
Goal-Driven Exploration for Android Applications
Duling Lai

Electrical and Computer Engineering
University of British Columbia

Vancouver, Canada
dlai@ece.ubc.ca

Julia Rubin
Electrical and Computer Engineering

University of British Columbia
Vancouver, Canada
mjulia@ece.ubc.ca

Abstract—This paper proposes a solution for automated goal-
driven exploration of Android applications – a scenario in which
a user, e.g., a security auditor, needs to dynamically trigger the
functionality of interest in an application, e.g., to check whether
user-sensitive info is only sent to recognized third-party servers.
As the auditor might need to check hundreds or even thousands
of apps, manually exploring each app to trigger the desired
behavior is too time-consuming to be feasible. Existing automated
application exploration and testing techniques are of limited help
in this scenario as well, as their goal is mostly to identify faults by
systematically exploring different app paths, rather than swiftly
navigating to the target functionality.

The goal-driven application exploration approach proposed in
this paper, called GOALEXPLORER, automatically generates an
executable test script that directly triggers the functionality of
interest. The core idea behind GOALEXPLORER is to first stati-
cally model the application’s UI screens and transitions between
these screens, producing a Screen Transition Graph (STG). Then,
GOALEXPLORER uses the STG to guide the dynamic exploration
of the application to the particular target of interest: an Android
activity, API call, or a program statement. The results of our
empirical evaluation on 93 benchmark applications and the 95
most popular GooglePlay applications show that the STG is
substantially more accurate than other Android UI models and
that GOALEXPLORER is able to trigger a target functionality
much faster than existing application exploration techniques.

I. INTRODUCTION

Mobile applications (apps) have grown from a niche field
to the forefront of modern technology. As our daily life be-
comes more dependent on mobile apps, various stakeholders,
including app developers, store owners, and security auditors,
require efficient techniques for validating the correctness,
performance, and security of the apps.

Dynamic execution is a popular technique used for auditing
and validating mobile apps [1], [2], [3], [4], [5]. For example, a
security auditor often monitors the network traffic generated by
an app to ensure that user-sensitive info is sent encrypted over
the network and that it is sent to recognized third-party servers
only [6], [7], [8], [9], [10]. It is common for the auditor to
know which part of the app is responsible for the functionality
of interest, but dynamically triggering that functionality is still
a challenging task.

Consider, for example, a popular mobile personalization
app, Zedge, which provides access to a large collection of
wallpapers, ringtones, etc. and has more than a hundred million
installs on Google Play [11]. A security auditor exploring this
app can quickly determine that it uses the Facebook SDK [12]

and allows the users to log in with their Facebook accounts.
Such determination can be done by simply browsing the app
code: the Facebook login is triggered via a particular API from
the Facebook SDK [13]. Now, the auditor wishes to check
what information is transmitted during the login process and
what information is granted by Facebook when the user logs
in into their account [14].

To perform this investigation, the auditor needs to generate a
sequence of user gestures that navigate the app to the Facebook
login screen. For Zedge, that entails a nontrivial sequence of
steps shown in Fig. 1: first, scroll all the way down in the menu
of all possible operations in Figs. 1(a-b) to the 11th menu
item, then click the “Settings” button in Fig. 1(b) to open the
“Settings” view, then click “ZEDGE account” in Fig. 1(c), and
only then click on “Continue with Facebook” in Fig. 1(d).

Such a manual exploration, especially when one needs
to analyze hundreds or thousands of different apps,
is time-consuming. Existing testing frameworks, such as
Espresso [15], UIAutomator [16], and Robotium [17], are not
helpful in this scenario as they are designed to provide the
user a way to manually script test cases and later repeatedly
execute these test cases.

Automated app exploration techniques that exercise the app
by generating user gestures and system events [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27] are of limited help as
well. The goal of these techniques is to detect faults through a
thorough exploration of different app behaviors [28]. However,
when there is a large number of feasible paths to explore,
these techniques will have difficulties to quickly navigate
to the functionality of interest. For the Zedge example in
Fig. 1, both the most prominent automated app exploration and
testing tools, Sapienz [26] and Stoat [27], failed to reach the
Facebook login screen after two hours of execution, even when
configured to prioritize previously unexplored paths. That is
because these techniques lack knowledge of which of the
unexplored paths is most likely to lead to the functionality of
interest and thus end up exploring a large number of possible
feasible paths.

In this paper, we introduce a goal-driven app exploration
approach and the associated tool, called GOALEXPLORER,
which directly triggers a particular functionality of interest.
GOALEXPLORER combines a novel approach for modeling an
app User Interface (UI) as a Screen Transition Graph (STG)
with a dynamic STG-driven app exploration technique. Given



(a) (b) (c) (d) (e) (f)

Fig. 1: Example App.

a particular target of interest – an Android activity, API call, or
a code statement, it automatically builds an executable script
that swiftly triggers the target.

The idea of building a static UI model of an Android app
is not new by itself. To the best of our knowledge, A3E [19]
was the first to build a static model of an Android app GUI,
which only focused on Android activities. Gator [29] further
extended this model to capture information about the menu
items and the widgets that facilitate transitions between the
modeled UI components, e.g., activities and menus.

However, the main building blocks of both these models
are UI components rather than their composition into UI
screens. As such, they do not accurately model the current
Android UI framework [30] that allows composing screens
from multiple components, such as fragments, menus, drawers,
etc. Thus, they will misrepresent transitions originating in
fragments, e.g., the transitions between screens in Figs. 1(b)
and (c). Moreover, they do not model states and transitions
triggered by background tasks and events (broadcast receivers,
in Android terminology). For example, an app relying on the
Facebook login mechanism can use a broadcast receiver to
deliver login information to the interested app components, as
done in Zedge example in Fig. 1: after the login is triggered
in Fig. 1(e), the app broadcasts the login status and, in
the case of a successful login, additional meta-information
such as the user email address, to the Controller activity in
Fig. 1(f). Without modeling broadcast receivers, a goal-driven
exploration tool will fail to reach that screen.

Our analysis shows that more than 90% of the 100 top free
Android apps on Google Play contain at least one fragment,
background task, and broadcast receiver; 87% of the apps
contain menus and 64% – drawers. Moreover, 63% of the apps
have at least one screen transition originating from a fragment
and 34% – from a background task or broadcast receiver.
Modeling these behaviors is thus critical for the goal-driven
exploration task and we do so in our work. Moreover, we
introduce the concept of modeling UI screens as composition
of UI components rather than individual UI components. We
empirically show that, for our task, such approach is superior
to the existing concepts of modeling app UI.

When compared to state-of-the-art dynamic exploration and
testing techniques, i.e., Sapienz [26] and Stoat [27], GOAL-

EXPLORER is able to explore a similar portion of each app,
which attests to the accuracy of its statically-built model of
screens and transitions. However, GOALEXPLORER is able
to reach the functionality of interest substantially faster than
the dynamic exploration tools. As such, GOALEXPLORER
provides an efficient solution to the goal-driven exploration
problem in mobile apps.

Interestingly, our analysis of network traffic associated with
Facebook login in Zedge helped revealing a potential security
vulnerability in this app: after receiving the OAuth [31] au-
thentication/bearer token from Facebook, the app openly sends
it to its server. Such behavior is discouraged by the Internet
Engineering Task Force (IETF) [32] because any party holding
the token can use it to access the user private information,
without any further proof of possession. According to IETF,
when sent over the network, bearer tokens have to be secured
using a digital signature or a Message Authentication Code
(MAC) [32]. Zedge is not following these guidelines; thus,
a man-in-the-middle can steal the token and access private
information of users logged into the app.
Contributions. This paper makes the following contributions:
1) It defines the problem of goal-driven exploration for mobile
apps: efficiently triggering a functionality specified by the user.
2) It shows that existing approaches are insufficient for per-
forming goal-driven exploration.
3) It presents a technique for constructing a static model of
an app UI called Screen Transition Graph (STG) and using
STG to generate an executable script that triggers a specific
functionality of interest defined by the user.
4) It implements the proposed technique in a tool named
GOALEXPLORER and empirically shows its effectiveness on
the 93 benchmark apps used in related work and 95 top Google
Play apps. Our implementation of the GOALEXPLORER and
its experimental evaluation package are available online [33].

II. BACKGROUND

In this section, we give the necessary background on app
component structure, lifecycle, and UI. We then discuss the
static Android UI models used in earlier work [19], [29].
A. Android Applications

App Components. Android apps are built from four main
types of components [34] – activities, services, broadcast



receivers, and content providers. Activities are the main UI
building blocks that facilitate the interactions between the user
and the app. Services perform tasks that do not require a UI,
e.g., prefetching files for faster access or playing music in
the background after the user has switched to other activities.
Broadcast receivers are components that respond to notifica-
tions. A broadcast can originate from (i) the system, e.g., to
announce that the battery is low, (ii) another app, e.g., to
notify that a file download is completed, or (iii) from other
app components, e.g., to notify that the login was completed
successfully. Content providers manage access to data, e.g.,
for storing and retrieving contacts.

Component Lifecycle. Unlike Java desktop programs,
an Android app does not have a main method; in-
stead, each app component implements its own lifecycle
events. The activity lifecycle [35] is shown in Fig. 2.

Paused

Stopped

Running

Started

DestroyedCreated

Android System

onStart

onCreate

onResume onStop

onDestroy

onResume

onPause

onRestart

Fig. 2: Activity Lifecycle Events.

Once an activity is
launched, the system
calls its onCreate

method, followed
by onStart and
onResume. Developers
specify the behavior of
these methods, e.g., the
UI setup is typically
done in onCreate.
The activity completes the initialization after onResume. It
then enters a running state, and begins handling callbacks,
e.g., those triggered by user inputs or by system changes. The
activity is paused when it loses focus, and can eventually be
stopped and destroyed by the operating system.

The lifecycle of services is similar to that of activities, ex-
cept additional methods that handle service bindings, i.e., cases
when other app components maintain a persistent connection
to a service. Broadcast receivers have only one lifecycle event,
onReceive, to handle received events. Content providers do
not expose any lifecycle events.

The transition between Android components relies on
Intents, which explicitly or implicitly specify the target
component and the data to be passed to that component.
Broadcast receivers are registered with intent-filters, which
specify the types of events that the broadcast receiver handles.

App UI Structure. An application screen is represented by
an activity “decorated” by additional UI components, such as
fragments, menus, dialogs, and navigation drawers [34]. Fig. 3
depicts such a modular composition of screens. The solid box
in Fig. 3(a) highlights the container activity; its two hosted
fragments are highlighted in Fig. 3(b).

A fragment is a re-usable UI component with its own
lifecycle and event handling. A fragment can be instantiated in
multiple activities and must always be hosted by at least one
activity. Its lifecycle is directly affected by the owner activity,
e.g., when the owner activity is destroyed, all of its hosted
fragment instances are also destroyed. Fragment instances can
be added, replaced, or removed from the host activities through

David

David

Lisa

(a) Activity.

David

David

Lisa

(b) Fragments.

David

David

Lisa

Settings

Find

Share

More...

(c) Menu.

Fig. 3: Application Screens.

the FragmentTransaction APIs, forming different screens
of the same activity. Multiple fragments can exist in a single
screen, as in Fig. 3(b); a screen can have any number of
fragments or no fragments at all.

Menus and navigation drawers are UI components used
primarily to provide additional options to the user, such as
adjusting settings or launching new activities. Fig. 3(c) shows
the activity with a menu opened, which allows the user
to access system-wide actions, such as settings and search.
Fig. 1(a) shows a drawer that occupies most of the screen and
contains buttons for navigating to other parts of the app.

Dialogs are small windows that prompt the user to take an
action before the app can proceed with its execution, e.g.,
to agree to granting access to the device location. Menus,
navigation drawers, and dialogs must be hosted by either an
activity or a fragment.

UI components are composed of widgets, such as Buttons
and TextViews. ViewGroups are invisible containers used
for grouping the widgets and specifying their layout before
placing them inside the UI components. Users mostly interact
with UI widgets and are typically unaware of the app and UI
components and their lifecycle.

B. Existing Android UI Models

We now describe existing approaches for modeling Android
UI. Activity Transition Graph (ATG) introduced by Azim and
Neamtiu in A3E [19] captures app activities and transitions
between these activities. It does not model other app compo-
nents and does not model actions that trigger the transitions,
i.e., which user input triggers the transition between activities.

Window Transition Graph (WTG) introduced by Yang et
al. in Gator [29] extends ATG by addressing some of these
limitations: it models the event handler for each transition
and also incorporates menus and dialogs as distinct nodes in
the model. However, it does not consider fragments, drawers,
services, and broadcast receivers.

Due to these reasons, for the Zedge example in Fig. 1, both
ATG and WTG will only include three nodes that correspond
to the app activities: “Controller”, which corresponds to the
activity in Figs. 1(a-c) and (f), “Authenticator”, for the activity
in Fig. 1(d), and “Facebook”, for the activity in Fig. 1(e),
which is implemented inside the Facebook SDK. ATG and
WTG models will include no transitions, as all transitions
in this app originate from fragments. As such, none of these
models will contain the path that reaches the Facebook activity.



Moreover, the models do not account for broadcast receivers
and thus no activity that follows the Facebook login, e.g., the
one in Fig. 1(f), is reachable.

An even more severe drawback of the existing UI models is
that they treat UI components, such as activities and menus,
as separate nodes. These models do not accurately represent
the composition of UI components into screens, which hinders
their applicability for the goal-driven exploration scenario: as
the representations do not include enough details to extract an
executable path. In Sect. III-A, we will discuss this limitation
in more detail, outline alternative ways to model Android
UI components and their relationships, and then present our
proposed solution, Screen Transition Graph.

III. GOAL EXPLORER

The high-level overview of GOALEXPLORER is presented
in Fig. 4. It obtains two inputs: the APK file of the app and
the target functionality of interest, which can be provided as
an app activity, an API call, or a code statement. For example,
when monitoring the network traffic related to the Facebook
login scenario in Zedge, we set as target a Facebook API call,
as discussed in Sect. I.

In the first step, GOALEXPLORER statically constructs the
Screen Transition Graph (STG) of the app (the STG Extractor
component in Fig. 4). It then maps the target(s) to (possibly
multiple) nodes of the graph (the Target Detector component).
Finally, it uses the graph to guide the dynamic exploration to
a reachable target node, starting with the one that has the
shortest path from the initial screen (the Dynamic Explorer
component). In what follows, we first introduce the STG and
discuss our design choices. We then describe the STG Extrac-
tor, Target Detector, and Dynamic Explorer components.

A. Screen Transition Graph

As discussed in Sect. II, both Window Transition Graph
(WTG) and its predecessor, Activity Transition Graph (ATG),
model UI components as distinct nodes in the graph [19], [29].
Moreover, they do not model fragments, drawers, services, and
broadcast receivers. As such, for the example app in Fig. 1,
these graphs will only contain three activity nodes: elements
#2, #3, and #4 presented with solid lines in Fig. 5.

Our “direct” extension to this model, which we refer to
as WTG-E, introduces a number of additional elements, pre-
sented with dotted lines in Fig. 5. For conciseness of the
discussion, we include in this snippet only parts of the Zedge
app shown in Fig. 1:
– Assuming drawers are handled similar to menus, as they
correspond to similar UI concepts, element #1 in Fig. 5 would
represent the drawer in Figs. 1(a,b). Adding drawers would
also lead to creating transitions labeled “open drawer” and
“close drawer” between elements #1 and #2.
– The transition labeled “settings” from element #1 to #2
would be contributed by an analysis of the drawer behavior
that launches a new activity.
– The “Account Manager” broadcast receiver, responsible for
notifying other app components when Facebook authentication

is completed, would be represented by element #5, and its
corresponding incoming and outgoing transitions.
– The fragments contributing to each activity could be repre-
sented by inner boxes inside elements #2 and #3, as only these
two activities have fragments in this example. Representing the
fragments would allow the model to capture transitions from
element #2 to #3 and #3 to #4, as these transitions are triggered
from fragments embedded in each corresponding activity.

However, even the extended WTG-E model is sub-optimal
for producing the execution scenario that leads to the Facebook
login screen in the Zedge example. That is because WTG-E’s
main nodes are UI components rather than their composition to
screens. Thus, the model cannot represent the actual screens,
omitting important information used for exploration.

For example, from the WTG-E graph in Fig. 5, one can
conclude that the “close drawer” action for element #1 that
leads to element #2 – the “Controller” activity, can be followed
by the “ZEDGE account” action to reach element #3 – the
“Authenticator” activity. Such execution is not possible in
practice as the “ZEDGE account” action is only enabled when
the “Controller” activity is opened with the “settings“ frag-
ment. However, when the app execution starts, the “Controller”
activity is rather opened with the “browse“ fragment, thus
there is no option to press the “ZEDGE account” button
after closing the drawer. Without distinguishing between these
different states of the “Controller” activity (element #2), one
cannot successfully explore the application.

The Screen Transition Graph proposed in this work ad-
dresses this limitation. It models application screens by repre-
senting the composition of the container activity, hosted frag-
ments, menus, navigation drawers, and dialogs on each screen.
Fig. 6 shows the STG representation of the Zedge snippet in
Fig. 1. Unlike in the WTG-E model, the “Controller” activity
here is represented by five different elements: #1–4 and #8.
These elements correspond to different compositions of frag-
ments and drawers hosted by the activity. This representation
clarifies that the only possible path to the Facebook login
activity (element #6 in Fig. 6) is to start from the “Controller”
activity (element #1), open the drawer (arriving at element #2),
then press the ‘settings” option (arriving at element #3). Only
after that one can transition to elements #4, #5, and #6.

Moreover, after the Facebook login is completed, the ex-
ecution arrives at element #8, which is another instance of
the “Controller” activity, but with the “Account” fragment. It
is clear from this representation that the user cannot press
“ZEDGE Account” again, as can mistakenly be concluded
from the WTG-E representation in Fig. 5.

This example demonstrates that the STG representation is
more accurate than the original WTG, and even WTG-E,
for producing execution scripts in the goal-driven exploration
scenario. We empirically evaluate the differences between
these representations in Sect. IV. Below, we give a more
formal definition of STG.

In STG, the main nodes Vs represent app screens and the
supporting nodes Vr and Vb represent services and broadcast
receivers, respectively. Each screen node in Vs ∈ Vs consists



STG Extractor

Target

Topology
Extractor

Dynamic Explorer

Input
Generator

Actuator
Action
Picker

Screen
Builder

Executable 
Script

STG
Inter-

Component
Analyzer

Target Detector

Android Device

Fig. 4: GOALEXPLORER Overview.

Authenticator

settings ZEDGE account

Account
Manager
Receiver

Browse
Drawer

Controller

Settings

Facebook

Account

continue w. Facebook

open drawer

close drawer

1
2

3 4

5

Activity Fragment Broadcast Receiver Drawer EventTransition

loginaction logged in

Auth

Fig. 5: WTG (solid lines) and WTG-E (all lines) of Zedge.

Authenticator

settings ZEDGE account

Account
Manager
Receiver

Drawer

Controller

Browse

Controller

Browse

Controller

Settings

Controller

Facebook

Controller

Account

continue w. Facebook

open drawer

close drawer

open drawer

close drawer

1

2

3 5 6

4 7 8

Activity Fragment Broadcast Receiver Drawer EventTransition

Drawer

Settings

login

action logged in

Auth

Fig. 6: STG of Zedge.

of one container activity V A
s , zero or more fragments V F

s , zero
or one menu/drawer VM

s , and zero or one dialog V D
s . The

collection of all screen nodes corresponds to possible screens
allowed in the app. Intuitively, an activity with n fragments
and one drawer could correspond to 2 × 2n different screens
(all combinations of fragments, with and without a drawer). Of
course, not all combinations are possible in a particular app,
and we describe our screen extraction algorithm in Sect. III-B.

Supporting nodes are required as transitions between
screens can pass through these elements. The edges E in STG
correspond to transitions between nodes V = Vs ∪ Vr ∪ Vb.
Each edge e ∈ E has a label eτ which represents the event
that triggers the transition: either a user action, e.g., pressing
the “ZEDGE account” button to move from element #3 to #5,
or an intent that triggers the broadcast receiver event, e.g.,
the notification received by the system for transitioning from
element #7 to #8. Transitions that are triggered automatically,
e.g., when a service opens a UI dialog without any notifications
or clicks, have no event triggers in the model: eτ = ∅.

B. STG Extractor

We now describe our approach for constructing STG. The
STG Extractor consists of three main components outlined
in Fig. 4: Topology Extractor, Screen Builder, and Inter-
Component Analyzer.

Topology Extractor. Topology Extractor identifies the main
app components, i.e., activities, services, and broadcast re-
ceivers, and their call graphs. It relies on FlowDroid’s imple-
mentation [36] to extract the components from both the app
source code and xml files and to associate each component
with its entry points, i.e., lifecycle events and application-
specific callback methods. It uses FlowDroid to also build
call graphs of all component’s entry points. For example, an
activity may register callbacks that get invoked when a button
is pressed or a location update is received; the respective
callback handler would then be linked to the activity’s call
graph and analyzed between the onResume() and onPause()
lifecycle events of the activity.

App methods annotated with “@JavascriptInterface” can
also be triggered by JavaScript-enabled WebViews [37]. As the
invocation of these methods depends on the WebView content
delivered at runtime, Topology Extractor conservatively ex-
tends the call graphs by assuming that any JavaScript-enabled
method in a component can be called by any JavaScript-
enabled WebView in the same component.

After the components and their call graphs are extracted,
nodes corresponding to services and broadcast receivers are
added directly to STG, in Vr and Vb, respectively. App screens
in Vs are constructed next.
Screen Builder. A key insight of our approach is modeling
the UI screens and the transitions between the screens. To
this end, Screen Builder analyzes the call graph of each
activity, collecting the hosted fragments, menus, dialogs, and
navigation drawers.

Fragments can be defined statically in the activity layout file
or dynamically in code. Screen Builder starts by extracting
the layout files using AXMLPrinter [38] and then identifies
fragments they declare. To collect fragment declarations in
code, Screen Builder scans the call graph of each activity,
identifying fragment transaction methods that add, remove, or
replace fragments. The full list of such methods, collected
from the Android Developer website [39], is available in our
online appendix [33].

The activity call graphs are scanned in multiple iterations.
First, Screen Builder analyzes the activity lifecycle events
triggered when an activity is initialized: from onCreate() to
onResume(). For each event, it identifies fragment transac-
tion methods m that add, remove, or replace fragments; it
then performs an inter-procedural, context- and flow-sensitive
analysis on the calling path of m to identify the Java type
of the fragment(s) handled in m. Once all fragments from the



onCreate() to onResume() lifecycle events of an activity A are
processed, Screen Builder creates the “base” screen node Vs in
Vs for the activity A, with V F

s containing a (possibly empty)
list of the identified fragments. This “base” screen node is
displayed when the activity is started.

Lifecycle methods issued when the activity is paused,
stopped, or resumed can further add, remove, or replace
fragments in the “base” screen. Screen Builder thus analyzes
possible lifecycle method invocation chains: “onPause → on-
Resume” and “onPause→ onStop→ onRestart→ onResume”
(see Sect. II) to extract the fragments from each of these
chains. If the fragments in a chain differ from the fragments in
the “base” screen node Vs, it adds a new screen node Vs′ for
the activity A, which contains a union of fragments in Vs and
those identified in the chain. It also adds a transition between
Vs and Vs′ , with an empty label, as this transition is triggered
automatically by the system.

Fragments in callback methods are handled similarly. Since
the order of callbacks cannot be predicted, Screen Builder
assumes the callbacks can occur in any order; it thus creates a
new screen Vs′′ , if it does not exist yet, for any possible order
of callback methods which modify fragments of the “base”
screen. Screen Builder also creates transition edges between
these screens and sets the transition label eτ to be the action
triggering the corresponding callback.

Finally, Screen Builder analyzes each screen Vs to identify
its menus, drawers, and dialogs. To this end, it analyzes the
call graphs of the screen’s activity V A

s and all its collected
fragments V F

s , to identify methods initializing menus, draw-
ers, and dialogs. When such a method is found, Screen Builder
copies the screen Vs for the activity A into Vŝ, adds the found
menu, drawer, or dialog to Vŝ, adds Vŝ to the set of all screen
nodes Vs, and creates a transition edge between Vs and Vŝ.
The transition label eτ is set to be the action that triggers the
callback method.
Inter-Component Analyzer. After the previous step, we have
collected all screen nodes and the transitions between screen
nodes of the same activity but with different fragments, menus,
drawers, and dialogs. The Inter-Component Analyzer collects
the inter-component transitions between nodes corresponding
to different Android components, e.g., screens of different ac-
tivities, services, and broadcast receivers. These transitions are
performed via inter-component communication (ICC) methods
and we rely on FlowDroid’s integration with IccTA [40] to
identify ICC links between app components.

For each link where the source and target are services and/or
broadcast receivers, Inter-Component Analyzer simply creates
the corresponding transition edge e in STG, If the target of the
transition is a broadcast receiver, the transition label eτ is set
to be the broadcast which triggers the event, as specified in the
broadcast receiver intent-filter. If the target of the transition is a
service, eτ = ∅, as this transition is triggered “automatically”,
without any user or system event.

Activities are represented by a number of screens and thus
require a more nuanced treatment. If a source of an ICC link is
an activity A, Inter-Component Analyzer identifies the activity

entry point p from which the communication originates. It then
finds all screen nodes in STG that correspond to A, which can
be reached from the “base” screen node of A via transitions
associated with the action that triggers p. It adds a transition
from all these nodes to the nodes that represent the targets,
labeling them with the action that triggers p. When the target
is an activity as well, Inter-Component Analyzer finds only the
“base” screen node of that activity and creates a transition to
that node. That is because when a new activity is launched, it
starts in the initial screen; transitions between different screens
of the target activity are already handled by Screen Builder.
C. Target Detector

When the exploration target is specified in a form of an
activity, Target Detector simply traverses and marks all screen
nodes that correspond to that activity. Reaching any of these
nodes will be considered reaching the target. For targets given
as an API, Target Detector scans the app call graph to find
all statements that invoke the given API. For targets given as
a single statement, Target Detector simply finds the statement
in the app call graph.

Next, it maps the identified statements to STG nodes as
follows: if a statement is identified in a lifecycle event of
a component, it marks all nodes that correspond to that
component as targets. If a statement is in a callback method,
simply reaching the component is insufficient as one also
needs to invoke the callback method itself. Therefore, Target
Detector identifies the STG transitions labeled by the action
that triggers the callback and sets the destination of these
transitions as the targets.
D. Dynamic Explorer

Given an STG of the app and a set of targets, Dynamic
Explorer performs goal-driven exploration guided by the STG,
to trigger at least one of these targets. It also records an
executable script which navigates the app to the target; the
script can be replayed without consulting with the static model
or performing any further analysis.

Dynamic Explorer has three main components outlined
in Fig. 4: Action Picker, Input Generator, and Actuator,
executing in a loop until a target node is reached.
Action Picker. In each iteration, Action Picker first evaluates
all possible actions enabled from the current screen. To this
end, it retrieves the current activity and fragments using an
adb [41] shell dumpsys command and reads the screen UI
hierarchy using UIAutomator [16]. This information is used
to verify that the exploration arrived at the intended STG node
or map the current screen to the corresponding node in STG.

If Action Picker is already “locked” on a particular target,
it performs a breadth-first search to find all paths from the
current screen node Vs to that target and sorts the paths from
the shortest to the longest. It picks the next action from the
shortest path that leads to the new screen node Vs′ and checks
if the action is available on the screen. If so, it proceeds to
the next step: Input Generator.

Some actions only become enabled after interacting with a
screen. For example, only after adding an item to the shopping



cart the “checkout” button will be enabled. As STG does not
model the correct order of user events (i.e., clicks, scrolls,
etc.) on a screen, Action Picker dynamically interacts with
the screen in an attempt to change its state and activate the
required action. Like other dynamic exploration tools [22],
[27], it adopts a weighted UI exploration strategy, which picks
the next event for a particular widget based on the event type,
past execution frequency, and the number of new widgets
the event unrolls. To this end, we adopt the weights used by
Stoat [27] and list them online [33].

If Vs′ still cannot be reached after a certain number of at-
tempts (currently set to 50 iterations), Action Picker backtracks
and proceeds to the next path. If no action is available on any
of the paths reaching to the current target or if there is no
“working” target set yet, Action Picker performs a breadth-
first search to find the next available target and repeats the
search for that target. It returns “unreachable” if no action
leading to any of the targets is found.
Input Generator. When an action is picked, Input Genera-
tor checks whether specific textual inputs are necessary to
successfully trigger the transition. First, as many Google Play
apps require the user to log in for accessing some app features,
we equip GOALEXPLORER with the ability to handle logins,
assuming that login credentials are supplied as an optional
input. To this end, Input Generator analyzes the UI hierarchy
of the current screen to search for textual input fields, such
as EditText. It further evaluates whether the textual inputs
requires login credentials. Similar to prior work [42], this is
done by checking whether the widget ID, text, hint, label, and
content description match the regular expressions associated
with login and password strings, e.g., “username”, “user id”,
etc. The exact list of expressions we used is online [33]. If a
match is found, Input Generator enters the credentials into the
corresponding text fields. Otherwise, it feeds random strings
to all textual input fields on the current screen.
Actuator. Actuator fires the action selected by the Action
Picker. Its implementation extends the navigation framework
of Stoat. The original Stoat only supports Android API level
19 (Android 4.4), and we extend it to support newer Android
platforms. Actuator also records all successfully triggered
actions, producing an executable test scripts that contain all
actions necessary for reaching the target. The script can be
replayed without any further analysis and without reliance on
the static model.

IV. EVALUATION

We now describe our experimental setup and discuss
evaluation results. Our aim is to evaluate GOALEXPLORER
both quantitatively and qualitatively, answering the following
research questions:
RQ1 (Coverage): What is the fraction of targets GOAL-
EXPLORER can reach and how does that compare with the
baseline approaches?
RQ2 (Performance): How fast can GOALEXPLORER reach
the target and how does that compare with the baseline
approaches?

RQ3 (Accuracy-STG): What is the fraction of STG false
negative and false positive transitions, i.e., existing transitions
that are absent in STG and STG transitions that do not exist
in reality, respectively? What are the reasons for such cases?
RQ4 (Accuracy-Dynamic): What is the fraction of true
positive transitions, i.e., STG transitions that exist in reality,
that GOALEXPLORER cannot trigger dynamically? What are
the reasons for such cases?

A. Experimental Setup
Subject Apps. To answer our research questions, we use
Stoat’s benchmark [27] that consists of 93 open-source F-
Droid [43] apps: 68 of these apps are from the survey
of Choudhary et al. [44] and de facto became a standard
benchmark in analyzing automated testing tools; the authors
of Sapienz used these apps for their evaluation as well [26].
The additional 25 apps were introduced by the Stoat authors
to further extend that benchmark.

To extend our evaluation to real applications commonly used
in practice, we also downloaded the 100 most popular free
apps from the Google Play store as of July 31, 2018. We
excluded from our analysis five apps that failed to run on the
emulator (the decision to use emulators for the experiments is
discussed in the Environment sub-section below), arriving at
the set of 93 benchmark and 95 Google Play apps. A detailed
description of these apps is available online [33].
Exploration Targets. We experiment with two scenarios. In
the first one, we set each activity of the subject apps as the
target, one at a time, and repeat the experiment for all activities
in an app. That allows us to align our results with those
commonly reported in related work. Then, we experiment
with setting a code statement as a target, investigating a more
nuanced, goal-driven exploration scenario which motivates our
work. To this end, we pick the URL.openConnection API
that is used by many apps to send and receive data over
the Internet; this API is also used by the Zedge app in our
motivating example to send the Facebook authorization token.
We identify all occurrences of this API in the subject apps
and set them as targets, one at a time.
Methodology and Metrics. For the quantitative evaluation
in RQ1 and RQ2, we perform two main experiments. First,
we compare the exploration that is based on STG with the
exploration based on the WTG and WTG-E models described
in Sect. III-A. As the original WTG model introduced by
Gator [29] is not compatible with the current Android API
level, Gator failed to run for most of the Google Play apps.
We thus re-implemented the WTG extraction process for
apps with API level 23. We then extended WTG to handle
fragments, services, broadcast receivers, etc., producing the
WTG-E representation, as described in Sect. III-A. That is,
we compare STG with two static models: WTG – our re-
implementation of Gator’s model to handle modern apps, and
WTG-E – our extension of WTG to handle fragments, drawers,
services, and broadcast receivers.

In a second line of experiments, we compare GOALEX-
PLORER with the state-of-the-art automated exploration tech-



niques: Sapienz [26] and Stoat [27]. As these tools cannot be
configured to reach a particular target without dynamically
exploring the app first, we run the tools on each app and
record times when the tools reach each new target. We stop
the execution when a tool does not discover any new targets
for the period of one hour and proceed to the next app. We do
not restart the tools every time they reach a new target as we
believe such a comparison is more favorable for these tools.

We use configuration parameters specified by the papers
describing the tools and kept default values for parameters not
described in the papers. We also experimented with modifying
the parameters, to ensure the baseline is most favorable for the
goal-driven exploration task, e.g., by increasing the sequence
length and population size for Sapienz and prioritizing cover-
age over test diversity for Stoat. As these adjustments did not
affect the results, we kept the default configurations.

Moreover, we extended both tools to handle login screens,
as we did for GOALEXPLORER (see Sect. III-D). Specifically,
we added the same login logic that we used for our tool to that
of Stoat. As the relevant code of Sapienz is not open-sourced
(the motif part is only available as binary), we implemented a
login detection component which runs in parallel to Sapienz
and constantly checks if the execution arrived at the login
screen. When it does, we pause Sapienz and handle the login
flow as we do for GOALEXPLORER and Stoat. The execution
time of this operation is negligible and is comparable to the
handling of logins in GOALEXPLORER and Stoat.

To answer RQ1, we measure the fraction of targets reach-
able by each tool per app. Then, to answer RQ2, we measure
the time it takes to trigger each reachable target. To ensure a
fair comparison, we report the average time-to-target only for
targets that are reachable by all tools.

For RQ3 and RQ4, we manually establish the ground truth
of all reachable URL.openConnection statements for 36
open-source F-Droid apps. To arrive at a representative and
practically valuable subset of apps, we picked all F-Droid
apps from our benchmark which are also available on Google
Play. We focused on F-Droid apps as establishing ground
truth manually is unrealistic for closed-source Google Play
apps because these apps are largely obfuscated and manually
tracking reachability of statements would not be reliable.

For the selected 36 apps, the first author of this paper
collected the set of all URL.openConnection statements and
manually identified those that are reachable by both running
the app and inspecting its code; this manually established
ground truth was cross-validated with another member of the
research group. We then analyze and classify the reasons
preventing GOALEXPLORER from triggering reachable targets
and cases when GOALEXPLORER encounters spurious STG
paths that cannot be followed due to the over-approximation
made by our model construction. The set of the analyzed apps
and the constructed ground truth is available online [33].
Environment. We run all tools on a 64-bit Ubuntu 16.04.4
physical machine with a 20-core CPU (Intel Xeon) and 512GB
of RAM. As we run each app for up to one hour per target for
each of the compared tools, the total evaluation time is in the

thousands of hours only to answer RQ1 and RQ2. Therefore,
we run the experiments on six Android emulators, to allow
running multiple executions in parallel. We allocate 64GB of
RAM for each emulator.
B. Results

RQ1 (Coverage): Fig. 7(a) shows the box and whisker
plots representing the minimum, median, mean, and max-
imum fraction of activities reached by goal-driven explo-
ration under three different models: WTG, WTG-E, and STG
(GOALEXPLORER). It also shows the fraction of activities
reachable by the state-of-the-art dynamic exploration tools:
Sapienz and Stoat. The results are plotted separately for the
93 benchmark F-Droid apps and the 95 Google Play apps.

For the benchmark apps, GOALEXPLORER reaches 69.4%
of activities per app on average. For comparison, WTG and
WTG-E reach 50.7% and 55.3% of activities on average per
app, respectively. The differences between the UI models is
much more substantial for the Google Play apps. WTG can
only cover around 9% of app activities. WTG-E increases the
activity-level coverage to 12.9% on average, as it is able to
deal with fragments, services, and broadcast receivers. Finally,
GOALEXPLORER reaches the highest activity-level coverage
of 23.2% on average, due to its accurate representation of
app screens. This result demonstrates that only extending
existing static models with handling of fragments, services,
and broadcast receivers, as we did in WTG-E, is less beneficial
than the full set of solutions GOALEXPLORER applies.

Notably, GOALEXPLORER achieves similar activity-level
coverage as the dynamic exploration tools for both benchmark
and the Google Play apps: for the benchmark apps, Sapienz
and Stoat cover 67.9% and 66.5% of activities per app on av-
erage, respectively; for the Google Play apps, both tools reach
around 19% of activities, on average, while GOALEXPLORER
covers 23.2%. That is an encouraging result for GOALEX-
PLORER, showing that the STG model it builds statically is
accurate and comparable with the models constructed during
the dynamic exploration.

Fig. 7(b) shows similar data for the fraction of reachable
URL.openConnection statements in an app. Here, GOALEX-
PLORER largely outperforms other static UI models, triggering
85.9% target API statements on benchmark apps, compared
with 21.3% and 51.7% for WTG and WTG-E, respectively.
With its 85.9% coverage, it also slightly outperforms the
dynamic tools, Sapienz (73.4% ) and Stoat (79.5%).

For GooglePlay apps, GOALEXPLORER also substantially
outperforms other UI models. It performs comparable with
dynamic tools and triggers 57.9% of the target statements on
average, while Sapienz triggers 55.6%, and Stoat – 57.5%. Our
inspection of the results shows that statement-level coverage
is substantially higher than activity-level coverage because
many of the URL.openConnection statements are located
inside libraries or utility classes and thus have many possible
paths that can reach them. As the target is triggered if any of
the paths can reach it, this task appears to be “easier” than
triggering all activities.



WTG WTG−E GoalExplorer Sapienz Stoat

0%

25%

50%

75%

100%

Benchmark
WTG WTG−E GoalExplorer Sapienz Stoat

0%

25%

50%

75%

100%

Google Play

(a) Fraction of reachable activities in an app (higher is better).

WTG WTG−E GoalExplorer Sapienz Stoat

0%

25%

50%

75%

100%

Benchmark
WTG WTG−E GoalExplorer Sapienz Stoat

0%

25%

50%

75%

100%

Google Play

(b) Fraction of reachable openConnection statements in an app (higher is better).

WTG WTG−E GoalExplorer Sapienz Stoat

1

10

100

1000

5000

Benchmark
WTG WTG−E GoalExplorer Sapienz Stoat

1

10

100

1000

5000

Google Play

(c) Average time, in seconds, to reach an activity (lower is better).

WTG WTG−E GoalExplorer Sapienz Stoat

1

10

100

1000

5000

Benchmark
WTG WTG−E GoalExplorer Sapienz Stoat

1

10

100

1000

5000

Google Play

(d) Average time, in seconds, to reach an openConnection (lower is better).

Fig. 7: Coverage and performance results for the benchmark and GooglePlay apps.

To answer RQ1: Our experiments show that using the STG model
allows GOALEXPLORER to trigger substantially more targets than
with other statically-built Android UI models, namely, WTG
(Gator) and WTG-E. Moreover, GOALEXPLORER is as effective
as the dynamical tools in the ability to reach a certain target.

RQ2 (Performance): To evaluate performance, we measure
the minimum, median, mean, and maximum time, in seconds,
it takes GOALEXPLORER to reach a target activity or state-
ment. We only present times for targets that are reachable by
all of the compared tools.

Figs. 7(c) and 7(d) present the results of the comparison
for a target activity and statement, respectively. The results
are presented on a logarithmic scale and clearly show that
GOALEXPLORER can reach a target much faster than dynamic
tools: for activities, it takes GOALEXPLORER 13 seconds on
average on the benchmark apps and 25.6 seconds on the
Google Play apps, compared with 453.7 and 619.5 seconds for
Sapienz and 634.3 and 763.5 seconds for Stoat, respectively.
GOALEXPLORER reaches target statements in 17.6 seconds
on average on the benchmark apps and 47.1 seconds on the
Google Play apps, compared with 480.7 and 710.3 seconds for
Sapienz and 617.7 and 860.9 seconds for Stoat, respectively.
Not surprisingly, GOALEXPLORER performs comparable to
other static models – WTG and WTG-E, as we only con-
sider targets that are reachable given the tools’ model. Our
experiments also show that it takes GOALEXPLORER around
93 seconds per app to build the STG, which contains 116.7
nodes and 179 transitions on average. Even given this time,

it outperforms dynamic tools and reaches substantially more
targets than other static tools.

To answer RQ2: GOALEXPLORER can trigger exploration targets
substantially faster than dynamic exploration tools and on par with
other tools based on a static model.

RQ3 (Accuracy-STG): To evaluate the STG accuracy,
we manually identified all paths leading to URL.open-

Connection statement in 36 apps. The analyzed apps contain
127 such statements in total (3.53 per app). Out of those, 102
are reachable (2.83 per app), 21 are in library methods that
apps do not use (which occurs in 8 apps), and the remaining
4 are in unused app methods (all in the same app).

Below, we classify the reasons for (1) transitions that STG
misses (false negatives) and (2) STG transitions that do not
exist in reality (false positives). We also list the implication of
false negative transitions on the ability of GOALEXPLORER
to reach the desired target.
(1) STG False Negatives. When a correct transition does
not exist in the model, GOALEXPLORER cannot construct a
complete path to the target and thus will not attempt to follow
that path. In our sample, that happens in eight cases in total,
in five apps. The reasons for missing a transition are:

Reflection: 2 transitions (in one app) are missing due to
the limitation in handling complex reflective calls. GOAL-
EXPLORER relies on call graph construction implemented
by FlowDroid, which only handles reflective call targets for
constant string objects.



Unmodeled Component: 2 transitions (in two apps) are
missing due to unmodeled components, such as App

Widgets, which are miniature app views that can be embed-
ded in other apps, e.g., in the home screen. GOALEXPLORER,
as well as all other tools, does not model these components
as they are placed outside of the main app.

Intent Resolution: 4 transitions (in two apps) are missing
due to failures in resolving the targets of intents, i.e., which
component is to be launched by the intent. GOALEXPLORER
relies on a constant propagation technique from IC3 [45] to
resolve the intents and identify the targets. When the constant
propagation fails, the correct transitions are missing in STG.

GOALEXPLORER finds alternative paths to avoid missing
the targets for 4 out of the 8 missing transitions in STG;
the remaining ones lead to four missed targets – two are
due to reflection and two as the consequence of unmodeled
components. Sapienz and Stoat cannot trigger the latter two
missed targets either.
(2) STG False Positives. GOALEXPLORER identifies 42 spuri-
ous transitions, in 27 apps (1.55 transitions per app that contain
false positive transitions, and 1.17 transitions per app overall),
that do not exist in reality:

Callback Sequence: in 28 cases (17 apps, 1.64 transitions
per app), incorrect transitions in STG are caused by over-
approximation in modeling the sequence of the callbacks.
Since the order of callbacks cannot be predicted statically,
GOALEXPLORER assumes that the callbacks can happen in
any order (see Screen Builder in Section III-B), producing
screens in STG that are not feasible in practice.

Fragment Properties: in 14 cases (7 apps, 2.33 transitions
per app), incorrect transitions are because STG only models
the set of fragments but does not track the properties of each
fragment. For example, apps can hide the fragments by setting
its visibility properties, i.e., changing the visibility level to
View.GONE. Our model thus over-approximates the set of
visible fragments on a screen.

While STG over-approximates the set of possible transi-
tions, all these transitions are “ignored” by GOALEXPLORER
during exploration – by backtracking and selecting another
path. None of the transitions analyzed above impacted the
GOALEXPLORER’s ability to triggering the targets. However,
such spurious transitions, as well as transitions that cannot
be triggered (RQ4), prolong the exploration, as it takes time
to resolve the false positives dynamically. Our results demon-
strate that the execution time of the tool is not substantially
affected by that and GOALEXPLORER still able to reach the
target substantially faster than dynamic tools.

To answer RQ3: The main reasons for STG’s false negative and
false positive transitions are imprecisions of the underlying static
analysis tools. GOALEXPLORER succeeds to find alternative paths
in four out of eight false negative cases.

RQ4 (Accuracy-Dynamic): GOALEXPLORER encounters 39
correct transitions in 21 apps that it fails to trigger dynamically
(1.86 transitions per app that contain such transitions, and 1.08

transitions per app overall). The main causes for such failures
(false positives of dynamic exploration) are:

Semantic Inputs: in 17 cases (11 apps, 1.54 transitions per
app), meaningful inputs (other than login credentials) are
required to explore the path to the target. For example, a valid
zip code is required to start the search in the Mileage app and
an mp3 file has to be selected for upload in AnyMemo. Neither
GOALEXPLORER nor the contemporary dynamic exploration
techniques can generate such semantic inputs.

Remote Triggers: in 13 cases (8 apps, 1.63 transitions per
app), the transitions can only be triggered given a certain
response from the remote server. For example, in SyncToPix,
a target can only be triggered when the app receives a certain
reply from the server, to syncing data. During our testing
period, such reply was never received and none of the tools
were able to trigger these transitions.

Event Order: in 9 cases (5 apps, 1.8 transitions per app), a
transition is only possible under a certain order of events in a
screen. For example, in the BookCatalogue app, the target can
be reached only after the user marks certain electronic books as
an anthology. While dynamic explorer is able to resolve many
cases that require such interactions (17 cases got successfully
resolved in our data set), the correct resolution is not always
guaranteed.

Overall, the 39 transitions that GOALEXPLORER could not
follow resulted in missing 12 targets in 9 apps; GOALEX-
PLORER finds alternative paths to targets for the remaining 27
transitions. Sapienz and Stoat cannot trigger 10 of the missing
targets either.

To answer RQ4: The main reasons GOALEXPLORER cannot
trigger a valid transition are the lack of semantic inputs, e.g.,
files of a certain type, triggered that are external to the app, e.g.,
certain response from the server, and pre-defined order of input
events that cannot be determined statically or dynamically.

Evaluation Summary: Overall, our experiments demonstrate
that the combination of the static STG model and the run-
time exploration techniques applied by GOALEXPLORER is
effective for the goal-driven exploration task. By using these
techniques, GOALEXPLORER is able to reach substantially
more targets than techniques based on other static UI models.
It is able to reach a comparable number of targets as the
dynamic app exploration techniques, only substantially faster.

C. Limitations and Threats to Validity

The external validity of our results might be affected by
the selection of subject apps that we used and our results
may not necessarily generalize beyond our subjects. We at-
tempted to mitigate this threat by using a “standardized” set
of benchmark apps and by extending this set to include the
95 top Google Play apps. As we used most-popular real-
world apps of considerable size, we believe our results will
generalize for other apps. For internal validity, our static
analysis relies on FlowDroid to construct the callgraph and
collect the callbacks. The validity of our results thus directly
depends on the accuracy of that tool.



The main limitation of our approach is the lack of knowl-
edge of the correct combinations of UI events on a screen
required to issue a transition. Also, even though we extended
our implementation to handle login screens, GOALEXPLORER
cannot handle screens that require other types of semantic
inputs, such as a zip code or a specific type of file. This
limitation is common to many other automated exploration
approaches, and we intend to look at it as part of future work.
Moreover, GOALEXPLORER inherits weaknesses of its under-
lying static analysis tools, such as handling of reflection, inter-
component communication, and callback order resolution.

V. RELATED WORK

In this section, we discuss existing static Android UI
models, automated app exploration techniques that rely on
building UI models dynamically, and prior work on targeted
app exploration.
Static Android UI Models. Approaches that statically con-
struct an Android UI model, such as A3E [19] and Gator [29],
are the closest to our work; the models they build – ATG
and WTG – are extensively discussed in Sects. II and III-A
and compared with our approach in Sect. IV. A number
of approaches [46], [47], [48] extend these models, e.g., by
adding information about specific API invocations and using
that to estimate the execution time and energy consumption
of possible app execution paths. Similar to GOALEXPLORER,
StoryDroid [49] enhances WTG with information about frag-
ments and then proposes an approach to statically render
the UI of each activity. Yet, the resulting representation is
similar to our WTG-E model, not the STG model used by
GOALEXPLORER. That is, all these approaches do not change
the underlying representation of UI elements, thus sharing all
the discussed limitations of the ATG and WTG models.
Automated App Exploration. Instead of relying on a static
model, some approaches [18], [20], [21], [22], [50], [23],
[51], [26], [27], [52] build the model dynamically during app
exploration. For example, Stoat [27] is based on a high-level,
statically-constructed model that captures the core application
activities and input events. The model is further refined dur-
ing the dynamic analysis, adding missing states and events.
Sapienz [26] seeks to maximize code coverage and minimize
the length of the generated test sequences, to reveal more
faults in shorter time. It uses pre-defined patterns of lower-
level events that capture complicated interactions with the
application in order to achieve higher coverage. Ape [52],
which was published after our paper was submitted, represents
the dynamic model as a decision tree and continuously tunes
using the feedback obtained during testing. It constructs a
finer-grained model than that of Sapienz and Stoat by, e.g.,
including additional widget attributes that indicate whether
a widget is clickable or not. SwiftHand [50] focuses on
minimizing app restarts during testing while still achieving
maximal possible coverage.

Although the models used in these techniques are different,
the underlying idea is similar: dynamically build a model
of the app and mutate it so that the generated tests achieve

higher coverage and fault detection. Since these tools focus on
systematically executing the whole app to detect faults rather
than swiftly navigating to a particular functionality of interest,
they are inefficient for goal-driven exploration. That is because
without building an accurate static model and identifying the
target upfront, it is difficult to determine which part of the app
to ignore/explore first.

Another line of work explores approaches for covering the
full code and state space of an app [53], [54], [55]. Such
approaches build symbolic execution engines that either model
the Android framework or build a customized Dalvik virtual
machine so that the app can be exercised in a controlled
environment. They only work for a specific version of Android
and have to be rebuilt for each new version. In contrast, our
approach does not require such modifications.

Targeted App Exploration. Symbolic and concolic execution
is also used for generating semantically meaningful inputs for
directing app exploration towards a particular, usually mali-
cious behavior. For example, Jensen et al. [56] use concolic
execution to generate input event sequences that force the
execution towards the target line of code. Yet, this approach
only resolves the path constraints within one component and
requires an UI model of the app to handle the transitions
between components. Schütte et al. [57] also use concolic
execution to force app executing into a security-sensitive API.
Unlike GOALEXPLORER, this approach relies on modifying
the app to “shortcut” the path to the target. Similar, Smart-
Droid [58] modifies the Android framework to prevent the
creation of activities that do not lead to the desired sensitive
target. Finally, Wong and Lie [59] and Rasthofer et al. [60]
generate Android execution environments to direct the app
towards a given target. Instead, our approach identifies a path
to the target in the original, unmodified version of the app,
which guarantees the existence and correctness of that path.

VI. CONCLUSIONS

This paper introduced GOALEXPLORER – a tool for goal-
driven exploration of Android applications. Such a tool is
useful for scenarios when an analyst needs to automatically
trigger a functionality of interest in an app. The main contri-
butions of GOALEXPLORER are (a) the static technique for
constructing STG – a model that represents UI screens and
transition between the screens, and (b) an engine that uses STG
to build an executable script that triggers the functionality of
interest. Our empirical evaluation shows that the STG model
introduced in GOALEXPLORER is more accurate than other
existing static UI models of Android applications and can
reach the target substantially faster than the state-of-the-art
dynamic approaches.

Acknowledgments. We would like to thank Junbin Zhang for
his insightful comments on this work and, in particular, for
helping us to manually establish the ground truth of reachable
app target. We also thank the anonymous reviewers for their
insightful comments that helped us further improve the work.



REFERENCES

[1] O. Hou. A Look at Google Bouncer. [Online]. Avail-
able: https://blog.trendmicro.com/trendlabs-security-intelligence/a-look-
at-google-bouncer/

[2] M. Xia, L. Gong, Y. Lyu, Z. Qi, and X. Liu, “Effective Real-time
Android Application Auditing,” in Proc. of SP, 2015, pp. 899–914.

[3] IBM. Identify and Remediate Application Security Vulnera-
bilities with IBM Application Security. [Online]. Available:
https://www.ibm.com/security/application-security/appscan

[4] Tencent. Tencent Kingkong App Scan. [Online]. Available:
https://service.security.tencent.com/kingkong

[5] M. Wan, Y. Jin, D. Li, and W. G. J. Halfond, “Detecting Display Energy
Hotspots in Android Apps,” in Proc. of ICST, 2015, pp. 1–10.

[6] D. Ferreira, V. Kostakos, A. R. Beresford, J. Lindqvist, and A. K.
Dey, “Securacy: An Empirical Investigation of Android Applications’
Network Usage, Privacy and Security,” in Proc. of WiSec, 2015, pp.
11:1–11:11.

[7] A. Razaghpanah, N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich,
P. Gill, M. Allman, and V. Paxson, “Haystack: In Situ Mobile Traffic
Analysis in User Space,” CoRR, 2015.

[8] Y. Liu, H. H. Song, I. Bermudez, A. Mislove, M. Baldi, and A. Ton-
gaonkar, “Identifying Personal Information in Internet Traffic,” in Proc.
of COSN, 2015, pp. 59–70.

[9] J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. Choffnes, “ReCon:
Revealing and Controlling PII Leaks in Mobile Network Traffic,” in
Proc. of MobiSys, 2016, pp. 361–374.

[10] M. Henze, J. Pennekamp, D. Hellmanns, E. Mühmer, J. H. Ziegeldorf,
A. Drichel, and K. Wehrle, “CloudAnalyzer: Uncovering the Cloud
Usage of Mobile Apps,” in Proc. of the MobiQuitous, 2017, pp. 262–
271.

[11] Zedge, Inc. ZEDGE. [Online]. Available:
https://play.google.com/store/apps/details?id=net.zedge.android

[12] Facebook. Facebook SDK for Android. [Online]. Available:
https://developers.facebook.com/docs/android/

[13] ——. Facebook Login API. [Online]. Available:
https://developers.facebook.com/docs/facebook-login/android/

[14] Privacy International. How Apps on Android Share Data with Facebook.
[Online]. Available: https://privacyinternational.org/report/2647/how-
apps-android-share-data-facebook-report

[15] Google. Espresso. [Online]. Available:
https://developer.android.com/training/testing/espresso/

[16] ——. UI Automator. [Online]. Available:
https://developer.android.com/training/testing/ui-automator

[17] RobotiumTech. Robotium. [Online]. Available: http://www.robotium.org
[18] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “PUMA:

Programmable UI-Automation for Large-Scale Dynamic Analysis of
Mobile Apps,” in Proc. of MobiSys, 2014, pp. 204–217.

[19] T. Azim and I. Neamtiu, “Targeted and Depth-first Exploration for
Systematic Testing of Android Apps,” in Proc. of OOPSLA, 2013, pp.
641–660.

[20] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon, “Using GUI Ripping for Automated Testing of Android
Applications,” in Proc. of ASE, 2012, pp. 258–261.

[21] W. Choi, G. Necula, and K. Sen, “Guided GUI Testing of Android Apps
with Minimal Restart and Approximate Learning,” in Proc. of OOPSLA,
2013, pp. 623–640.

[22] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An Input Generation
System for Android Apps,” in Proc. of ESEC/FSE, 2013, pp. 224–234.

[23] R. Mahmood, N. Mirzaei, and S. Malek, “EvoDroid: Segmented Evolu-
tionary Testing of Android Apps,” in Proc. of FSE, 2014, pp. 599–609.

[24] K. Moran, L.-V. Mario, C. Bernal-Cárdenas, C. Vendome, and D. Poshy-
vanyk, “Automatically Discovering, Reporting and Reproducing Android
Application Crashes,” in Proc. of ICST, 2016, pp. 33–44.

[25] G. Hu, X. Yuan, Y. Tang, and J. Yang, “Efficiently, Effectively Detecting
Mobile App Bugs with AppDoctor,” in Proc. of EuroSys, 2014, pp. 18:1–
18:15.

[26] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective Automated
Testing for Android Applications,” in Proc. of ISSTA, 2016, pp. 94–105.

[27] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, Stochastic Model-based GUI Testing of Android Apps,”
in Proc. of FSE, 2017, pp. 245–256.

[28] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé, and J. Klein, “Automated
Testing of Android Apps: A Systematic Literature Review,” IEEE
Transactions on Reliability, pp. 1–22, 2018.

[29] S. Yang, H. Zhang, H. Wu, Y. Wang, D. Yan, and A. Rountev, “Static
Window Transition Graphs for Android,” in Proc. of ASE, 2015, pp.
658–668.

[30] T. Bray. Fragments For All. [Online]. Available: https://android-
developers.googleblog.com/2011/03/fragments-for-all.html

[31] An Open Protocol to Allow Secure Authorization in a Simple and
Standard Method From Web, Mobile and Desktop Applications.
[Online]. Available: https://oauth.net/

[32] The OAuth 2.0 Authorization Framework: Bearer Token Usage.
[Online]. Available: https://tools.ietf.org/id/draft-ietf-oauth-v2-bearer-
23.xml

[33] D. Lai and J. Rubin. (2019) Onlile Appendix. [Online]. Available:
https://resess.github.io/PaperAppendices/GoalExplorer/

[34] Google. App Components. [Online]. Available:
https://developer.android.com/guide/components/fundamentals

[35] ——. Activity-lifecycle Concepts. [Online]. Avail-
able: https://developer.android.com/guide/components/activities/activity-
lifecycle

[36] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “FlowDroid: Precise Context,
Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis for
Android Apps,” in Proc. of PLDI, 2014, pp. 259–269.

[37] Google. Webview. [Online]. Available:
https://developer.android.com/reference/android/webkit/WebView

[38] AXML Printer. [Online]. Available:
https://github.com/rednaga/axmlprinter

[39] Google. Fragment. [Online]. Available:
https://developer.android.com/reference/android/app/Fragment

[40] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “IccTA: Detecting
Inter-component Privacy Leaks in Android Apps,” in Proc. of ICSE,
2015, pp. 280–291.

[41] Android Debug Bridge (adb). [Online]. Available:
https://developer.android.com/studio/command-line/adb

[42] J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang, and G. Jiang,
“SUPOR: Precise and Scalable Sensitive User Input Detection for
Android Apps,” in Proc. of USENIX Security, 2015, pp. 977–992.

[43] F-Droid Limited. F-Droid. [Online]. Available: https://f-droid.org/en/
[44] S. R. Choudhary, A. Gorla, and A. Orso, “Automated Test Input

Generation for Android: Are We There Yet?” in Proc. of ASE, 2015,
pp. 429–440.

[45] D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel, “Com-
posite Constant Propagation: Application to Android Inter-Component
Communication Analysis,” in Proc. of ICSE, 2015, pp. 77–88.

[46] Y. Wang and A. Rountev, “Profiling the Responsiveness of Android
Applications via Automated Resource Amplification,” in Proc. of MO-
BILESoft, 2016, pp. 48–58.

[47] H. Wu, S. Yang, and A. Rountev, “Static Detection of Energy Defect
Patterns in Android Applications,” in Proc. of CC’2016, 2016, pp. 185–
195.

[48] Y. Zhang, Y. Sui, and J. Xue, “Launch-mode-aware Context-sensitive
Activity Transition Analysis,” in Proc. of ICSE, 2018, pp. 598–608.

[49] S. Chen, L. Fan, C. Chen, T. Su, W. Li, Y. Liu, and L. Xu, “StoryDroid:
Automated Generation of Storyboard for Android Apps,” in Proc. of
ICSE, 2019, pp. 596–607.

[50] W. Choi, G. Necula, and K. Sen, “Guided GUI Testing of Android Apps
with Minimal Restart and Approximate Learning,” in Proc. of OOPSLA,
2013, pp. 623–640.

[51] Y.-M. Baek and D.-H. Bae, “Automated Model-based Android GUI
Testing Using Multi-level GUI Comparison Criteria,” in Proc. of ASE,
2016, pp. 238–249.

[52] T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J. Lu, and Z. Su,
“Practical GUI Testing of Android Applications via Model Abstraction
and Refinement,” in Proc. of ICSE, 2019, pp. 269–280.

[53] N. Mirzaei, S. Malek, C. S. Păsăreanu, N. Esfahani, and R. Mahmood,
“Testing Android Apps Through Symbolic Execution,” SIGSOFT Soft-
ware Engineering Notes, vol. 37, no. 6, pp. 1–5, 2012.

[54] R. Johnson and A. Stavrou, “Forced-Path Execution for Android Appli-
cations on x86 Platforms,” in Proc. of SERE-C, 2013, pp. 188–197.

[55] N. Mirzaei, H. Bagheri, R. Mahmood, and S. Malek, “SIG-Droid:
Automated System Input Generation for Android Applications,” in Proc.
of ISSRE, 2015, pp. 461–471.



[56] C. S. Jensen, M. R. Prasad, and A. Møller, “Automated Testing with
Targeted Event Sequence Generation,” in Proc. of ISSTA, 2013, pp. 67–
77.

[57] J. Schütte, R. Fedler, and D. Titze, “ConDroid: Targeted Dynamic
Analysis of Android Applications,” in Proc. of AINA, 2015, pp. 571–578.

[58] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou,
“SmartDroid: An Automatic System for Revealing UI-based Trigger
Conditions in Android Applications,” in Proc. of SPSM, 2012, pp. 93–

104.
[59] M. Wong and D. Lie, “IntelliDroid: A Targeted Input Generator for the

Dynamic Analysis of Android Malware,” in Proc. of NDSS, 2016, pp.
21–24.

[60] S. Rasthofer, S. Arzt, S. Triller, and M. Pradel, “Making Malory Behave
Maliciously: Targeted Fuzzing of Android Execution Environments,” in
Proc. of ICSE, 2017, pp. 300–311.


