existing
benchmarks. Instead, they typically rely on VM similarity
metrics (e.g., CPU cores, frequency, memory specifications) to
predict the execution time of a workload on a new VM type
using data collected from already executed VMs. These ap-
proaches iteratively update their prediction models by selecting
the next best VM type to sample. For example, CherryPick [7]
uses an ML-based optimization technique to predict the VM
type where the cost of running the job is minimized. It then
samples this VM type, collects runtime data, and updates the
ML model. Scout [12] combines prediction- and sampling-
based techniques. It uses performance predictions similar to
that of PARIS [8] to improve CherryPick [7] by avoiding
running experiments on VM types that are predicted not to
work. Our work largely falls into this category. Yet, while most
black-box sampling-based approaches focus on predicting ex-
ecution time given the specification of a job and a VM, we
focus on addressing an orthogonal scalability problem induced
by a large number of service combinations.

VIII. CONCLUSION

As cloud providers typically offer a variety of virtual
machine (VM) types, each with its own hardware specification
and cost, and microservice-based applications contain multiple
services that can be co-located on different VM types, select-
ing the cheapest VM types for deploying a microservice-based
application becomes a time-consuming and costly task. This
paper formally defined the problem of identifying an optimal
deployment for a microservice-based application and proposed
a scalable solution that addresses this problem, implemented
in a tool named KUBER. We empirically evaluated KUBER on
four open-source microservice-based applications and showed
that it can identify the desired deployment faster and with
lower search cost than other possible alternatives.

10

REFERENCES

[1] “Microservices: a Definition of This New Architectural Term,” https:
//martinfowler.com/articles/microservices.html, 2014.

[2] “How Uber Monitors 4,000 Microservices,” https://www.cncf.io/case-
studies/uber/, 2019.

[3] “Netflix Architecture: How Much Does Netflix’s AWS Cost?” https:
//www.cloudzero.com/blog/netflix-aws, 2021.

[4] M. Weinberger, “Lyft Has to Pay Amazon’s Cloud at Least $8 Million
a Month Until the End of 2021,” https://www.businessinsider.com/lyft-
ipo-amazon-web-services-2019-3, 2019.

[5] “Byte Down: Making Netflix’s Data Infrastructure Cost-Effective,” https:
//netflixtechblog.com/byte- down- making- netflixs- data- infrastructure-
cost-effective-fee7b3235032, 2020.

[6] “Our Journey Towards Cloud Efficiency,” https://medium.com/airbnb-
engineering/our-journey-towards-cloud-efficiency-9c02ba04ade8, 2021.

[7] O. Alipourfard, H. Liu, J. Chen, S. Venkataraman, M. Yu, and M. Zhang,
“CherryPick: Adaptively Unearthing the Best Cloud Configurations for
Big Data Analytics,” in Proc. of the Symposium on Networked Systems
Design and Implementation (NSDI), 2017, pp. 469–482.

[8] N. Yadwadkar, B. Hariharan, J. E. Gonzalez, B. Smith, and R. Katz,
“Selecting the Best VM Across Multiple Public Clouds: A Data-driven
Performance Modeling Approach,” in Proc. of the Symposium on Cloud
Computing (SoCC), 2017, p. 452–465.

[9] P. Lama and X. Zhou, “Aroma: Automated Resource Allocation and
Configuration of Mapreduce Environment in the Cloud,” in Proc. of the
International Conference on Autonomic Computing (ICAC), 2012, pp.
63–72.

[10] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica,
“Ernest: Efficient Performance Prediction for Large-scale Advanced
Analytics,” in Proc. of the Symposium on Networked Systems Design
and Implementation (NSDI)), 2016, pp. 363–378.

[11] C.-J. Hsu, V. Nair, V. W. Freeh, and T. Menzies, “Arrow: Low-Level
Augmented Bayesian Optimization for Finding the Best Cloud VM,” in
Proc. of the International Conference on Distributed Computing Systems
(ICDCS), 2018, pp. 660–670.

[12] C.-J. Hsu, V. Nair, T. Menzies, and V. W. Freeh, “Scout: An Experienced
Guide to Find the Best Cloud Configuration,” Tech. Rep., 2018.

[13] C.-J. Hsu, V. Nair, T. Menzies, and V. Freeh, “Micky: A Cheaper
Alternative for Selecting Cloud Instances,” in Proc. of International
Conference on Cloud Computing (CLOUD), 2018, pp. 409–416.

[14] “A Microservices Demo Application: Sock Shop,” https://microservices-
demo.github.io/.

[15] “Amazon Elastic Compute Cloud,” https://aws.amazon.com/ec2.
[16] Amazon, “Amazon EC2 Instance Types - Amazon Web Services,” https:

//aws.amazon.com/ec2/instance-types/.
[17] S.-C. Chang, J.-J. Liu, and Y.-L. Wang, “The Weighted Independent

Domination Problem in Series-parallel Graphs,” Intelligent Systems and
Applications, vol. 274, pp. 77–84, 2015.

[18] P. P. Davidson, C. Blum, and J. A. Lozano, “The weighted independent
domination problem: Ilp model and algorithmic approaches,” in Proc.
of the European Conference on Evolutionary Computation in Combina-
torial Optimization (EvoCOP), 2017, pp. 201–214.

[19] H. Kadiyala, A. Misail, and J. Rubin, “Supplementary Materials.” https:
//resess.github.io/artifacts/Kuber/.

[20] Microsoft, “Chapter 1: Service Oriented Architecture (SOA),” https://
web.archive.org/web/20160206132542/https://msdn.microsoft.com/en-
us/library/bb833022.aspx, 2016.

[21] Y. Wang, H. Kadiyala, and J. Rubin, “Promises and Challenges of
Microservices: An Exploratory Study,” Empirical Software Engineering,
vol. 26, no. 63, 2021.

[22] “The Psychology of Web Performance,” https://blog.uptrends.com/web-
performance/the-psychology-of-web-performance/.

[23] H. Jayathilaka, C. Krintz, and R. Wolski, “Service-level Agreement
Durability for Web Service Response Time,” in Proc. of the International
Conference on Cloud Computing Technology and Science (CloudCom),
2015, pp. 331–338.

[24] Amazon, “Azure Virtual Machine Series,” https://azure.microsoft.com/
en-au/pricing/details/virtual-machines/series/.

[25] Microsoft, “Azure Linux Virtual Machines Pricing,” https : / / azure .
microsoft.com/en-ca/pricing/details/virtual-machines/linux/.

[26] “Instance Performance Variability,” https://forums.aws.amazon.com/
thread.jspa?threadID=22830.

[27] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu, “An
Analysis of Performance Interference Effects in Virtual Environments,”
in Proc. of the International Symposium on Performance Analysis of
Systems & Software (ISPASS), 2007, pp. 200–209.

[28] M. Kambadur, T. Moseley, R. Hank, and M. A. Kim, “Measuring
Interference between Live Datacenter Applications,” in Proc. of the
International Conference on High Performance Computing, Networking,
Storage and Analysis (SC), 2012, pp. 1–12.

[29] Docker, “Docker,” https://www.docker.com/.
[30] D. N. Jha, S. Garg, P. P. Jayaraman, R. Buyya, Z. Li, and R. Ranjan, “A

Holistic Evaluation of Docker Containers for Interfering Microservices,”
in Proc. of the International Conference on Services Computing (SCC),
2018, pp. 33–40.

[31] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson et al., “An Open-source Benchmark Suite
for Microservices and their Hardware-software Implications for Cloud &
Edge Systems,” in Proc. of the International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2019, pp. 3–18.

[32] “OpenNebula,” https://opennebula.io/.
[33] “Kubernetes,” https://kubernetes.io/.
[34] “Istio Distributed Tracing,” https://istio.io/latest/docs/tasks/observability/

distributed-tracing/.
[35] “The Yelp Dataset,” https: / /hanlululu.github.io/SocialGraphYelp.io/

Page1_Dataset.html.
[36] “TMDB 5000 Movie Dataset,” https://www.kaggle.com/tmdb/tmdb-

movie-metadata.
[37] R. A. Rossi and N. K. Ahmed, “The Network Data Repository with

Interactive Graph Analytics and Visualization,” in Proc. of the AAAI
Conference on Artificial Intelligence (AAAI), 2015.

[38] “Amazon Socks,” https : / / www. amazon . com / s ? k = socks & crid =
2VSAR07AQ7QLX&sprefix=socks%2Caps%2C182&ref=nb_sb_noss.

[39] C. Delimitrou and C. Kozyrakis, “Paragon: QoS-aware scheduling for
heterogeneous datacenters,” in Proc. of the International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2013, pp. 77–88.

[40] L. Zhao, Y. Yang, K. Zhang, X. Zhou, T. Qiu, K. Li, and Y. Bao,
“Rhythm: Component-distinguishable Workload Deployment in Data-
centers,” in Proc. of the European Conference on Computer Systems
(EuroSys), 2020, pp. 1–17.

[41] C. Qu, R. N. Calheiros, and R. Buyya, “Auto-scaling Web Applications
in Clouds: A Taxonomy and Survey,” ACM Computing Surveys (CSUR),
vol. 51, no. 4, pp. 1–33, 2018.

[42] X. Li, M. A. Salehi, M. Bayoumi, and R. Buyya, “CVSS: A Cost-
efficient and QoS-aware Video Streaming Using Cloud Services,” in
Proc. of the International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), 2016, pp. 106–115.

[43] N. Zacheilas and V. Kalogeraki, “ChEsS: Cost-Effective Scheduling
Across Multiple Heterogeneous Mapreduce Clusters,” in Proc. of Inter-
national Conference on Autonomic Computing (ICAC), 2016, pp. 65–74.

[44] A. Chung, J. Park, and G. Ganger, “Stratus: Cost-aware Container
Scheduling in the Public Cloud,” in Proc. of the ACM Symposium on
Cloud Computing (SoCC), 2018, pp. 121–134.

[45] A. Verma, L. Cherkasova, and R. H. Campbell, “Aria: Automatic
resource inference and allocation for mapreduce environments,” in Proc.
of the International Conference on Autonomic Computing (ICAC), 2011,
pp. 235–244.

[46] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca,
“Jockey: Guaranteed job latency in data parallel clusters,” in Proc. of the
european conference on Computer Systems (EuroSys), 2012, pp. 99–112.

[47] K. Rajan, D. Kakadia, C. Curino, and S. Krishnan, “Perforator: Elo-
quent performance models for resource optimization,” in Proc. of the
Symposium on Cloud Computing (SoCC), 2016, pp. 415–427.

[48] M. Casimiro, D. Didona, P. Romano, L. Rodrigues, W. Zwaenepoel, and
D. Garlan, “Lynceus: Cost-efficient Tuning and Provisioning of Data
Analytic Jobs,” in Proc. of the International Conference on Distributed
Computing Systems (ICDCS), 2020, pp. 56–66.

11

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://www.cncf.io/case-studies/uber/
https://www.cncf.io/case-studies/uber/
https://www.cloudzero.com/blog/netflix-aws
https://www.cloudzero.com/blog/netflix-aws
https://www.businessinsider.com/lyft-ipo-amazon-web-services-2019-3
https://www.businessinsider.com/lyft-ipo-amazon-web-services-2019-3
https://netflixtechblog.com/byte-down-making-netflixs-data-infrastructure-cost-effective-fee7b3235032
https://netflixtechblog.com/byte-down-making-netflixs-data-infrastructure-cost-effective-fee7b3235032
https://netflixtechblog.com/byte-down-making-netflixs-data-infrastructure-cost-effective-fee7b3235032
https://medium.com/airbnb-engineering/our-journey-towards-cloud-efficiency-9c02ba04ade8
https://medium.com/airbnb-engineering/our-journey-towards-cloud-efficiency-9c02ba04ade8
https://microservices-demo.github.io/
https://microservices-demo.github.io/
https://aws.amazon.com/ec2
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://resess.github.io/artifacts/Kuber/
https://resess.github.io/artifacts/Kuber/
https://web.archive.org/web/20160206132542/https://msdn.microsoft.com/en-us/library/bb833022.aspx
https://web.archive.org/web/20160206132542/https://msdn.microsoft.com/en-us/library/bb833022.aspx
https://web.archive.org/web/20160206132542/https://msdn.microsoft.com/en-us/library/bb833022.aspx
https://blog.uptrends.com/web-performance/the-psychology-of-web-performance/
https://blog.uptrends.com/web-performance/the-psychology-of-web-performance/
https://azure.microsoft.com/en-au/pricing/details/virtual-machines/series/
https://azure.microsoft.com/en-au/pricing/details/virtual-machines/series/
https://azure.microsoft.com/en-ca/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-ca/pricing/details/virtual-machines/linux/
https://forums.aws.amazon.com/thread.jspa?threadID=22830
https://forums.aws.amazon.com/thread.jspa?threadID=22830
https://www.docker.com/
https://opennebula.io/
https://kubernetes.io/
https://istio.io/latest/docs/tasks/observability/distributed-tracing/
https://istio.io/latest/docs/tasks/observability/distributed-tracing/
https://hanlululu.github.io/SocialGraphYelp.io/Page1_Dataset.html
https://hanlululu.github.io/SocialGraphYelp.io/Page1_Dataset.html
https://www.kaggle.com/tmdb/tmdb-movie-metadata
https://www.kaggle.com/tmdb/tmdb-movie-metadata
https://www.amazon.com/s?k=socks&crid=2VSAR07AQ7QLX&sprefix=socks%2Caps%2C182&ref=nb_sb_noss
https://www.amazon.com/s?k=socks&crid=2VSAR07AQ7QLX&sprefix=socks%2Caps%2C182&ref=nb_sb_noss

	Introduction
	Background
	Microservice-based Applications
	Cloud Infrastructure

	Approach
	Problem Statement
	A First-Approximation Solution
	Kuber Solution
	Implementation

	Evaluation Setup
	Results
	Limitations and Threats to Validity
	Discussion and Related Work
	Conclusion
	References

