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Adversarial examples are inputs to machine learning models that an attacker has intentionally designed

to confuse the model into making a mistake. Such examples pose a serious threat to the applicability of

machine-learning-based systems, especially in life- and safety-critical domains. To address this problem, the

area of adversarial robustness investigates mechanisms behind adversarial attacks and defenses against these

attacks. This survey reviews literature that focuses on the effects of data used by a model on the model’s

adversarial robustness. It systematically identifies and summarizes the state-of-the-art research in this area

and further discusses gaps of knowledge and promising future research directions.
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1 INTRODUCTION
Recent advances in Machine Learning (ML) led to the development of numerous accurate and

scalable ML-based techniques, which are increasingly used in industry and society. Yet, concerns

related to the safety and security of ML-based systems could substantially impede their widespread

adoption, especially in the area of safety-critical systems, such as autonomous cars. Examples of

fooling ML models into making wrong predictions by adding imperceptible-to-the-human noise

to the input are well known [53]: adversarial perturbation to a stop sign may cause a machine

learning system to recognize it as a “max speed” sign instead, which might lead to wrong and

dangerous actions taken by an autonomous car [43] (see Fig. 1). Likewise, malicious software can

be perturbed to bypass security models while still retaining its malicious behavior [39].

MLmodels are susceptible to such scenarios, known as adversarial attacks or adversarial examples,
if not specifically trained for [54, 130]. To address this problem, recent literature investigates

mechanisms behind adversarial attacks and proposes defenses against these attacks – an area
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Fig. 1. Adversarial examples for traffic signs (picture by Chen and Wu [71]).

commonly referred to as adversarial robustness. The performance of ML models under adversarial

attacks, known as robust accuracy or robust generalization, is often distinguished from the general

model accuracy, known as standard accuracy or standard generalization.
Adversarial attacks that aim to decrease model accuracy can roughly be divided into evasion and

poisoning attacks [17, 81]. The stop sign example above is, in fact, an evasion attack, where the

attacker carefully modifies the input to mislead the prediction [24, 76, 90, 130]. Instead of changing

model inputs, poisoning attacks are carried out by injecting corrupt data into the training dataset,

to deceive the model [52, 122, 135]. The focus of this survey is on evasion attacks, as they are more

common, accessible, and more frequently discussed in the literature [26, 81, 89, 141]. In fact, most

of the literature uses the term adversarial attacks to refer to evasion attacks [76, 90, 158]; we thus

use these two terms interchangeably.

Most techniques that study adversarial evasion attacks attribute adversarial vulnerability to

different aspects of the learning algorithm and/or properties of the data. There are numerous

existing surveys on adversarial robustness that focus on different types of adversarial attacks and

defenses [8, 81, 165] and sources of adversarial vulnerability related to learning algorithms [89, 121].

Yet, to the best of our knowledge, there are no surveys that collect and organize literature focusing

on the influence of data on adversarial robustness.

Our work addresses this gap. Specifically, we investigate (a) what properties of data influence

model robustness and (b) how to select, represent, and use data to improve model robustness. To the

best of our knowledge, this is the first survey to analyze adversarial robustness from the perspective

of data properties – an important direction as the quality of data determines what is achievable

through any learning algorithm.

To collect literature relevant to our survey, we used popular digital libraries and search engines,

selecting papers that investigate the effect of data on ML adversarial robustness. We identified

more than 3,089 potentially relevant papers published in top scientific venues on Machine Learning,

Computer Vision, Computational Linguistics, and Security. We systematically inspected these

papers, identifying 57 papers relevant to our survey. We further analyzed, categorized, and described

the selected papers in this manuscript.

Main findings. The results of our analysis show that producing accurate and robust models

requires a larger number of samples for training than achieving high accuracy alone. The required

number of samples to learn a robust model also depends on other properties of the data, such as

dimensionality and the data distribution itself. Specifically, input data with higher dimensionality,
i.e., a larger number of features that represent the input dataset, requires a larger number of samples

to produce a robust model. This is consistent with other findings showing that high dimensionality
is undesirable for robustness. Moreover, some data distributions are inherently more robust than

others, e.g., a Gaussian mixture distribution requires more samples to produce a robust model than

needed by a Bernoulli mixture distribution.

Another aspect that affects robustness is the density of data samples within classes, which

measures how far apart samples are from each other. Papers show that high class density correlates

to high robust accuracy and that adversarial examples are commonly found in low-density regions

of the data. This is intuitive as low-density regions imply that there are not enough samples to
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accurately characterize the region. A related property, concentration, measures how fast the value

of a function defined over a data region, e.g., error rate, grows as the region expands. This concept

of concentration tightly corresponds to adversarial robustness if we consider the expansion of

a data region as the effect of adversarial perturbation, i.e., perturbing samples in all directions

causes the region defined by the original samples to expand. In this case, high concentration

implies that the error rate grows as one perturbs all points in a data region and, thus, datasets with

high concentration are shown to be inevitably non-robust. The separation between classes of the

underlying data distribution also affects robustness, with a large distance between different classes

being desirable for adversarial robustness as an attacker would need to use a large perturbation to

move samples from one class to another.

Yet another aspect that impacts robust accuracy is the presence of mislabeled samples in a dataset,

referred to as label noise. Furthermore, refining labels to reason about a larger number of classes,

e.g., splitting the “animal” class into “cat” and “dog” may improve adversarial robustness as such

labels allow learning more compact representations for samples that share stronger similarities.

A number of papers also identify domain-specific properties that correlate with adversarial

robustness. For example, image frequency – the rate of pixel value change – affects robustness, and

it is advisable to use a diverse frequency range in the training dataset to prevent any frequency

biases which give rise to adversarial examples.

Observations and Gaps. Our literature review shows that, even though most works study data

properties from a domain-agnostic perspective, they typically conduct an empirical evaluation on

image datasets only. This constrains the types of attacks and robustness measurements considered,

so findings may not generalize to other domains or types of datasets. Furthermore, most works

base their formal derivations on quite simple synthetic data models, such as uniform distribu-

tions, a mixture of Gaussian distributions, and a mixture of Bernoulli distributions, which exhibit

unrealistic assumptions compared to real datasets used in practice. We also observed that while

most papers only perform a univariate analysis on a specific data property, most properties are

hard to independently optimize, e.g., to decrease dimensionality without decreasing separation as

decreasing the dimensionality implies that samples have fewer features to be differentiated from

each other. We also found that some properties, e.g., separation, do not have a standard way of

measurement for concrete datasets. We believe future work should look into these directions.

Contributions. The main contribution of this survey are:

• A collection of literature on the effects of data on adversarial robustness.

• A categorization and detailed analysis of the collected literature.

• An analysis of knowledge gaps and suggestions for future research directions.

Structure of the Survey. The remainder of the survey is structured as follows. Section 2 introduces

the necessary background and terminology used in this survey. Section 3 presents our methodology

for identifying and categorizing relevant papers. We describe the collected literature in Section 4.

In Section 5, we discuss our analysis of the literature, possible knowledge gaps, and suggestions for

future work. Section 6 summarizes related work and Section 7 concludes the survey.

2 PRELIMINARIES
We now provide a brief overview of the main concepts related to machine learning, adversarial

robustness, and most commonly studied data distributions. The goal of this section is to introduce

terminology used in the rest of the survey rather than provide an extensive overview of the

adversarial robustness research area. For a more detailed overview, please refer to guides on

statistics and machine learning [19, 124, 138] and adversarial robustness [17, 28, 102].
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2.1 Machine Learning
Machine learning refers to the automated detection of meaningful patterns in data [124] and can be

largely divided into supervised, unsupervised, and reinforcement learning. In supervised learning,

a learning model is provided with input-output pairs of data (a.k.a. labeled training data); based

on this data, the model aims to infer a function that maps the inputs to the outputs. Supervised

learning is typically associated with classification and regression problems, which use categorical

and continuous labels, respectively. In classification, this number of possible labels for an input is

also referred to as the number of classes. Datasets with only two classes are called binary datasets,
on which one can train a binary classifier.

Unlike supervised learning, unsupervised learning algorithms are usually concerned with identi-

fying patterns in unlabeled data, e.g., grouping similar samples together in the absence of labels

(clustering) or transforming data into a different representation (representation learning). Rein-

forcement learning characterizes algorithms that learn from a series of rewards and punishments,

with the goal of maximizing the cumulative reward, e.g., to build robots that learn to take the best

sequence of actions according to signals from the environment.

Variations, such as, semi-supervised learning (i.e., learning from partially labeled data) and

self-supervised learning (i.e., learning from labels extracted by the learner itself) have also been

proposed for problems where acquiring labeled data may be challenging or expensive.

ML algorithms can also be divided into parametric and non-parametric. Parametric algorithms

have a predetermined, fixed number of parameters defined before the training starts. For example,

for Linear Support Vector Machines (SVMs), these parameters are the coefficients of all features

of the training data and the learned intercept. For Deep Neural Networks (DNNs), the number of

parameters is determined by the architecture of the network. In non-parametric algorithms, the

number of parameters is determined at training time and may vary depending on the number of

training samples. For example, the “depth” of Decision Trees can grow (beyond the size of the

feature set) when more decision points are needed to accurately separate training data. Other

commonly used non-parametric models include 𝑘-Nearest Neighbors (𝑘-NN) and Kernel SVMs.

2.2 Adversarial Robustness
Adversarial machine learning studies the arms race between adversarial attacks and defenses.

Attacks aim at degrading models performance while defenses propose algorithms to harden models

against the attacks. Adversarial attacks can be categorized into evasion and poisoning [17, 81].

Evasion attacks aim to fool machine learningmodels by generating inputs that, despite no noticeable

difference for a human, will be incorrectly classified. Such inputs, known as adversarial examples
and created by applying non-random perturbations to samples, carefully designed to change models’

prediction [24, 76, 90, 130]. Instead, poisoning attacks tampers with model training data, in order

to degrade model performance. In this survey, we focus on evasion attacks; the terms adversarial

and evasion attacks are often used interchangeably in the literature as this is the most popular and

commonly studied type of attack.

The term robustness for machine learning models is often used to refer to different concepts,

such as, stability to distribution shifts, the ability to identify adversarial examples, and the ability

to make the correct predictions in the face of adversarial examples. In this survey, we use the latter

definition – the ability to make the correct predictions in the face of adversarial examples. This is a

stronger notion of robustness than merely identifying adversarial examples, as the identification of

an adversarial example does not guarantee its correct classification. The phenomenon of making

satisfactory model predictions in the face of adversarial examples is also often referred to as

robust generalization. This is different from standard generalization, a term used to describe making

satisfactory model predictions for normal, unseen samples.
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Adversarial (Evasion) Attacks. Techniques for generating adversarial examples for evasion

attacks can be broadly divided into three categories, according to the type of information available

to the attacker [17]. In white-box attacks, the attacker is assumed to be able to leverage all available

information about the training data, the model, and training procedure. In grey-box attacks, the
attacker is assumed to have only partial information about the model, such as, the source of training

data. Finally, the most conservative type of attacks are black-box attacks, where the attacker has no
information about the inner workings of the model except, possibly, for the prediction outcomes.

Gradient-based attacks are commonly used in white-box settings. These attacks use the gradient of

a differentiable function defined over model weights as a guide when crafting adversarial examples.

The most commonly used differentiable function is the loss function used by the model during

training. A gradient defines the direction of the maximal increase in the local value of a function.

Hence, by using the gradient of the loss function with respect to the input, one can adjust the input

to get the maximal increase in the loss of the model, which ultimately leads to a bad prediction.

Fast Gradient Sign Method (FGSM) [55], Basic Iterative Method (BIM) [76], and Projected Gradient

Descent (PGD) [90] are examples of attack algorithms that utilize the gradient of the loss function

used for training. Instead of the loss function, the FAB attack [33] uses the gradient of a function

defined by the difference of model outputs of the penultimate layer of a neural network – a layer

which outputs the probabilities that a given sample belongs to each of the available classes. By

defining the difference of outputs of the penultimate layer as the differentiable function, the FAB

attack maximizes the difference in probabilities between the target class and other classes, to

increase the chance of misclassification.

Non-gradient based attacks are applicable for more diverse types of models that do not use a

differentiable functions, e.g., decision trees. Such attacks can also be used in black-box and grey-box

settings, when gradient information is hidden from the attacker. One example of non-gradient-based

attacks is themimicry attack, which involves adding and removing features in the perturbed sample,

e.g., based on their popularity in the target class [39].

Adversarial Defenses. Defense mechanisms against adversarial attacks target various stages of

the machine learning pipeline. Specifically, defenses on raw data focus on the training data itself,

e.g., by selecting a subset of “robust” features [66] or using representation learning to transform

features into a different representation, making sure a model trained on the new representation is

inherently more robust [153].

Defenses during training alter the standard training procedure to improve model robustness. The

most common such technique is adversarial training [55], which involves continually augmenting

the training data with adversarial examples generated by an attack algorithm. By retraining the

model while adding correctly labeled malicious samples to the training dataset, the model learns

to capture persistent patterns and becomes more robust against these attacks. Another common

method is regularization, where model parameters are constrained so that very small perturbations

have little effect on the prediction outcome [56].

Defenses during inference focus on making existing models more robust when the model is

being used on new samples. For example, randomized smoothing [30] involves creating multiple

noisy instances of a sample and aggregating the model’s predictions during inference. Given that

adversarial examples are typically close to genuine samples, averaging the results from close

neighbors of an input can potentially reduce the chances of the model being misled. In addition,

different variations of ensemble models – using multiple models and aggregating their output –

have been shown to increase the robustness to adversarial attacks [106].

Measures of Robustness. The strength of an adversary is mostly measured by the size of the

perturbation required to create an adversarial example. That is, adversaries that introduce more
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perturbations, e.g., change a larger portion of pixel values in the image, are considered to be stronger.

A typical way of measuring the perturbation size, especially in the image domain, is by using the

𝐿𝑝 distance metric, where 𝑝 can be a whole number or ∞. Specifically, 𝐿0 counts the total number

of changed features, regardless of the changes to individual features. 𝐿1 is the Manhattan distance,

i.e., the sum of absolute values representing a change in each feature. 𝐿2 measures by the Euclidean

distance between the feature values of the original and perturbed samples. the 𝐿∞ metric measure

the largest change in any of the features (while disregarding changes in all other features).

There are two ways to utilize these distance metrics to evaluate the robustness of a model:

error-rate-based and radius-based. The first calculates a pool of adversarial samples generated from

a set of real samples with a fixed allowable perturbation size [90]. The robustness is then defined

as the error rate of the model on these adversarial samples. A related concept, adversarial risk, is
also defined in a similar manner: the probability of finding, within a certain predefined distance, an

adversarial example for a given real sample.

The radius-based way to evaluate is measuring the smallest distance required to generate an

adversarial sample from a given real sample [130]. This way is especially useful in robustness

certification, which involves learning a classifier that outputs a prediction along with a certified

radius within which the prediction is guaranteed to be consistent [78].

2.3 Data Distributions
Numerous works study properties of particular data distributions, which we discuss below. The

uniform distribution defines a probability distribution in which every possible data point is equally

likely. This implies that for a continuous random variable in the interval [𝑎, 𝑏], the probability
of seeing a sample from the interval is

1

𝑏−𝑎 and the probability of seeing a sample from outside

of the interval is 0. In the discrete case with n possible values, the uniform distribution assigns a

probability of
1

𝑛
to each value.

The Bernoulli distribution defines a discrete probability distribution of a random variable with

two allowable values, 0 and 1. Such a random variable takes the value of 1 with probability 𝑝 and

the value of 0 with probability 1 − 𝑝 .

The Gaussian (normal) distribution defines a continuous probability distribution that assigns a

probability with its peak at the center of the distribution and decreasing symmetrically outwards.

For a Gaussian distribution, 𝜇 denotes the mean or center of the distribution, and 𝜎2
denotes the

variance or the spread of the distribution. Since the mean and variance fully characterize a Gaussian

distribution, it is also commonly denoted as N(𝜇, 𝜎2).

Fig. 2. A two-dimensional
Gaussian mixture data.

One can also imagine a distribution made up of a mixture of multiple

distributions. For example, Fig. 2 shows a distribution made up of two

Gaussians: one centered at 𝜇1 and another – at 𝜇2. This mixture also

contains labels associated for each independent Gaussian, shown by

the two clusters in the figure. Furthermore, these two clusters have the

same variance, i.e., the same spread of the distribution surrounding the

center of the class. While the means of the two classes are separated,

the distributions intersect with each other.

3 METHODOLOGY
This section describes our methodology for identifying and categorization relevant papers.

3.1 Paper Collection
Papers for this survey were collected in June 2022.We used the search query schematically described

below, which was designed to identify papers in the area of Machine Learning adversarial robustness
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that discuss properties of the underlying data. We expanded each of these conceptual terms with

possible synonyms and specific wording, making sure our query is as comprehensive as possible.

Search Query := Machine Learning + Adversarial Robustness + Data + Property

Machine Learning := classif | “machine learning” | “deep learning” | “neural network”

Adversarial Robustness := “adversarial robustness” | “adversarial vulnerability” |

“adversarial attack” | “adversarial perturbation” | “adversarial defense” | “evasion attacks”

Data := data | sample | input

Property := propert | qualit | distribution | characteristic

In our schematic query representation, the “+” and “|” signs indicate the AND and OR operators,

respectively, the phases in quotes are matched in full, and each word is matched with its suffixed

versions, e.g., ’classif’ is matched with both ’classifier’ and ’classification’. When performing the

search, we adapted this schematic query to the requirements and capabilities of each search engine

that we used.

Table 1. Considered publication venues

Search Target

Venue

Type

Area Venue Name

ACM IEEE Springer Scopus

Google

Scholar

Total

Hits

Rele-

vant

AAAI Conference on Artificial Intelligence (AAAI) ✓ ✓ 320 1

ACM International Conference on Web Search and Data Mining (WSDM) ✓ 39 0

ACM SIGKDD Conference On Knowledge and Data Mining (KDD) ✓ 11 0

Conference on Neural Information Processing Systems (NeurIPS) ✓ ✓ 658 19

IEEE International Conference on Data Engineering (ICDE) ✓ 3 0

IEEE International Conference on Data Mining (ICDM) ✓ 34 1

International Conference on Learning Representations (ICLR) ✓ ✓ 313 9

International Conference on Learning Theory (COLT) ✓ ✓ 14 1

International Conference on Machine Learning (ICML) ✓ ✓ 320 12

ML

International Joint Conference on Artificial Intelligence (IJCAI) ✓ ✓ 86 0

European Conference on Computer Vision (ECCV) ✓ 88 2

IEEE / CVF Computer Vision and Pattern Recognition (CVPR) ✓ 244 3CV

IEEE International Conference on Computer Vision (ICCV) ✓ 157 2

CL Annual Meeting of the Association for Computational Linguistics (ACL) ✓ ✓ 83 0

ACM Conference on Computer and Communications Security (CCS) ✓ 61 0

IEEE Symposium on Security and Symposium (S&P) ✓ 20 0

Network and Distributed System Security Symposium (NDSS) ✓ ✓ 25 0

C
o
n
f
e
r
e
n
c
e

SEC

USENIX Security Symposium ✓ ✓ 89 0

Artificial Intelligence Journal ✓ ✓ 5 0

Computational Linguistics Journal (CL) ✓ ✓ 3 0

IEEE Transactions on Knowledge and Data Engineering (TKDE) ✓ 16 0

IEEE Transactions on Neural Networks and Learning Systems (TNNLS) ✓ 29 0

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) ✓ 56 1

International Journal of Computer Vision (IJCV) ✓ 26 0

Journal of Machine Learning Research (JMLR) ✓ ✓ 29 2

Knowledge Based Systems (KBS) ✓ ✓ 22 0

Neural Networks ✓ ✓ 51 0

AI

Pattern Recognition (PR) ✓ ✓ 53 0

Computer & Security ✓ ✓ 44 0

IEEE Security & Privacy ✓ 10 0

IEEE Transactions on Dependable and Secure Computing (TDSC) ✓ 26 0

IEEE Transactions on Information and Forensic Science (TIFS) ✓ 82 1

J
o
u
r
n
a
l

IS

Journal of Information Security and Applications (JISA) ✓ ✓ 13 0

Surv. ACM Computing Surveys (CSUR) ✓ 59 0

Total 3089 54

An initial search using the query in Google Scholar identified more than 30,000 matches. To keep

the scope of the survey manageable, we thus limited our search to publications from the main track

of top-tier conferences and journals in the areas of Machine Learning (ML), Computer Vision (CV),

Computational Linguistics (CL), and Security (SEC). Specifically, we selected all A* conferences

from these areas using the most recent, 2021, CORE ranking [3]; top 10 journals according to the

Journal Citation Reports (JCR) [4] in the area of Artificial Intelligence (AI), which includes Machine

Learning, Computer Vision, and Computation Linguistics, and top five journals in the area of

Information System (IS), which includes Security. Additionally, we included the ACM Computing
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Surveys Journal [1] to collect surveys related to our topic. The first three columns in Table 1 shows

the final list of publication venues that we selected.

We further identified digital libraries and search engines that host proceedings of our selected

venues. These are shown in the next five columns of Table 1, for each venue individually. As some

venues are only partially indexed by the digital libraries, i.e., the libraries only include proceedings

from particular years, we augmented our search for papers in these venues with a secondary

search using Google Scholar. More specifically, we used Google Scholar’s site and source filtering
constraint to limit our search only to the target venues of interest, as described in Section A.1 of

the Appendix. We also used Google Scholar to search the ArXiv repository and filtered the results

using publication venue information provided by Semantic Scholar API [6].

The second to last column in Table 1 shows the number of hits for each publication venue

identified by this search. In total, using this procedure, we identified 4,429 papers; after removing

duplicated, we obtained a set of 3,089 potentially relevant papers.

3.2 Manual Filtering
Next, we manually classified papers identified in the automated search into relevant and irrelevant

for our survey. To this end, we first randomly selected a set of 40 papers and used them as a pilot

for drafting the inclusion and exclusion criteria. Four authors of this survey independently read the

abstract, introduction, and conclusions of each paper and classified it as relevant, non-relevant, or
unsure. Each author also assigned a concise label for each of the relevant and non-relevant papers,
specifying the reasons for inclusion/exclusion.

After completing this phase, all authors of this survey met to cross-validate the decisions, and

to consolidate and refine the inclusion/exclusion labels. All disagreements between the authors

(mostly between non-relevant and unsure papers) were resolved through a joint discussion.

In the second phase, we randomly selected an additional set of 40 papers, to validate our filtering

process. Four authors of this survey, again, independently read the categorized each of these papers,

and all authors met to discuss the results. While there were disagreements, with a rate of 6.25%,

between the assignment of non-relevant and unsure papers, the inclusion/exclusion labels were

consistent among the raters.

Specifically, we included papers that:

(a) study the correlation between properties of input data and the adversarial robustness of

resulting model trained on this data; and/or

(b) present techniques to improve or disrupt a model’s adversarial robustness through explicitly

modifying some properties of the input data or its latent representation.

We excluded papers that:

(a) discuss adversarial evasion attacks, but focus on features [136], models [50, 149], and training

algorithms [61, 70] rather than data (47.2%);

(b) discuss aspects of ML that are not related to adversarial robustness but rather related to

accuracy [10, 108, 166], robustness to distribution shifts not induced by adversaries [96, 150],

privacy [63, 64], and interpretability [49, 60] (39.7%);

(c) propose new robustness evaluation metrics [29] or assessment frameworks [82] (2.7%);

(d) focus on poisoning [84, 162] rather than evasion attacks (2.6%); or

(e) got matched accidentally and discuss unrelated topics, e.g., literature on blockchain [65],

remote access trojan systems [114], or hardware systems [133]. These papers appeared in

our search results as “adversarial robustness” is also desirable for non-ML systems, e.g.,

blockchain systems need to be robust against adversarial selfish miners or Denial-of-Service

attacks (6%).
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As the inclusion/exclusion labels were consistent among the raters, we decided to proceed to

the next phase: distribute the remaining 3,009 papers among the four authors and categorize them

using these inclusion and exclusion criteria. In this phase, we instructed each rater to conservatively

mark as unsure papers with even a slight doubt in categorization.

Following this process, we identified 199 papers as either relevant or unsure. We assigned a

second reader to papers marked as unsure, summarized each such paper in writing, and held a

meeting with all the authors of this survey to categorize the paper as either relevant or non-relevant.
For a select set of papers where we could not confidently reach a decision, we emailed the paper

authors to validate our understanding and decide on the relevance of the work (all such papers

were excluded in the end). Our analysis resulted in 54 relevant papers. The distribution of these

papers by publication venues is shown in the last column of Table 1.

We further assigned a second reader to each identified relevant paper, to extract and summarize

its main findings. To make sure that we included most of the relevant works on the topic, we also

performed backward snowballing using the related work sections of the selected papers, which

resulted in 3 additional papers, bringing our selection to 57 papers in total. Fig. 3 summarizes our

paper selection process.

Fig. 4 shows another view on the distribution of publication venues for all 57 papers included

in our survey. The majority of the papers (50, 85%) are published in Machine Learning venues. In

fact, only the Advances in Neural Information Processing Systems (NeurIPS) conference published 19

(around 36%) of all papers. Seven papers are from the Computer Vision venues and only two are

from the Security venues. We found no relevant papers in the Computational Linguistics venues.
Fig. 5 shows the distribution of selected papers by their publication year. The figure suggests that

mainstream research communities started to investigate the impact of training data on adversarial

robustness as recently as 2018. We did not find many relevant papers from 2022 as our search was

conducted in June 2022.

3.3 Categorization of Selected Papers
To better classify, discuss, and compare the papers, we proposed a categorization schema shown in

Fig. 6. To construct the schema, we followed an iterative process similar to the one we used for

paper selection: we first sampled ten papers from the final collection and each of the four authors

independently proposed categorization attributes to describe these ten papers. The proposed

attributes were discussed by all authors while unifying related attributes, removing redundant

ones, and updating labels. We then verified the applicability of the constructed schema on another

set of ten papers and adjusted it based on a joint discussion. We continued extending the schema

after reading the remaining papers, to ensure its inclusiveness.

The resulting categorization schema, which we further use to analyze and describe the papers,

contains three high-level areas described below. The detailed categorization of each papers along

the attributes of this schema can be found in Section A.2 of the Appendix.

Search Results 
(Selected Venues)

#

ACM 622

IEEE 660

Springer 115

Scopus 1,056

Google Scholar 2,016

Total 4,429

Search Results
(Unique)

#

Total 3,089

Relevant 54

Snowballing 3

Total 57

Remove 
duplicates / 
non-main 

tracks

Manual 
Filtering

Fig. 3. Summary of the collection and selection of papers.
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AAAI, 1
AISTATS, 1 COLT, 1

CVPR, 3

ECCV, 2

ICCV, 2

ICDM, 1

ICLR, 10

ICML, 12
JMLR, 2

MILCOM, 1

NeurIPS, 19

TIFS, 1

TPAMI, 1

Fig. 4. Breakdown by publication venues.

10

17 17

10

3

2018 2019 2020 2021 2022

Fig. 5. Breakdown by publication time.

1. Problem Setup defines the scope of the proposed approach and the assumptions authors make

in their work. Specifically,

• Target Distribution describes the type of data distributions the papers focus on. The common

data distributions studied among the collected papers include Gaussian mixtures, Bernoulli

mixtures, and Uniform distributions.

• MLModel focuses on the studied model. It captures the learning task, e.g., binary classification,
multi-class classification, and regression, and classifier type, e.g., parametric models, such as,

neural networks and non-parametric models, such as, 𝑘-NNs.

• Robustness Setting records the paper’s definition of adversarial robustness. This includes the

robustness definition sub-category, which refers to how the authors measure robustness, e.g.,

error-rate-based radius-based. The second sub-category, the attacker’s knowledge, reflects
the level of information about the target system that the attacker can exploit: white-box,

grey-box, or black-box. The last sub-category, the attack, characterizes the technique used
to construct the attack, e.g., gradient- or non-gradient based, and the perturbation bound
considered, e.g., the type of 𝐿𝑝 norm.

2. Data Property dimension includes the eight data properties we identified in the collected papers:

the number of samples, data dimensionality, distribution, density, concentration, separation, label
quality, and domain-specific properties, relevant in context of particular application domains. We

introduce and structure the discussion of the surveyed papers in Section 4 around these properties.

3. Practicality specifies how to apply the approach or technique introduced in each paper:

• Applicability determines whether specific quantitative metrics are provided to measure the

data properties discussed in the paper or whether there are any concrete techniques proposed

to modify these data properties.

• Explainability determines whether the paper focuses on explaining (rather than establishing)

the correlation between data property and robustness.

ML Model

Target Distribution

Attack

Problem Setup

Attack

Classifier

Training Procedure

Type of Evidence

Robustness Setting

Attacker’s Knowledge

Robustness Definition

Paper 
Characterization

DatasetClassifier Type

Learning Task

Data Property

ApplicabilitySeparation

Concentration

Label Quality

Number of Samples

Dimensionality

Distribution

Practicality

Formal

Technique

Perturbation Bound

Density Domain Specific

Explainability

Empirical

Fig. 6. Paper categorization dimensions.
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• Type of Evidence records the type of arguments provided by the paper. This may be a formal
proof, an empirical evaluation, or a combination of both. For cases where an empirical evalua-

tion is performed, we also collect information about datasets and classifiers used, the applied
training procedures (standard vs. adversarial training), and the attack techniques employed.

In what follows, we present the results of our analysis of the surveyed papers (Section 4) and

discuss our observations (Section 5).

4 RESULTS
We present the results of our analysis by organizing the papers according to the robustness-

related data property they discuss: number of samples, dimensionality, type of distribution, density,

concentration, separation, label quality, and domain specific properties. Papers that discuss more

than one data property are presented in all corresponding sections. That is, in what follows, a paper

can be discussed in more than one section. Section 4.9 summarizes our findings.

To ease navigation, for each discussed data property, we also include a map showing how the

relevant papers relate to each other via their citation information. We further annotate each paper

with its applicability and explainability categories. Specifically, we annotate with an A symbol

papers that propose an actionable technique to modify or measure a robustness-related property;

we annotate with E papers that put extra emphasis on explaining the correlation between a data

property and robustness rather than establishing such a correlation.

4.1 Number of Samples
Number of samples simply means the quantity of samples available in the training dataset. For the

example in Fig. 7, where circles represent training samples for a two-class dataset, the left dataset

has fewer samples than the right dataset.

The term sample complexity refers to the number of training samples required to achieve a

certain model performance, e.g., 90%, in terms of either robust or standard generalization. Then,

sample complexity gap refers to the difference in the number of samples required to achieve the

same model performance for robust generalization as for standard generalization.

Papers studying the relationship between the number of training samples and the robustness of

the resulting model are shown in Fig. 8. They can roughly be divided into 1 papers discussing

sample complexity for robust generalization, 2 papers proposing techniques to resolve the sample

complexity gap between the number of samples required to achieve the same level of robust and

standard generalization, and 3 papers proposing techniques to deal with data imbalance, i.e.,

unequal number of samples in different classes.

1 Sample Complexity. Schmidt et al. [119] observe that the number of training samples required

for robust generalization is larger than the number of samples required for the equivalent-level

standard generalization, i.e., that there exists a sample complexity gap between the standard and

robust generalization. Specifically, for linear classifiers trained on amixture of Gaussian distributions

(referred to as Schmidt’s Gaussian mixture in the remainder of this paper), the authors prove that

standard generalization requires a constant number of samples while equivalent-level robust

generalization requires a number of samples proportional to the data dimensionality (𝑂 (
√
𝑑)). The

f1

f2

f1

f2

Fig. 7. Number of samples illustration.
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Schmidt et al. [119]1 Cullina et al. [34] E1

Najafi et al. [100] A2Carmon et al. [25] A2Uesato et al. [140] A2

Dan et al. [35] E1

Bhattacharjee et al. [16]1Gourdeau et al. [57]1

Wu et al. [147] A3Gowal et al. [58] A2

Practicality

Actionable

Explainable E

A

Topics 

Sample Complexity Resolving Sample Complexity Gap

Data Imbalance

1 2

3

E

Javanmard et al. [69]1

Fig. 8. Papers discussing the number of samples.

gap in sample complexity persists for this data distribution in nonlinear classifiers as well. Yet,

the sample complexity gap disappears for nonlinear classifiers trained on a mixture of Bernoulli

distributions; these distributions also need substantially fewer samples than Gaussian mixtures. The

authors conclude that sample complexity for robust generalization depends on the distribution, even

when the same type of classifiers is considered. Their experimental validation with the MNIST [77],

CIFAR-10 [73], and SVHN [101] image datasets shows that MNIST, which is closer to a Bernoulli

mixture, indeed requires a smaller number of training samples to achieve a reasonable robust

generalization than the CIFAR-10 and SVHN datasets, which are closer to a Gaussian mixture.

In follow-up work, Dan et al. [35] provide reasons for why robust generalization requires more

samples than standard generalization, focusing, again, on Gaussian mixture distributions. Departing

from the Signal-to-Noise ratio (SNR) metric that is based on the distance between two Gaussian

distributions and is known to capture the hardness of standard classification, the authors propose a

new Adversarial SNR (AdvSNR) metric, defined as the minimum SNR for standard and adversarially

perturbed data, to capture the hardness of robust classification. They then show that, given a dataset

of a particular dimensionality, the number of samples required to achieve the theoretically optimal,

accurate classifier is inversely proportional to SNR. Likewise, the number of samples required to

achieve the theoretically optimal, robust classifier is inversely proportional to AdvSNR. Because

AdvSNR is always no greater than SNR for a given dataset, it follows that achieving the same robust

generalization as standard generalization requires at least the same amount of samples.

Bhattacharjee et al. [16] study the sample complexity gap for linear classifiers, as a factor of data

dimensionality (the number of features representing samples ) and separation (the distance between

samples from different classes). The authors show that the sample complexity gap is directly

proportional to the dimensionality of the data when the allowed perturbation radius of adversarial

samples is similar to the distance between classes. However, such a gap no longer exists in well-

separated data, when the perturbation radius is much smaller than the distance between classes.

Similarly, Gourdeau et al. [57] show that, for simple classifiers based on feature conjunctions and

𝛼-log-Lipschitz distributions laying on a boolean hyper-cube, the sample complexity is proportional

to the data dimensionality 𝑑 . Specifically, when the adversarial perturbation size is bounded by

𝑙𝑜𝑔(𝑑), the sample complexity is polynomial to the dimensionality; when the perturbation size is

at least 𝑙𝑜𝑔(𝑑), the sample complexity becomes superpolynomial to dimensionality. Javanmard et

al. [69] focus on adversarially-trained linear regression models for standard Gaussian distributions.

The authors show that, when the number of samples is greater than data dimensionality, there

exists a trade-off between adversarial and standard risks. Moreover, this trade-off improves as the

number of samples per dimension increases.

Cullina et al. [34] give an upper bound on the number of samples needed for robust generalization

for the binary classification problem with linear classifiers in a distribution-agnostic setup, with 𝐿𝑝
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norm-bounded adversaries. The authors derive the upper bound using the classifier VC dimension –

a common measure of the capacity and the expressive power of the classifier, shown earlier to be

useful to determine the upper limit of sample complexity for standard generalization [124]. They

show that the VC dimension for learning adversarially-robust models remains the same as that for

learning accurate models, which means that the upper bound of sample complexity is identical

for standard and robust generalization in this setup. However, the authors demonstrate that this

conclusion does not generalize to other types of classifiers and types of adversaries.

2 Techniques for Resolving the Sample Complexity Gap. As the number of labeled samples

required to achieve robust generalization could be large and not readily available, researchers

explore cheaper alternatives, such as, unlabeled data and generated (fake) data. Uesato et al. [140]

and Carmon et al. [25] concurrently proposed to use pseudo-labeling [120] – a process of assigning

labels to unlabeled samples using a classifier trained on a set of labeled samples, assessing the

effectiveness of their approaches on Schmidt’s Gaussian mixture. The main result of both works is

that closing the sample complexity gap requires a number of unlabeled samples proportional to the

dimensionality of the data, albeit with a higher quantity than for the labeled samples, likely due

to the “noise” in generating labels. The main difference between the works is that while Uesato

et al. show that in their setup (a specific linear classifier) the quantity of the required unlabeled

samples only depends on data dimensionality, Carmon et al. [25] use a less restrictive setup and

show that the quantity of unlabeled samples also depends on the original sample complexity for

standard generalization. Both of these works empirically evaluate the effectiveness of their proposed

approaches on the CIFAR-10 and SVHN datasets showing that unlabeled data could be a much

cheaper alternative to labeled data for enhancing the robustness of models.

Najafi et al. [100] note that the biggest risk of using a mixture of labeled and unlabeled datasets

for learning adversarially robust models is the uncertainty in sample labels. Given an estimate of

the quality of pseudo-labels, the authors derive the minimum ratio between labeled and unlabeled

samples required to avoid the additional adversarial risk induced by label uncertainties.

Instead of using unlabeled data, which might also be hard to find, Gowal et al. [58] suggest using

Generative Adversarial Networks (GANs) to generate labeled data. The authors show that GANs are

more effective than other methods, e.g., image cropping, when producing additional samples. This

is because such models result in a more diverse dataset, which is beneficial for increasing robust

accuracy. Using images from CIFAR-10, CIFAR-100 [73], SVHN, and Tiny Images Dataset [137],

the authors show that their proposed approach can significantly increase robust accuracy without

the need for additional real samples.

3 Data Imbalance. Wu et al. [147] analyze adversarial robustness of DNNs on long-tail dis-

tributions: setups where the training data contains a large number of classes with few samples.

They show that robust generalization is harder to achieve on such distributions and compare the

performance of multiple adversarially trained classifiers that use learning algorithms specifically

designed for such setups. The comparisons show that scale-invariant classifiers [107, 143] result in

higher robust accuracy as they avoid assigning smaller weights to minority classes, which, in turn,

promotes robust generalization by reducing bias in the decision boundary.

4.2 Dimensionality
Dimensionality refers to the number of features used to represent the data, e.g., features 𝑓1, 𝑓2,

𝑓3 in Fig. 9. For illustration purposes, we show a dataset with a dimensionality of three on the

left-hand side of the figure and a dataset with a dimensionality of one on the right-hand side.

Intrinsic dimensionality refers to the number of features used in a minimal representation of the

data. Fig. 10 shows an example of a case where the intrinsic dimensionality is smaller than the actual
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f1

f2

f3
f1

Fig. 9. Dimensionality illustration.

(a) Actual. (b) Intrinsic.

Fig. 10. Actual and intrinsic dimensionality.
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Fig. 11. Papers discussing dimensionality.

dimensionality: the samples in Fig. 10a are lying on a three-dimensional “swiss roll”. “Unwrapping”

the roll into a plain sheet, as shown in Fig. 10b, makes it possible to distinguish between the samples

using only two dimensions.

Papers studying the relationship between data dimensionality and adversarial robustness are

shown in Fig. 11. We divide them into papers 1 characterizing the hardness of robust gener-

alization due to high dimensionality, 2 suggesting robust model types and configurations for

high-dimensional data, 3 discussing the impact of high dimensionality on existing defense tech-

niques, and 4 utilizing dimensionality reduction techniques for improving robustness.

1 Hardness of Robust Generalization. A number of authors show that adversarial examples

are inevitable in high-dimensional space. Specifically, Gilmer et al. [51] prove this for a synthetic

binary dataset composed of two concentric multi-dimensional spheres (a.k.a., hyperspheres) in high-

dimensional space (>100), showing that samples are, on average, closer to their nearest adversarial

examples than to each other. They also prove that the adversarial risk of a model trained on this

dataset only depends on its standard accuracy and dimensionality. A similar result is shown by

Diochnos et al. [41], for a uniformly distributed boolean hypercube dataset, and Shafahi et al. [123],

for unit-hypersphere and unit-hypercube datasets.

Another line of work analyzes the effect of dimensionality on the robustness of specific types

of classifiers. In particular, Simon-Gabriel et al. [126] study feedforward neural networks with

ReLU activation functions and He-initialized weights, showing that a higher input dimensionality

increases the success rate of adversarial attacks, regardless of the topology of the network. The

authors, however, demonstrate that regularizing the gradient norms of the network decreases the

impact of the input dimension on adversarial vulnerability, thereby improving model robustness on

high-dimensional inputs. Daniely et al. [36] study the effect of dimensionality on ReLU networks
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with random weights and with layers having decreasing dimensions. Like Simon-Gabriel et al., the

authors prove that the robustness of ReLU networks degrades proportionally to dimensionality.

Amsaleg et al. [9] focus on 𝑘-NNs and other non-parametric models that base predictions on the

proximity of samples. The authors use the Local Intrinsic Dimensionality (LID) metric to represent

the intrinsic dimensionality in the neighborhood of a particular sample 𝑥 . The authors build up

on the observation that a high LID implies that there are more samples in close proximity of 𝑥

(as, otherwise, a more sparse neighborhood could be encoded in fewer dimensions). Thus, it is

possible to arbitrarily change the neighborhood ranking of the nearest neighbor of 𝑥 using a small

perturbation. As predictions of proximity-based models are based on the nearest neighbor ranking,

the adversarial risks increase in this setup.

All the aforementioned works are also in agreement with a number of papers discussed in

Section 4.1, i.e., [16, 35, 57], which show, in their respective settings, that sample complexity for

robust generalization is proportional to dimensionality.

2 Model Configuration and Selection. Wang et al. [145] prove that the optimal 𝑘 for producing

robust 𝑘-NN classifiers depends on the dimensionality 𝑑 and number of samples 𝑛 of the given

dataset (𝑘 = Ω(
√︁
𝑑𝑛 log(𝑛))). However, they note that for high-dimensional data, the optimal 𝑘

might be too large to use in practice. The authors thus focus on improving the robustness of 1-NN

algorithms through sample selection, showing the effectiveness of their approach on the Halfmoon,

mnist 1v7, and abalone datasets.

Yin et al. [155] show that transferring a robust solution found on training data to test data gets

more difficult as the dimensionality of data increases. However, constraining the classifier weights

mitigates this problem. Specifically, the authors prove that constraining the weights by 𝐿𝑝 norm, for

𝑝 > 1, leads to a performance gap between training and test data that has a polynomial dependence

on dimensionality; when the weights are constrained by 𝐿1 norm, the performance gap has no

dependence on dimensionality.

Carbone et al. [23] study neural networks, showing that adversarial vulnerability arises due to

the gap between the actual and intrinsic dimensionality, a.k.a., degeneracy. The authors show that

adversarial example generations in high-dimensional degenerate data can be performed by using

gradient information of a neural network, to move the samples in the direction normal to the data

manifold. As such, example generation exploits the additional dimensions without changing the

“semantics” of the perturbed sample. The authors then show that Bayesian Neural Networks are

more robust than other neural networks to gradient-based attacks: due to their randomness, they

make gradients less effective for crafting attacks.

3 Influence of Dimensionality on Defense Techniques. High dimensionality also poses

challenges to defense techniques that aim to improve robustness. Specifically, Blum et al. [18] focus

on randomized smoothing – a technique that improves robustness by generating noisy instances of

a (possibly perturbed) sample and then making predictions for the sample based on an aggregation

of predictions for its noisy instances. The authors show that the amount of noise required to defend

against 𝐿𝑝 adversaries, for 𝑝 > 2, is proportional to dimensionality. They further demonstrate

that, for high-dimensional images, randomized smoothing indeed fails to generate instances that

preserve semantic image information. In a similar line of work, Kumar et al. [75] show that the

certified radius decreases as the dimensionality increases when using randomized smoothing for

certifying robustness for a given 𝐿𝑝 radius.

Adversarial training – a defense technique that improves model robustness by adaptively training

a model against possible adversarial examples – often incurs a trade-off between standard and

adversarial accuracy [139, 161]: optimizing for high robust accuracy results in a drop in standard

accuracy and vice versa. Mehrabi et al. [95] build up on the work of Javanmard et al. [69], discussed
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in Section 4.1. That work showed that, for a finite number of training samples, the trade-off between

adversarial and standard accuracy improves as the number of samples per dimension increases. The

authors further extend this result for unlimited training data and computational power, observing

that, for an unlimited number of training samples, the trade-off between adversarial and standard

accuracy improves as the dimension of the data decreases.

Data augmentation is another common defense technique that aims to improve robustness of

a model by creating perturbed samples at radius 𝑟 from a certain subset of original samples in

training data. Rajput et al. [112] prove, for linear and certain nonlinear classifiers, that the number

of augmentations required for robust generalization depends on the dimensionality of data, i.e., it

is at least linearly proportional to dimensionality for any fixed radius 𝑟 . Thus, data augmentation

becomes more expensive for high-dimensional data.

4 Reducing Dimensionality. Following the idea that the gap between the actual and intrinsic

dimensionality contributes to adversarial vulnerability, Awasthi et al. [11] propose to use Principal

Component Analysis (PCA) [72] to decrease the dimensionality of data before applying randomized

smoothing. As a result, a larger amount of noise can be injected to perturb samples, thus improving

robustness without compromising accuracy. The authors apply the proposed ideas to image data,

showing that the combination of PCA and randomized smoothing is more beneficial than using

randomized smoothing alone. Weber et al. [146] show, for hierarchical data, that changing the

representation from Euclidean to hyperbolic space reduces the dimensionality without sacrificing

semantic information embedded in the input data.

4.3 Distribution

f1

f2

f3
Bernoulli

f1

f2

f3
Gaussian

Fig. 12. Distribution illustration.
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Fig. 13. Papers discussing distribution.

Distribution refers to a function that encodes how samples lie in space, usually by giving the

probabilities of their occurrence in particular regions. Common types of distributions, such as

uniform, Bernoulli, and Gaussian are introduced in Section 2.3. Fig. 12 shows examples of datasets

that follow a Gaussian distribution (left) and a Bernoulli distribution (right). The term variance
refers to a measure of dispersion that takes into account the spread of all data points in a dataset.

Specifically, the variance of a distributionmeasures the dispersion of samples from the mean; feature
variancemeasures the dispersion of samples over a particular feature only. We say that a distribution

satisfies symmetry when distributions on either side of the mean mirror each other.

Papers that discuss how distribution properties, including variance and symmetry, influence

models’ robustness are shown in Fig. 13. They can be categorized into: 1 papers showing that

model robustness depends on the underlying data distribution, 2 papers identifying properties

of distributions that improve robustness, and 3 papers introducing techniques to transform

distributions into ones that are more optimal for robustness.
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1 Type of Distributions. As discussed in Section 4.1, Schmidt et al. [119] prove, for nonlinear

classifiers, that a mixture of Gaussian distributions incurs higher sample complexity for robust

generalization than a mixture of Bernoulli distributions. Likewise, Ding et al. [40] show that a

distribution shift alone can affect robust accuracywhile retaining the same standard accuracy. Specif-

ically, the authors prove that uniform data lying on a unit cube results in more robust models than

uniform data lying on a unit sphere. They further experiment with MNIST and CIFAR-10 datasets,

applying existing semantically lossless transformations, namely smoothing and saturation, to cause

the distribution shift. The results of this experiment show that robustness decreases gradually

when transforming MNIST from a unit-cube-like to a unit-sphere-like distribution and increases for

CIFAR-10 when going the opposite way; in both cases, the models retain their standard accuracy.

Fawzi et al. [45] study the robustness of data distributions modeled by a smooth generative

model – a type of generative model that maps samples from input space to output space while

preserving their relative distances, e.g., to compress data. The authors show that smooth generative

models with high-dimensional input space produce data distributions that make any classifier

trained on this data inherently vulnerable. The authors conclude that non-smoothness and low

input space dimensionality are desirable when modeling data with generative models.

2 Properties of Distributions. Izmailov et al. [67] show that, in a binary classification setting,

features with small variance in both classes and means close to each other cause adversarial

vulnerability. Moreover, a feature with a small variance in one class can still cause vulnerability

even if the means of this feature in both classes are farther separated but the second class has a

larger feature variance. Intuitively, that is because models tend to assign non-zero weights to such

features, which can be leveraged by attackers to shift the classification into the wrong class. That

is, even small perturbations in such features can shift data points to another class. To increase

robustness, the authors suggest removing such features, either based on domain knowledge or

based on feature evaluation metrics, such as, mutual information [125].

Similarly, Lee et al. [79] prove that decreasing feature variance in individual classes can increase

robustness for Schmidt’s Gaussian mixtures. These mixtures have equivalent feature variances for

all classes and separated means. In this setting, low feature variance implies that the feature has a

strong correlation with the class and perturbing this feature unlikely result in vulnerability (i.e.,

will likely result in a semantically-meaningful change). However, even when features have low

variance, if these features are non-robust [66], i.e., hold no semantic information, and have a smaller

variance in the training data than in the underlying true population, they will still cause adversarial

vulnerability as adversarially trained models tend to overfit to them. As a countermeasure, the

authors propose a label-smoothing-based data augmentation technique which uses continuous

instead of discrete values for labels and acts like a regularization method that prevents the model

from overfitting to such features.

Fig. 14. Asymmetrical Dataset.

Richardson and Weiss [115] claim that adversarial vulnerability

can be caused by sub-optimal data distributions and/or sub-optimal

training methods. The authors define synthetic binary datasets

(of images) that use Gaussian distributions with separated means

and say that a dataset is symmetric if and only if classes have the

same variance. They further prove that even the optimal classifier

is non-robust when the underlying dataset has strong asymmetry,

as in the example in Fig. 14. If the dataset is symmetric the optimal classifier is provably robust, even

though a sub-optimal training method can still cause vulnerability when trained on this dataset.

3 TransformingDistributions. Both Pang et al. [104] andWan et al. [142] change the latent DNN

feature representation to be similar to Gaussian mixtures. Specifically, Pang et al. [104] show that,

, Vol. 1, No. 1, Article . Publication date: March 2023.



18 Peiyu Xiong, Michael Tegegn, Jaskeerat Singh Sarin, Shubhraneel Pal, and Julia Rubin

for Linear Discriminant Analysis (LDA) classifiers trained on Gaussian mixtures, the robustness

radius of LDA is proportional to the distance between Gaussian centers. The robustness of LDA

is further maximized for symmetric Gaussian mixtures. The authors thus modify the DNN loss

function to create a latent feature representation similar to symmetric Gaussianmixtures and further

replace the last layer of DNN from commonly used Softmax Regression [32] to LDA. To achieve the

desired robustness radius, the authors compute the coordinates of the desired Gaussian centers (as a

function of the number of classes and the dimensionality of the input data) and feed this data to the

loss function. Departing from the assumption that symmetric Gaussian mixtures are advantageous

for the underlying model robustness, Wan et al. [142] modify the DNN loss function to compute

the centers of the Gaussians directly while generating symmetric Gaussian feature distributions.

4.4 Density
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Fig. 15. Density illustration.
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Fig. 16. Papers discussing density.

Density measures the closeness of samples in a particular bounded region. For continuous data, it

is mathematically described by the probability density function (PDF), which gives the probability

for a variable to take a certain range of values. For discrete data, it is described as the probability

mass function (PMF), which gives the probability for a variable to take a particular value. We say

that an area is dense when there is a high probability that random samples lie in the same area,

i.e., close to each other. For example, the dataset on the right-hand side of Fig. 15 contains a larger

number of samples in close proximity and, thus, is more dense than the dataset on the left-hand

side of the figure. Furthermore, density can be defined over samples from one class, in which case,

it is referred to as class density.
Papers that study how density influences adversarial robustness are shown in Fig. 16. They can

roughly be divided into 1 papers discussing the effect of class density on robustness and 2 papers

proposing attacks and defenses using density information.

1 Effect of Class Density on Robustness. Shafahi et al. [123] show that datasets with a higher

upper bound of class density lead to better robustness. In particular, for image datasets, the authors

show that images of lower complexity, e.g., with simple objects on plain backgrounds, have a higher

correlation among adjacent pixels. Datasets comprised of such images have a higher density, as pixel

values are more frequently repeated, and, thus, lead to better robustness. The authors confirm this

observation by showing that classifiers trained on MNIST, which has a lower image complexity and

thus higher density than CIFAR-10, are more robust than those trained on CIFAR-10. Furthermore,

the authors state that class density is a better predictor of robustness than dimensionality: even

after up-scaling MNIST to the same dimensionality as CIFAR-10, it still has a higher density and

thus results in more robust classifiers than CIFAR-10.

2 Attacks and Defenses Using Density. Several works note that adversarial examples are

commonly found in low-density regions of the training dataset, as models are unable to learn

accurate decision boundaries using a small number of samples from these regions. Zhang et al. [160]

propose an attack strategy that retrieves candidate samples from low-density regions and perturbs
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them to generate adversarial examples. The authors demonstrate that, even after adversarial training,

models will not be robust to adversarial attacks that target these low-density regions.

A similar finding by Zhu et al. [168] suggests that adversarial examples from low-density regions

have a higher probability of being transferable between different models trained on the same

dataset. Based on this observation, the authors propose an attack that increases the transferability

of adversarial examples by identifying perturbation directions that maximize both the adversarial

risk and the alignment with the direction of density decrease for the underlying data distribution,

i.e., move samples towards regions with lower density.

Departing from the same idea that low-density regions are prone to adversarial attacks, Song et

al. [129] focus on creating a defense mechanism that uses generative models to detect if a sample

comes from a low-density region when making predictions. If so, the sample is moved towards a

more dense region of the training data as a “purification” step.

To harden models directly, Pang et al. [105] propose a new loss function for DNNs, to learn

dense latent feature representations. The authors first show that the commonly used Softmax

Cross-Entropy loss function induces sparse representations (i.e., with low class density), which lead

to vulnerable models. This is because a low number of samples in close proximity to each other

prevent a model from learning reliable decision boundaries. They then propose a loss function

that explicitly encourages feature representations to concentrate around class centers; like in their

earlier work [104], the authors compute the coordinates of the desired class centers (as a function of

the number of classes and the dimensionality of the input data) to maximize the distances between

the centers. The authors demonstrate that the proposed approach improves robustness under both

standard and adversarial training.

4.5 Separation
Closely related to density, separation refers to the distance between classes. Fig. 17 shows examples

of not well-separated (top) and well-separated (bottom) datasets. Intuitively, learning an accurate

classifier is easier when data is well-separated as samples from different classes are farther apart and

samples from the same class are closer together. Different metrics to quantify separation include the

optimal transport distance, which computes the minimum distance required to transport samples

from one class to another, and inter-class distance, which computes distance between samples in

different classes.
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Fig. 17. Separation illustration.
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Fig. 18. Papers discussing separation.

, Vol. 1, No. 1, Article . Publication date: March 2023.



20 Peiyu Xiong, Michael Tegegn, Jaskeerat Singh Sarin, Shubhraneel Pal, and Julia Rubin

Papers that discuss data separation in relation to adversarial robustness are shown in Fig. 18.

They can roughly be divided into 1 papers showing the effect of separation on robustness and 2

papers proposing techniques to promote separation and, thus, increase robustness.

1 Effects of Separation. Bhagoji et al. [14] calculate lower bounds for adversarial risk in a binary

classification setting using the optimal transport distance. The authors show that the lower bound

decrease as the distance between the two class distributions increases, i.e., a classifier becomes

more robust with better separation. Based on this result, they estimate the minimum adversarial

risks for image datasets, like MNIST and CIFAR-10, showing that the theoretically calculated risks

are lower than the empirical values achieved by the state-of-the-art defense models. The authors

conclude that there is still room for improving existing techniques.

Pydi and Jog [110, 111] arrive at a similar conclusion – that robustness improves as separation

between classes increases. The authors further focus on datasets with simple univariate distributions,

such as Gaussian and uniform. They propose a technique to construct classifiers that can achieve

the optimal, lowest possible adversarial risk for a given separation between classes. The main idea

behind this technique is to analyze the optimal way to transport samples from one class to another

(which represents the smallest perturbation needed to create adversarial examples) and further use

this information to identify the decision boundary that induces the maximal distance required to

transport sample between classes. That is, the approach maximizes the distance between samples

of each class and the decision boundary, resulting in an optimally robust classifier.

Bhattacharjee et al. [15] prove that certain non-parametric models, such as k-NNs, are inherently

robust when trained on a large number of well-separated samples. This is because these classifiers

make predictions based on neighborhoods and well-separated data ensures that samples in close

proximity to each other share the same labels. In their later work, discussed in Section 4.1 [16], the

authors show that, in well-separated data, robust accuracy is independent of dimensionality and a

robust linear classifier can be learnt without the need for a large number of training samples. This

result shows that adversarial vulnerability can be efficiently tamed by increasing separation.

2 Techniques to Promote Separation. Yang et al. [154] propose a sample-selection-based

technique to improve adversarial robustness of non-parametric models by increasing the separation

among the training data. In particular, as non-parametric models tend to learn complex decision

boundaries when the training samples from different classes are close to each other, the authors

propose to remove the smallest subset of samples so that all pairs of differently labeled samples

remain separated even when perturbed by the maximum perturbation size. Wang et al. [145],

already discussed in Section 4.2, focus on improving robustness of 1-NN classifiers. As robustness of

such classifiers is optimized by ensuring the opposite classes being far apart and test points ending

up in close proximity to their respective training data, the authors propose retaining the largest

subset of training samples that are (i) well-separated and (ii) in high agreement on labels with

their nearby samples (a.k.a., highly confident). The authors show that their approach outperforms

adversarially trained 1-NNs.

Another line of works proposes techniques to enforce separation in latent representations to

improve the adversarial robustness of DNNs. Specifically, Mustafa et al. [99] attribute the cause of

adversarial vulnerability to close proximity of classes in latent space. Hence, they propose a loss

function to learn intermediate feature representations that separate different classes into convex

polytopes, i.e., polyhedra in higher dimensions, that are maximally separated. Bui et al. [22] observe

that the adversarial vulnerability of DNNs arises from a large difference in intermediate layer

values between clean and adversarial data. They thus propose to modify the loss function so that it

results in an intermediate latent representation that has high similarities between clean and their

corresponding adversarial samples, while promoting large inter-class distance and small intra-class
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distance. In addition, the proposed loss function aims to increase margins from class centers to

decision boundaries. Likewise, Pang et al. [104] and Wan et al. [142] discussed in Section 4.3, as

well as Pang et al. [105] discussed in Section 4.4, improve DNN robustness by separating centers of

the produced latent distributions and, thus, increasing the separation between classes.

Yang et al. [152] propose a representation-learning technique to learn feature representations

that bring samples of class 𝐶 and adversarial examples generated for 𝐶 into close proximity while

separating the samples of 𝐶 from both (i) adversarial examples generated for other classes and

misclassified as class 𝐶 and (ii) samples from other classes. These separations are enforced by the

loss function proposed by the authors. The authors show that their approach improves the resulting

model robustness compared with standard DNNs.

Garg et al. [48] propose an approach to generate well-separated features for a dataset using

graph theory. Specifically, they convert the input dataset into a graph, where vertices correspond

to the input data points and edges represent the similarity between the data points (e.g., calculated

using Euclidean distance). The authors prove that features extracted using the eigenvectors of the

Laplacian matrix capturing the structure of the graph will have significant variation across the data

points, while being robust to small perturbations. These qualities make them good candidates for

robust features. The authors then demonstrate that a linear model trained on the MNIST dataset

with 20 features generated using their approach is more robust to 𝐿2-norm-based transfer attacks

than a fully connected neural network trained on the full pixel values of the MNIST dataset.

4.6 Concentration
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Fig. 19. Concentration illustration.

Dohmatob et al. [42]1Mahloujifar et al. [91]1

Mahloujifar et al. [92] A2

Prescott et al. [109] A2Zhang and Evans [164] A2

Topics

Effect of Concentration on Robustness

Estimate Dataset's Concentration

1

2

Practicality

Actionable

Explainable E

A

Fig. 20. Papers discussing concentration.

Concentration of a dataset refers to the “concentration of measure” phenomenon from measure

theory [131]. In a nutshell, concentration is the minimum value of a measured function over all

valid measurable sets, after an 𝜖-expansion. More formally, for a metric probability space (X, 𝜇, 𝑑)
with instance space X, probability measure 𝜇, and distance metric 𝑑 , the concentration function

ℎ is defined as: ℎ(𝜇, 𝛼, 𝜖) = inf𝐴⊆X{𝜇 (𝐴𝜖 ) : 𝜇 (𝐴) ≥ 𝛼} for any 𝛼 ∈ (0, 1) and 𝜖 ≥ 0 [92]. Here 𝐴𝜖

refers to the 𝜖-expansion of set 𝐴, defined as 𝐴𝜖 = {𝑥 : 𝑑 (𝑥,𝐴) ≤ 𝜖}.
Fig. 19 shows how the concentration of measure phenomenon can be used to determine the clas-

sification error after adversarial perturbation. By modeling the classification error set as measurable

set 𝐴 and adversarial errors from perturbation budget 𝜖 as 𝐴𝜖 , one can relate the concentration

of the data to the minimum adversarial risk for any imperfect classifier with error rate 𝜇 (𝐴) ≥ 𝛼 .

Using this formulation, a dataset being highly concentrated implies that, for some non-zero initial

error, the minimum adversarial risk from an 𝜖-expansion on the error set is very large. We refer to

such datasets as datasets with low intrinsic robustness – a measure that represents the maximal

achievable robustness for any classifier on a dataset.

Fig. 20 shows the papers that relate data concentration to adversarial robustness. They can

roughly be divided into: 1 papers discussing the effect of concentration on robustness and 2

papers proposing techniques to estimate robustness through calculating concentrations.
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1 Effect of Concentration on Robustness. A number of papers prove the inevitability of

adversarial examples using the concentration of measure phenomenon. In particular, Dohmatob [42]

investigates datasets conforming to uniform, Gaussian, and several other distributions that satisfy

𝑊2 transportation-cost inequality [132]. The author proves that data distributions satisfying such

inequality have high concentration, which results in a rapid robustness decrease, beyond a critical

perturbation size – a value that depends on the standard error of the classifier and the natural

noise level of the dataset, which, in turn, defined as the largest variance in the case of Gaussian

distribution. Even though MNIST might not satisfy the𝑊2 transportation-cost inequality, the author

experiments with this dataset, observing a sudden drop in robustness as the perturbation size

increases. As such, the author suggests that the MNIST dataset may also have high concentration

and be governed by the concentration of measure phenomena.

Mahloujifar et al. [91] focus on a collection of data distributions with high concentration called

Lévy families [80], which include unit sphere, unit cube, and isotropic n-Gaussian (i.e., Gaussian

with independent variables with the same variance). The authors prove that classifiers trained on

such highly-concentrated data distributions admit adversarial examples with perturbation O(
√
𝑑)

for dimensionality 𝑑 . This implies that a relatively small perturbation can mislead model trained

on these data distributions with high dimensional inputs.

2 Techniques to Estimate Robustness Through Concentrations. Several approaches utilize
the connection between concentration and adversarial risk to estimate the intrinsic robustness of

datasets through calculating their concentrations. Mahloujifar et al. [92] are the first to propose an

approach for estimating dataset concentration using subsets of samples. Specifically, the authors

propose a technique that searches for the minimum expansion set based on a collection of subsets

carefully chosen according to the perturbation norm (e.g., a union of balls for 𝐿2 norm). They prove

that the estimated concentration value converges to the true value for the underlying distribution

as the sample size and the quality/representativeness of the chosen subsets increase. The authors

apply their approach to estimate the maximum achievable robustness for the MNIST and CIFAR-10

datasets, observing a gap between the derived theoretical values and values observed empirically

by the state-of-the-art models.

In follow-up work, Prescott et al. [109] propose an alternative approach to estimate concentration

based on half space expansion using Gaussian Isoperimetric Inequality for the 𝐿2 norm [20]. The

authors further generalize their results to 𝐿𝑝 norms, where 𝑝 ≥ 2. Compared with Mahloujifar et

al. [92], their approach yields higher achievable robustness on MNIST and CIFAR-10, revealing

a larger gap between the theoretical robustness and the state-of-the-art. As the theoretically

achievable robustness derived from a concentration perspective is shown to be high, the authors

suggest that factors other than concentration may contribute to this gap.

Zhang and Evans [164] assume access to information about label uncertainty, i.e., function that

assigns the level of label uncertainties for any data point. Such function can use, e.g., labeling results

from multiple human annotators or confidence scores from an ML classifier. The authors suggest

that considering regions with high label uncertainty can guide the concentration estimations as

these are the regions where a classifier is more likely to make mistakes and be vulnerable to

attacks. They thus propose an approach to estimate concentration by identifying the smallest set

after 𝜖-expansion with an average uncertainty level greater than a pre-set value. The evaluation

results show that the maximum achievable robustness estimated with their approach is closer

to the robustness values observed for CNN models on the CIFAR-10 dataset than in any of the

aforementioned works, implying that the room for improvement is smaller than assumed earlier.
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4.7 LabelQuality
Label quality refers to the correctness and informativeness of the set of labels assigned to a training

dataset. Label correctness or, inversely, the presence of inaccurate labels (shown as the highlighted

dots on the left-hand side of Fig. 21) is typically referred to as label noise. The granularity of the

labels is typically referred to as label informativeness. Papers that discuss the relationship between

label quality and model robustness are outlined in Fig. 22.

Mao et al. [94] show that training a model simultaneously for multiple tasks, e.g., to simultane-

ously locate and estimate the distance of objects in images (an approach also referred to asmulti-task
learning), improves robustness. This is because in multi-task learning, a model learns a shared

feature representation by training on data with labels from several tasks. As a result, perturbations

required to attack multiple tasks at the same time, e.g., to sabotage an autonomous driving system

by misleading the model in both object identification and distance estimation, cancel each other

out. While the authors prove that the model robustness to adversarial attacks is proportional to

the number of tasks that it is trained on, the benefits of multi-task learning disappear when the

concurrently trained tasks are highly correlated with each other, as it reduces the chances for the

perturbations to cancel each other. The authors further show that training with multiple tasks also

improves model robustness against single-task attacks.

Sanyal et al. [118] hypothesize that label noise and coarse labels are the reasons for adversarial

vulnerability. The authors prove that, given a large training set with random label noise, any classifier

that overfits to that set is likely to be vulnerable to adversarial attacks. This is because overfitting

leads to overly complex decision boundaries that leave more room for attacks, as illustrated in Fig. 23.
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(b) Not overfit.
Fig. 23. Influence of overfitting to label noise.

The authors also demonstrate that adversar-

ial risk increases as the level of label noise

increases. Defense mechanisms, such as early

stopping and adversarial training, enhance ro-

bustness by preventing models from overfitting

to noisy samples. In the absence of label noise,

using coarse labels (e.g., labels for the entire

class of dogs rather than labels for each individual dog breed) results in “sub-optimal” latent feature

representations and also contributes to the adversarial vulnerability.

4.8 Domain-Specific
Papers in this category provide insights into the correlation between domain-specific data properties

and adversarial robustness. Among our collected papers, all the domain-specific studies focused on

the same topic: understanding the adversarial vulnerabilities of image classifiers based on image

frequency – how fast the intensity of pixel values changes with respect to space (i.e., images with

intensive color changes have high frequency). As shown in Fig. 24, the skin of a zebra has higher

image frequency than a horse, because of the black-and-white stripes. Papers studying image

frequency are listed in Fig. 25. They can be roughly divided into: 1 papers discussing the influence

of frequency distribution on the model adversarial robustness, and 2 papers explaining adversarial

vulnerabilities using perceptual differences between human and models.
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Fig. 24. Image frequency.
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Fig. 25. Papers discussing domain-specific properties.

1 Image Frequency Distribution. Yin et al. [156] show that frequency distribution of the inputs

generated from data augmentation techniques explains the resulting model sensitivity to adversarial

attacks. In particular, the authors show that Gaussian augmentation, as well as adversarial training

techniques that rely on data augmentation, generate perturbations with high-frequency components.

Augmenting training data with those augmented inputs makes the resulting model more robust

against perturbations in high-frequency domains while, at the same time, more vulnerable to

perturbations concentrated in low-frequency domains. To mitigate this issue, the authors propose

to avoid biasing the model towards/against certain frequency ranges by increasing the diversity of

frequency distribution in augmentations.

Ortiz-Jimenez et al. [103] analyze CNN robustness through the classifier margins along particular

frequencies, which the authors define as the minimal perturbation in that frequency required to

change the model prediction. The authors show that CNN models tend to have smaller margins

along low-frequency vs. high-frequency ranges, likely because, for most image datasets, one

can differentiate classes mainly using features from low-frequency ranges. This finding implies

that models are more sensitive to attacks that modify low-frequency components. The authors

thus suggest training more robust models that enlarge margins along low-frequency ranges by

augmenting training datasets with perturbations concentrated in those ranges.

2 Perceptual Differences. Wang et al. [144] attribute the origin of adversarial examples to the

perceptual differences of humans and CNNs in frequency ranges. In particular, humans classify

images based on low-frequency components as high-frequency components are not visible to

the human eye. CNNs, on the other hand, are able to ‘see’ the full frequency spectrum which

allows them to exploit high-frequency components for better generalization. This implies that

adversarial examples generated by perturbing high-frequency components can mislead CNNs while

being imperceptible to humans. The authors show that adversarially robust models depend less on

high-frequency components and propose to use smoother convolutional filters to reduce a model’s

attention to these components.

Unlike Wang et al. [144], Chen et al. [27] posit that the adversarial vulnerability of CNNs results

from their over-reliance on amplitude information of images – the magnitude of the different

frequencies in the image. The authors show that replacing the amplitude information of an image

with information from another image can successfully mislead CNNs but not humans, who rather

rely on phase information – the locations of the features, to recognize objects. Based on this

observation, the authors propose to strengthen CNNs’ attention to phase information through a

data augmentation technique that fuzzes amplitude while preserving the same phase information.

4.9 Summary of Results
Overall, the surveyed papers are mostly in agreement on how each of the identified data property

influences adversarial robustness. The main findings are given below.

Number of samples.More training samples are needed for robust than for standard generalization.

For a variety of training setups (i.e., different types of classifiers and data distributions), the number
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of training samples required to achieve robust generalization is proportional to the dimensionality

of the training data. Unlabeled samples or generated data can be used to fulfill the need for more

samples needed for robust generalization, i.e., to close the sample complexity gap. Class imbalance,

i.e., having an imbalanced number of samples across different classes, hurts robust generalization

due to the model bias towards over-represented samples.

Dimensionality. Dimensionality captures the size of the feature set. Higher dimensionality cor-

relates with higher adversarial risk, worse standard-to-adversarial risk trade-off, difficulty in

robustness certification, and difficulty in applying common defense techniques. This is because

adversarial attacks can exploit the excessive dimensions to construct adversarial examples.

Distribution. Some data distributions are more robust than others, e.g., mixtures of Bernoulli distri-

butions are more robust than mixtures of Gaussian distributions. Learning feature representations

that resemble robust distributions can improve robustness.

Density. Density reflects the closeness of samples in a particular bounded region (inter-class

distance). Adversarial examples are commonly found in low-density regions of data, where samples

are far apart from each other. This is because models cannot accurately learn decision boundaries

near low-density regions due to the small number of samples available. As such, high data density

for each class correlates with lower adversarial risk.

Separation. Separation characterizes the distance of samples from different classes to each other

(inter-class distance). Greater separation between classes decreases adversarial risk as it is harder

to generate perturbation that will cross the boundaries between classes. Most papers that provide

techniques for improving separations, e.g., by feature selection, also ensure that it does not come at

the expense of decreasing density, as these two concepts are closely related.

Concentration. Given a function defined over a non-empty set, concentration (from the phenome-

non of concentration of measure [131]) is the minimum value of the function after expanding the

input set by 𝜖 in all dimensions. For example, expanding the set of misclassified samples by a certain

𝜖 gives a set of possible samples that can be misclassified with an 𝜖-size perturbation (candidate

adversarial examples). Concentration, in this case, measures the minimal possible size of this set,

which provides the upper bound of the achievable model robustness. As some datasets tend to

exhibit inherently high concentration, e.g., datasets that lie on unit hypersphere [91], achieving high

robust generalization is harder for these datasets. The impact of high concentration on adversarial

robustness is further magnified for high-dimensional data.

Label quality. High label noise correlates with higher adversarial risk. More specific labels, e.g.,

“cat” and “dog” instead of “animal”, are more robust than coarse labels, as they allow the model

to extract more distinct features. Learning for different tasks concurrently, e.g., to simultaneously

locate and estimate the distance of objects in images, improves robustness of the learned models,

as the model can utilize the information from multiple sources of data.

Domain specific. Image frequency, i.e., the rate of change in pixel value is shown to be correlated

with robustness. Specifically, a diverse distribution of frequencies in training data results in lower

adversarial risk. Most image datasets have a low image frequency, which results in learned models

having smaller margins and, thus, a lower distance of samples to the decision boundary for features

corresponding to the low-frequency image components. This increases the risk for adversarial

perturbation that utilize these features.
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5 IMPLICATIONS AND FUTUREWORK

Empirical Evaluation. All but the four papers outlined in Section 4.8 study domain-agnostic

data properties. Yet, the majority of the papers we surveyed conduct experimental evaluations on

image datasets only. Applicability of the findings and of the proposed approaches to other domains,

with different forms of data, may need further investigation. For example, for datasets with binary

features, which are commonly used in malware detection, one cannot arbitrarily change feature

values to reduce the distance between samples. This further implies that common distance metrics

used to model adversaries in the image domain, such as 𝐿2 and 𝐿∞, fail to accurately capture the

adversarial threat level in such domains. Hence, future work applying, adapting, and evaluating

the proposed metrics and techniques in other domains and data types is needed.

Interdependence of Properties. Only a few works in our collected literature consider multiple

data properties simultaneously or establish interdependence of data properties. For example, Wang

et al. [145] and Rajput et al. [112] find that the number of samples and dimensionality collectively

influence the performance of the resulting model. Sanyal et al. [118] study the tolerable amount

of label noise as a function of the dataset density. Such works are very valuable as adversarial

robustness is indeed a result of compounding properties. Yet, optimizing for multiple properties

simultaneously is not always possible. A productive direction of future work could be to investigate

correlations between different data properties, e.g., the effects of feature dimensionality reduction

approaches on class density and separation.

Additional Data Properties. Existing research on the effects of data on standard generalization [87,
88, 117] identified several data properties not discussed in the papers related to robust generalization

that we reviewed. These include the presence of (i) outliers, i.e., samples that drastically differ from

most observed samples in a dataset, (ii) overlapping samples, i.e., different samples of the dataset

having the same feature representation, and (iii) small disjuncts, i.e., training samples from the

same class forming small disjoint clusters dispersed throughout the input space (more details are

in Section 6). Investigating the effect of such data properties on the model’s adversarial robustness

could be yet another direction for possible future work.

Generalization. Some works have shown that, under specific assumptions about the data and

model, there is an intrinsic accuracy-robustness trade-off [69, 95, 139]. This implies that achieving

robust generalization may come at cost of standard generalization. However, other works have

shown that the effect of several of the data properties on standard generalization overlaps with

their effect on robust generalization. For example, increasing class density and removing label noise

also increases standard generalization [47, 62, 87, 113]. We believe that more work is needed to

map data-related reasons that contribute to the accuracy-robustness trade-off.

Simplified Problem Setup. Several studies use a simplified problem setup, e.g., pure Gaussian

data distribution, to provide formal proofs related to the studied phenomenon. While such work

helps advance knowledge and our understanding of the effects of data on adversarial robustness,

additional work that investigates the generalizability of the findings on realistic datasets used in

practice is needed. For example, assuming uniform data properties, e.g., same distribution, density,

and level of label noise, for all classes on the training data greatly simplifies the proofs, but is not

common in reality. Likewise, considering only binary classification simplifies calculations of data

separation, which can be calculated by measuring the distance between the two classes. Yet, in a

multi-class setting, one needs to consider the proximity of data points from multiple classes.

Furthermore, most papers only consider a white-box attack setting, which might not be realistic

in many practical scenarios. Even though a white-box setting makes it possible to model the worst-

case adversary and to provide better robustness guarantees, it may result in overly pessimistic
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findings, i.e., some data transformations may be robust against black-box attacks while still be

vulnerable to white-box attacks. Thus, future works might look into the impact of data properties

on the different types of attack scenarios.

Quantitative Measure. Literature shows that the lower/upper bound of adversarial robustness can
be determined by the properties of the underlying data [14, 92]. Modifying certain properties of the

data can also change the robustness of the resulting classifier. Hence, the ability to quantitatively

measure such data properties is very valuable. However, some data properties discussed in this

survey, such as, type of distributions and label noise, lack any reliable estimation techniques.

Current work mostly relies on informal comparative analysis, e.g., that the MNIST dataset is closer

to a Bernoulli mixture data than a Gaussian mixture because the pixels are concentrated towards

black or white. Quantitatively measuring the degree of similarity between distributions, although

difficult, may be necessary in order to make more accurate conclusions.

Interestingly, other data properties have multiple, often inconsistent, measurement techniques,

e.g., concentration [92, 109, 164], density [105, 129], intrinsic dimensionality [9, 88], and inter-class

distances [14, 40, 110]. For example, the inter-class distances can be calculated as the total distance

required to move the samples from one class to another [14, 110]. It can also be calculated as the

pairwise distances between a pre-defined portion of samples from different classes, e.g., 10% from

each class, that are the closest to each other [40]. While the inter-class distance derived through

the first approach is more computationally expensive, the second approach is more susceptible to

outliers as it relies only on a subset of samples close to each other. Moreover, these metrics might

not necessarily correlate with each other. We believe future research can provide more insights

about appropriate application scenarios for each of the proposed metrics.

Sources of Adversarial Vulnerability. Even when the training data is optimal for robustness, a

sub-optimal training method can lead to adversarial vulnerability [115]. For example, adversarial

vulnerability may arise when the complexity of the classifier does not match the complexity of the

data, e.g., CNNs may achieve lower robustness due to their complexity than simpler models, such

as Kernel-SVMs, on symmetrical data with well-separated means and similar variances [115]. To

alleviate such problems, a few papers propose to select, improve, or optimize classifiers based on

the dimensionality of data [23, 145, 155]. Similar work that looks at other properties of data, such as

separation and density, could be of value. Future works could also explore strategies for determining

whether the input data (vs. the model itself) is the dominant cause of adversarial vulnerability.

6 RELATEDWORK
We divide related work into three categories: (1) surveys on adversarial robustness and its relation to

data properties, (2) surveys that discuss the influence of data properties on standard generalization,

and (3) individual papers that study non-data-related reasons for adversarial vulnerability.

6.1 Surveys on Adversarial Robustness
Numerous existing surveys focus on attack and defense techniques for adversarial robustness [7, 8,

17, 38, 81, 83, 85, 89, 93, 116, 121, 163]. Only a few of these works mention the relationship between

adversarial robustness and properties of the underlying data. Specifically, Serban et al. [121] observe

that adversarial vulnerability can be caused by an insufficient training sample size and high data

dimensionality. Similarly, Machado et al. [89] mention that the lack of sufficient training data,

high-dimensional data, and high concentration contribute to adversarial vulnerability. Yet, none of

these surveys explicitly collect and analyze work that focuses on the effects of data properties on

adversarial robustness. By explicitly targeting this topic in our survey, we are able to discuss these
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findings in detail and also identify additional relevant data properties not mentioned in previous

surveys, such as, types of distribution, class density, separation, and label quality.

6.2 Influence of Data Properties on Standard Generalization
A number of surveys investigate the influence of data properties on standard rather than robust

generalization. One of the earliest is probably the work of Raudys and Jain [113], who review

studies related to the influence of sample size on binary classifiers, showing that a limited sample

size usually leads to sub-optimal generalization. Bansal et al. [12] and Bayer et al. [13] also survey

papers addressing the data scarcity problem, focusing in particular on the recent advancements

in data augmentation techniques in the fields of computer vision, security, and text classification.

Their results show that augmentation techniques can help improve a model’s generalization by

reducing the problem of model overfitting.

Label noise is another aspect of data that influences both standard and robust generalization. Most

works on this topic find that the presence of noisy labels increases the need for a greater number

of training samples and may result in unnecessarily complex decision boundaries [47, 128]. For

example, Frénay and Verleysen [47] show that overfitting to label noise greatly degrades a model’s

standard generalization; the same effect has been observed for the case of robust generalization [118].

Song et al. [128] survey the impact of label noise in deep learning, arguing that the presence of noisy

labels is a more serious concern for deep models as they contain a larger number of parameters

which makes them prone to overfitting to the noise in training data. They mention that adversarial

defense techniques, e.g., adversarial training, are effective against label noise [44, 167] but do not

discuss how label noise influences a deep learning model’s robustness under attacks.

Lorena et al. [88] identify a collection of 26 quantitative metrics that measure data complexity

with respect to (1) ambiguity of classes, i.e., whether the classes can be clearly distinguished with

the given features, (2) sparsity and dimensionality of data, i.e., whether enough information are

provided to learn confident decision boundaries, and (3) complexity of boundary separating the

classes, i.e., whether more intricate functions are required to describe the decision boundaries. The

authors also discuss how these metrics help estimate the difficulty of performing classification

on a given dataset. Similar to our survey, the authors show that high dimensionality and small

separation between classes hinder standard generalization. However, the relationship of some of

the metrics reviewed by these authors, e.g., the number of non-intersecting spheres needed to

enclose all data points of a class, to robust generalization is not studied, according to our survey.

He and Garcia [62] focus on the imbalance learning problem – the disproportion in the number of

samples belonging to each class in a given dataset. The authors found that most standard algorithms

are designed with the assumption of a balanced class distribution. These algorithms fail to reliably

represent the distributive characteristics of the imbalanced size of samples and result in unfavorable

performance across classes. Furthermore, López et al. [87] present a thorough discussion on six

intrinsic data characteristics that potentially complicate learning from imbalanced data: low density,

sample overlap between classes, noisy data, borderline instances, dataset shift between training and

testing distributions, and small disjuncts, i.e., disperse small clusters of samples from a single class.

Their analysis concludes that while all these “unfavorable” data characteristics further complicate

the data imbalance issues, data overlap between classes is probably one of the most harmful. To

follow up on this point, Santos et al. [117] focus on the joint effect of data imbalance and class

overlap on model generalization. The negative impact of data imbalance, low separation, and noisy

data on robust generalization was also discussed in our survey. Yet, the compounding effect of these

factors, as well as the effect of other properties, on robust generalization needs future investigation.

Recently, Yang et al. [151] summarized relevant studies focusing on long-tailed distributions

in the field of Computer Vision. This survey also includes work on the influence of long-tail
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distributions on a model’s adversarial robustness [147], which is covered in our survey. The authors

advocate for more research on adapting long-tailed-based approaches for standard generalization

to improve robust generalization.

Finally, Moreno-Torres et al. [98] present a unifying framework to categorize existing definitions

of dataset shift – the case where the joint distribution of inputs and outputs differs between training

and testing data. While ML models are normally trained under the premise that testing data has a

similar distribution to the training data, in reality, the observed data distribution may be different

from the historical data that the model is trained on. Such difference can substantially compromise

the quality of model predictions. The authors analyze the possible causes for dataset shift, e.g.,

malicious software that evolves over time, and review the techniques dealing with dataset shift.

They characterize adversarial attacks as one form of dataset shift, where adversaries adaptively

change test instances to create a distribution that differs from training data.

6.3 Non-data Related Reasons for Adversarial Vulnerability
There has been a variety of hypotheses regarding the reasons behind adversarial vulnerability of

ML systems. In addition to the data used for training, adversarial robustness could also depend on

the choice of the model architecture, the training procedure, and the interplay between data and

the learning algorithm, i.e., correspondence between the complexity of a model to that of the data.

This section summarizes the key hypotheses regarding these aspects.

Model. When Szegedy et al. [130] first discovered adversarial examples for visual models, they

suspected the high non-linearity of DNNs resulted in low probability ‘pockets’ of adversarial

examples in the learned representation manifold. They hypothesize that while these pockets can be

found through attack algorithms, the samples residing in these pockets have different distributions

compared to normal samples and are thus subsequently harder to find when randomly sampling

from the input space. Instead, Goodfellow et al. [55] hypothesize that the linearity from activation

functions, like ReLU and sigmoid found in high-dimensional neural networks, induce vulnerability

towards adversarial perturbations. To support their claim, they present the attack method FGSM

that exploits the linearity of the target classifier. Fawzi et al. [46] also argue against the hypothesis

of high non-linearity as the cause for adversarial examples. They show that all classifiers are

susceptible to adversarial attacks and claim that it is the low flexibility of the classifier compared

to the complexity of the classification task that results in vulnerability. The lack of consensus on

primary causes of models’ vulnerability invites more studies on this topic.

Singla et al. [127] show that enforcing invariance to circular shifts (e.g., rotation) in neural

networks induces decision boundaries with a smaller margin than normal, fully connected networks,

which, in turn, reduces the adversarial robustness of the model. Moosavi-Dezfooli et al. [97]

introduce universal, input-agnostic perturbations to mislead the classifier and hypothesize that the

vulnerability of a multi-class classifier to such perturbations is related to the shape of its decision

boundaries, e.g., linear classifiers with decision boundaries that are parallel to each other and

nonlinear classifier with decision boundaries that are curved in a similar way tend to be less robust

as perturbations in one direction can change the prediction label for a different class.

Tanay and Griffin [134] conjecture that the decision boundary learned by the classifier being too

close to (or ‘tilted towards’) the data manifold instead of being perpendicular to it, results in small

perturbations being sufficient to move samples across the decision boundary for misclassification.

Computational Resources. Bubeck et al. [21] use computational hardness theory to show that

the time complexity for learning a robust model is exponential to the size of input data and thus

is computationally intractable. Hence, they attribute adversarial vulnerability to computational

limitations of current learning algorithms. Degwekar et al. [37] further extend this work and also

show the impossibility of efficiently training robust classifiers.
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Robustness of Features. Ilyas et al. [66] show that adversarial vulnerability can be a consequence

of a model exploiting well-generalizing but non-robust features, i.e., features that are spurious and

sometimes incomprehensible to humans; when constraining the model to use robust features, the

adversarial robustness increases together with the interpretability of the learned features. However,

Tsipras et al. [139] note that, as the features for achieving high accuracy may be different from the

ones for achieving high robustness, robustness may be at odds with standard accuracy. Instead

of seeing adversarial vulnerability as a product of classifiers being overly sensitive to changes in

spurious features, Jacobsen et al. [68] hypothesize that classifiers can rather be overly insensitive

to relevant semantic information, e.g., images with drastically different content can share similar

latent representations. The authors introduce a new type of adversarial examples that exploit such

insensitivity, where the content of images is altered without changing the resulting prediction label.

While all these works propose possible reasons for adversarial vulnerabilities, they are orthogonal

to our survey, which focuses particularly on the influence of training data.

7 CONCLUSION
In this survey, we systematically collected, analyzed, and described papers that discuss how data

properties affect adversarial robustness in machine learning models. By analyzing 57 research

papers from top scientific venues inMachine Learning, Computer Vision, Computational Linguistics,

and Security, we identified seven domain-agnostic data properties and one image-specific data

property that are correlated with adversarial robustness.

While several of the guidelines for constructing high-quality data that we identified are similar

to those recommended for training accurate models, producing robust models is more sensitive

to the characteristics of the data and requires more effort, e.g., a larger number of samples, better

label qualities, etc. There are also additional data properties important for building robust models

that are not extensively discussed in non-adversarial settings, e.g., concentration of measure. In a

sense, robust generalization is a stronger form of standard generalization.

We identified possible next steps towards improving the understanding of how the data affects a

model’s adversarial robustness. These include studying interactions between different properties of

data, considering the effect of additional properties that improve standard generalization on robust

model generalization, devising quantitative metrics for different aspects of the data, and extending

the studies and their empirical evaluation beyond the images domain. We hope our survey will

help researchers and ML practitioners to better understand adversarial vulnerability and will spark

further research to address the identified knowledge gaps.
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Table 2. The constraints applied to limit Google Scholar search

Venue Search Constraints with Publication Source / Site

ACL source:“Association for Computational Linguistic”+ source: “ACL”

CL source:“Computational Linguistics”+ source: “CL”

COLT source:“International Conference on Learning Theory”+ source: “COLT”

ICLR source:“International Conference on Learning Representations” + source:“ICLR”

ICML source:“International Conference on Machine Learning” + source:“ICML”

NDSS source:“Network and Distributed System Security” + source:“NDSS”

Artificial Intelligence source: “Artificial Intelligence"

Neural Networks source: “Neural Networks"

Pattern Recognition source: “Pattern Recognition"

Knowledge Based System source: “Knowledge Based System"

JISA source: “Journal of Information and Security Applications"

AAAI site:aaai.org

IJCAI site:ijcai.org

JMLR site:jmlr.org

NeurIPS site:proceedings.neurips.cc

USENIX site:usenix.org

ArXiv site:arxiv.org

A APPENDICES
A.1 Google Scholar Search Constraints
We used Google Scholar’s site or source filtering constraints to perform a targeted, per-venue

search. Specifically, for venues that have their publications on custom websites, e.g., “proceed-
ings.neurips.cc” [2] for proceedings from NeurIPS, we performed a site-constrained search. For

venues that have their publications hosted on a shared website, e.g., PMLR [5]) for proceedings of

ICLR, we performed a source-constrained search. Table 2 shows a complete set of constraints we

used; the “+” symbol indicates a union of the results.

A.2 Detailed Paper Categorization
We include the detailed categorization tables for the papers collected in the following tables. In

the table, we used abbreviation to denote the datasets used in the papers: M for MNIST, FM

for Fashion-MNIST [148], S for SVHN, C-10 for CIFAR-10, C-100 for CIFAR-100, IN for

ImageNet [74], TI for Tiny Images Dataset, CA for CelebA [86], HM for Halfmoon, M1V7

for mnist 1v7, A for abalone [59], L for LSUN [157], CS for Cityscapes [31], TO for

Taskonomy [159].
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