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Abstract—Semantic history slicing addresses the problem of
identifying changes related to a particular high-level functionality
from the software change histories. Existing solutions are either
imprecise, resulting in larger-than-necessary history slices, or
inefficient, taking a long time to execute. In this paper, we develop
a generalized history slicing framework, named GenSlice, which
overcomes the aforementioned limitations. GenSlice abstracts
existing history slicing techniques and change history manage-
ment operations (such as splitting commits into fine-grained
changes) as history transformation operators, making it possible
to apply them sequentially in various orders. We study and prove
properties of various orders of operators and devise a systematic
approach for efficiently producing history slices that are optimal
for practical purposes. We report on an empirical evaluation of
our framework, demonstrating its effectiveness on a set of real-
world case studies.

I. INTRODUCTION

Software change histories are results of incremental updates
made by developers. As a byproduct of the software develop-
ment process, change histories are useful for understanding,
maintaining and reusing software. However, traditional commit-
based organization of change histories lacks semantic structure
and thus is insufficient for many development tasks that require
high-level, semantic understanding of program functionality.

Semantic history slicing [1], [2], [3] addresses the problem
of identifying commits related to a particular high-level
functionality in software change histories. In a concrete
instantiation [1], a functionality is defined in terms of a set of
tests; a particular functionality is considered to be implemented
if its corresponding set of tests passes. A semantic history slice
(slice for short) of the original change history is a set of related
commits required for the tests to pass.

The slice can be used for many software maintenance
tasks. For instance, a slice for a feature available in one
software version (or a branch) can be propagated to another
software version. Thus, history slicing provides a much
needed alternative to the currently-practiced manual process
of identifying relevant changes in software change histories.

Motivation. Two recently proposed history slicing techniques—
CSLICER [1] and DEFINER [3]—offer different trade-offs
between efficiency (i.e., slicing time) and precision (i.e., the
size of the resulting history slice). CSLICER first runs the set
of tests on the latest version of the software and collects code
entities required for the tests to pass. It then uses lightweight
program analysis techniques to trace back through the change
history and identify all changes that are related to the required
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entities. CSLICER provides no formal guaranties for the size
of the final history slice, but it is efficient because the set
of tests are executed only once. Unlike CSLICER, DEFINER
provides theoretical guarantees that the final history slice is
1-minimal, i.e., removing any single commit from the resulting
slice would lead to a change history that does not implement
the functionality of interest. However, using DEFINER requires
executing the set of tests at least once for each program version
in the given change history, which is expensive.

Recent work studied the pros and cons of the existing
history slicing techniques and attempted to improve their
efficiency and precision [2]. On the one hand, with the goal to
improve efficiency, Li et al. [1] proposed to run existing slicing
techniques in a sequence. Specifically, their method runs the
lightweight CSLICER first, followed by the more expensive
DEFINER on a much shorter input history, to speed up the
latter without sacrificing the slice-minimality guarantee. On
the other hand, with the goal to improve precision, Li et al. [3]
proposed to split the original commits to file-level changes;
the key insight is that the file-level split of commits produces
finer-grained change histories that can improve the precision
of the existing slicing techniques while the original slicing
techniques treated each commit as a monolithic entity.

Although these recent advances showed that precision and
efficiency can be improved, they are also limited because
(a) sequencing and splitting was applied independently, and
it is not obvious how to combine the two, and (b) only a
single sequence of length two (running CSLICER first and
then DEFINER) was studied, and it is not clear whether longer
sequences or different sequences would lead to more efficient
slicing and more precise results.

Framework. In this paper, we propose a generalized his-
tory slicing framework, named GenSlice, which removes the
aforementioned limitations. GenSlice abstracts change history
management operations (such as splitting commits into finer-
grained changes) and existing history slicing techniques as
history transformation operators, which can be applied in a
sequence. We study and prove properties of various orders
of transformation operators and devise a systematic approach
for efficiently producing slices which are optimal for practical
purposes.

Fig. 1 gives the overview of the framework and illustrates
the history slicing loop. A single run of the loop on any given
change history results in a sequence of transformation operators,
and exploring all orders results in a slicing tree. Although this
tree is, in theory, infinite, we prove that the optimal result, in
terms of the history slice length, can be obtained by one of
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Fig. 1. Overview of GenSlice and the history slicing loop.

the seven sequences (with no more than five transformation
operators in any of these sequences), assuming that DEFINER
always obtains minimal slices, i.e., removing any number of
commits from the slices would result in test failures. We study
the runtime performance of each such sequence, identifying
those that produce the optimal results in the shortest time.

Contributions. We summarize our contributions as follows:
• Insight. We propose a novel abstraction over change his-

tory management operations and existing history slicing
techniques as transformation operators; these transformation
operators can be applied sequentially in various orders to
balance efficiency and precision of history slicing.

• Framework. We present a framework, GenSlice, which
integrates the transformation operators and enables slicing
of a given change history in a slicing loop.

• Proof. We prove that the optimal result, in terms of the size
of the history slice, can be obtained by one of the seven finite
sequences of operators, assuming that DEFINER computes
minimal slices.

• Evaluation. We perform an extensive evaluation to study
efficiency of the seven sequences that produce optimal results,
applying the sequences on dozens of real-world examples
available in open-source projects, which were used in prior
work on history slicing. Our results highlight the sequences
of operators that are the most efficient in practice.

Organization. The rest of the paper is structured as follows.
Sect. II presents an overview of and motivation for GenSlice
through an example. Sects. III and IV define terminology
and provide the necessary background for semantic history
slicing, respectively. Sect. V describes different transformation
operators and specifies properties of a slicing tree. In Sect. VI,
we describe our implementation and empirical evaluation of
the proposed technique. Finally, we discuss related work in
Sect. VII and conclude in Sect. VIII.

II. ILLUSTRATIVE EXAMPLE

Consider the brief example, inspired by the functionality
csv-159 from the Apache CSV project [4] and shown in
Fig. 2. The original change history H is shown horizontally,
in the middle of the figure. H consists of five commits:
〈R1, R2, R3, R4, R5〉. Each commit in the original change
history can be split into file-level commits, shown as small
rectangles. We distinguish three types of file-level commits:
black rectangles are necessary for preserving the functionality;
shadowed rectangles are not necessary but are kept by CSLICER
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Fig. 2. An example inspired by functionality csv-159 from the Apache CSV
project illustrates that both the split operator and the order of applying the
operators impact precision of history slicing.

due to the imprecision of its lightweight analysis; and white
rectangles are irrelevant for the target functionality and are
discarded by both CSLICER and DEFINER. We use C and D to
refer to CSLICER and DEFINER when we talk about sequences,
respectively, and S to refer to the split operator. Consider
two history slicing sequences: (1) CSLICER→Split→DEFINER
(CSD for short), and (2) DEFINER→Split→CSLICER (DSC
for short). Fig. 2 shows step by step application of these
two sequences. For example, when running CSD (from the
middle of the figure moving downwards), after applying C
on H , the change history becomes C(H) = 〈R2, R3, R5〉.
Then, after applying the S operator, C(H) is split into five file-
level commits: CS(H) = 〈R2a, R2b, R3a, R3b, R5〉. Finally,
applying D effectively reduces the history to only one file-level
commit: CSD(H) = 〈R3a〉, which is the optimal slice, i.e., the
shortest slice that can be obtained by any slicing technique.

The result of slicing, if we switch the order of running
CSLICER and DEFINER, is shown in the same figure (from
the middle of the figure moving upwards). Interestingly, DSC
yields a sub-optimal result: DSC(H) = 〈R3a, R3b〉.

From this example, we can see that the order of applying
slicing operators affects the precision of the history slicing.
In our example, when applying D first, we achieve a much
better reduction initially, but fail to exploit the benefit from
the fine-grained file-level change histories brought by the split
operator, resulting in worse overall results. The reason is that
the D operator in DSC runs on the original commits, and D
is not able to reduce R3 which is a mix of necessary and
unnecessary changes spreading over multiple files. Thus, even
after D and S, the final C operation still could not reduce R3b

due to its imprecision.

III. PRELIMINARIES

This section introduces the necessary background and
terminology used in the remaining part of the paper.



y ∈ V (r)
INS((x, n, v), y)

V (r′)← V (r) ∪ {x} parent(x)← y

id(x)← n ν(x)← v

x ∈ V (r)
DEL(x)

V (r′)← V (r) \ {x}
x ∈ V (r)

UPD(x, v)
ν(x)← v

Fig. 3. The three types of atomic changes as AST transformations [5].

A. Programs and ASTs
Let P be the syntax rules of a language. We say that a

piece of text p is a syntactically valid program of language P ,
denoted by p ∈ P , if p follows the language syntax rules. A
valid program p ∈ P can be parsed as an abstract syntax tree
(AST), denoted by ast(p). Formally, r = ast(p) is a rooted
tree with a set of nodes V (r). Each node x has an identifier
and a value, denoted by id(x) and ν(x), respectively. In a
valid AST, the identifier for each node is unique and the values
are canonical textual representations of the corresponding code
entities. We denote the parent of a node x by parent(x).

B. Changes and Change Histories
A change history of a program consists of a sequence of

changes, each representing the differences between two versions
of the program. These changes can be represented either as
differences between ASTs or as unstructured plain text.

1) AST-based View: Let Γ be the set of all ASTs of P .
Below, we define changes, change sets, and change histories
as a set of AST transformations.

Definition 1 (Atomic change). An atomic change δ : Γ 7→ Γ
is a partial function which transforms r ∈ Γ, to produce a
new AST r′ s.t. r′ = δ(r). An atomic change can be either an
insert, a delete, or an update (see Fig. 3).

An insertion INS((x, n, v), y) inserts a node x with an
identifier n and a value v as a child of a node y. A
deletion DEL(x) removes a node x from the AST. An update
UPD(x, v) keeps the identifier unchanged and only replaces
the value of a node x with v. A change is applicable on an
AST if its preconditions are met. For example, an insertion
INS((x, n, v), y) is applicable on r only if y ∈ V (r). Insertion
of an existing node is treated the same way as an update.

Definition 2 (Change set). Let r and r′ be two ASTs. A change
set ∆ : Γ 7→ Γ is a sequence of atomic changes 〈δ1, . . . , δn〉, s.t.
∆(r) = (δn ◦· · ·◦δ1)(r) = r′, where ◦ is function composition.

A change set ∆ = ∆−1 ◦ δ1 is applicable to r if δ1 is
applicable to r and ∆−1 is applicable to δ1(r). Change sets
between two ASTs can be computed by tree differencing [6].

Definition 3 (Change history). A history of changes is a
sequence of change sets, i.e., H = 〈∆1, . . . ,∆k〉.

Definition 4 (Sub-history). A sub-history is a sub-sequence
of a history, i.e., a sequence derived by removing change sets
from H without altering the ordering.

We write H ′ ⊆ H to mean that H ′ is a sub-history of H and
refer to 〈∆i, . . . ,∆j〉 as Hi..j . The applicability of a history
is defined similarly to that of change sets.

2) Text-based View: Software Configuration Management
(SCM) tools, e.g., SVN [7] and Git [8], view programs as plain
texts and represent program changes using the text-based view.
The smallest unit for text-based changes is called a hunk.

Definition 5 (Hunk). A hunk δ̂ : P 7→ P is a partial function
which transforms p ∈ P , resulting in a new program text p′

s.t. p′ = δ̂(p).

// hunk deps

int g()

- {return 0;}

+ {return (new B()).y;}

}

class B {

+ int y = 0;

static int f(int x)

{return x - 1;}

Fig. 4. Text-based view of
changes represented as a hunk.

For example, Fig. 4 shows a
hunk of a one-line deletion and
two one-line insertions, marked
by “-” and “+”, respectively. The
context (the lines not marked by
“-” or “+” in Fig. 4) that comes
with a hunk is useful for ensuring
that the hunk can be applied at
the correct location even when the
line numbers change for the target
program texts.

A commit is a collection of hunks, and a commit history is
a sequence of commits. Applying a commit is equivalent to
applying the composition of the corresponding hunks. More
formally,

Definition 6 (Commit). Let p and p′ be program texts. A
commit ∆̂ : P 7→ P is a set of hunks {δ̂0, . . . , δ̂n} s.t. ∆̂(p) =
(δ̂0 ◦ · · · ◦ δ̂n)(p) = p′, where ◦ is function composition.

Definition 7 (Commit history). A commit history is a sequence
of commits, i.e., H = 〈∆̂1, . . . , ∆̂k〉.

Note that the commit history consisting of commits is a
different yet equivalent representation of the change history
consisting of atomic changes.

C. Functionality Test

We assume that high level software functionalities such as
features and bug fixes can be captured by tests and that the
execution trace of a test is deterministic [9]. A test t is a
predicate t : P 7→ B, such that for a given program p, t(p) is
true if and only if the test passes. A test suite is a set of tests
that can exercise and demonstrate the functionality of interest.
Let a test suite T be a set of tests {ti}. We write p |= T if
and only if a program p passes T , i.e., ∀t ∈ T · t(p).

IV. SEMANTIC HISTORY SLICING

Semantic history slicing addresses the problem of identifying
commits related to a particular high-level functionality from a
software change history.

A. Semantics-Preserving History Slices

Consider a program p0 ∈ P and its n subsequent versions
p1, . . . , pn. Let H be the original commit history from p0 to
pn, i.e., H1..i(p0) = pi for all integers 0 ≤ i ≤ n. Let T be a
test suite passed by pn, i.e., pn |= T .

Definition 8 (Semantics-preserving slice [1]). A semantics-
preserving slice of history H w.r.t. T , denoted by H ′ ⊆T H ,
is a sub-history of H , i.e., H ′ ⊆ H , s.t. H ′(p0) |= T .



There are several types of semantics-preserving slices: (1)
minimal, which are semantics-preserving and cannot be reduced
further, (2) optimal, which are the shortest possible slices
of a given history, and (3) 1-minimal—slices which cannot
be further reduced by removing any single commit. Clearly,
optimal slices are also minimal, but not vice versa. This is
because, there might exist a shorter slice H∗ which is not a
subset of Hm, even if Hm cannot be reduced further. More
formally,

Definition 9 (Minimal semantics-preserving slice [1]). A
semantics-preserving slice Hm is minimal if ∀Hsub ⊂ Hm ·
Hsub 6|= T .

Definition 10 (Optimal semantics-preserving slice). A seman-
tics-preserving slice H∗ is optimal if ∀Hsub ⊂ H · Hsub |=
T =⇒ |Hsub| ≥ |H∗|.

Definition 11 (1-minimal semantics-preserving slice). A se-
mantics-preserving slice H1m is 1-minimal if ∀Hsub ⊂ H1m ·
|Hsub| = |H1m| − 1 =⇒ Hsub 6|= T.

While 1-minimal slices are approximate, they are much less
expensive to compute than minimal or optimal [1], and in
practice are often minimal [3].

B. Computing Semantics-Preserving Slices

With the presence of adequate tests for a functionality and
the corresponding change history, semantic history slicing
uses tests as the slicing criteria to identify commits in the
history (i.e., a semantics-preserving slice) that contribute to the
implementation of the given functionality. Two history slicing
techniques have been proposed so far, namely, CSLICER, based
on change dependency analysis [1] and DEFINER, based on
dynamic delta refinement [3].

CSLICER. CSLICER relies on static analysis of dependencies
between atomic changes to decide which commits to keep
in the history slices. It first analyzes the latest program
version to collect test coverage information and then computes
an over-approximated set of atomic changes touching the
covered elements. Then, through change dependency analysis,
it includes additional changes required for proper compilation
of the program. Finally, the identified atomic changes are
mapped back to the commits in the original change history. The
produced history slices are guaranteed to apply without causing
any merge conflict, and the resulting program is guaranteed
to compile and pass the tests. CSLICER trades precision for
efficiency: it conservatively assumes that all changes traversed
by the test execution can potentially alter the test results. This
assumption results in a possible inclusion of unnecessary or
irrelevant changes into the history slice.

DEFINER. In contrast, DEFINER executes tests multiple times
and directly observes the test results while attempting to
shorten the history slices iteratively. DEFINER derives a 1-
minimal semantic slice through the more expensive repeated
test executions in a divide-and-conquer fashion that is very
similar to delta debugging [10]. The high-level idea is to

partition the input history by dropping some subset of the
commits and opportunistically reduce the search space when
the target tests pass on one of the partitions. This process
repeats until a 1-minimal partition is reached.

Precision Metrics. History slices of the same length may not
carry the same amount of atomic changes or hunks. To better
compare the precision of different history slicing techniques,
we define the size of a history slice as the number of changed
(added/removed) lines of code in the slice. The reduction rate
of a history slicing technique is computed as the size of the
resulting slice H ′ divided by the original history size |H|, i.e.,
|H ′|/|H|. We use this precision metric in the evaluation of all
slicing techniques.

V. GENERALIZED HISTORY SLICING

In this section, we describe a generalized history slicing
framework which takes a change history as input and applies
a sequence of history transformation operators on it until the
stopping conditions are met. This framework encompasses all
previously studied history slicing techniques and provides an
additional flexibility in adjusting the granularity of the change
histories. Users are able to configure the slicing technique
according to their needs by choosing the right transformation
operators and arranging the order in which they are applied.

A. History Transformation Operators

We define two types of history transformation operators:
splitting and slicing. Let H = 〈∆1, . . . ,∆k〉 be a change
history. The split operator splits a commit into smaller ones,
each containing one or more hunks. After the split, the change
history becomes more fine-grained.

Definition 12 (Split operator [3]). Let ∆ be a commit
containing a set of hunks. The split operator S partitions ∆
s.t. S(∆) = {∆′1, . . . ,∆′n}, where ∆′1, . . . ,∆

′
n are the new

fine-grained commits.

Typically, there is more than one way to split a commit,
and in practice, the file-level split operator [3], Sfile, is shown
to be the most suitable choice when working with language-
agnostic SCM tools. A file-level split operator partitions a
commit according to the modified files—the hunks touching
the same file are grouped in the same fine-grained commit.
Applying a split operator on a change history means simply
applying it, in sequence, on each of the commits within the
history: S(H) = 〈S(∆1), . . . , S(∆k)〉.

The split operator only modifies how changes are grouped,
and do not affect the overall effects of change histories. We
say that two change histories, H and H ′, are equivalent if, for
any program p on which they are applicable, they produce the
same new program versions, i.e., H(p) ≡ H ′(p). We say that
two transformation operators are equivalent if, for any input
change history, the histories produced by them are equivalent.
For instance, the split operator has the following properties:

S(H) ≡ H (Prop. 1)
S(S(H)) ≡ S(H). (Prop. 2)



Even though the split operator preserves the effects of change
histories, it may affect the final results when applied in
combination with the slicing operator.

Definition 13 (Slicing operator). A slicing operator SL pro-
duces a sub-history s.t. SL(H) ⊆ H .

In this paper, we consider two specific slicing operators,
namely, CSLICER (C) and DEFINER (D), which produce
semantics-preserving sub-histories defined by some function-
ality tests T . None of them promises an optimal solution
because computing optimal history slices requires, in the worst-
case, enumerating all possible sub-histories [2]. In particular,
CSLICER makes no guarantee on the quality of the produced
history slices, and repeated applications of CSLICER do not
improve the slicing results; DEFINER guarantees that the history
slices it computes are 1-minimal (see Sect. IV-B), which may be
sub-optimal. Therefore, subsequent applications of DEFINER
may result in smaller slices. More formally, the following
properties hold:1

C(C(H)) ≡ C(H) (Prop. 3)
D(D(H)) ⊆ D(H), (Prop. 4)

For example, the composition of two consecutive CSLICER
calls is equivalent to a single call. In contrast, a subsequent
DEFINER call may improve upon the previous result and
produce a smaller history slice.

Generally speaking, the slicing operators can produce smaller
history slices on more fine-grained inputs. This is always true
for CSLICER because its algorithm operates on the atomic
changes, and the imprecision is introduced while mapping
atomic changes back to coarse-grained commits:

C(S(H)) ⊆ C(H) (Prop. 5)
C(S(H)) ≡ C(S(C(H))). (Prop. 6)

This also means that running CSLICER before and after the
split has the same overall effect as running it only after the
split (Prop. 6).

B. Sequences of Transformation Operators

Different history transformation operators can be concate-
nated in a sequence to construct a transformation sequence. For
example, passing the result produced by CSLICER to DEFINER
gives us D(C(H)), shorthanded as CD(H). This transformation
sequence is intuitive because CSLICER reduces DEFINER’s
input size with a relatively small cost, so that running DEFINER
later in the sequence is likely faster than standalone. There
is an infinite number of transformation sequences, some of
which are more efficient than others and some produce shorter
history slices. To compare different sequences and identify
methodologies to optimize the history slicing results, we
systematically study the properties of different sequences.

Slicing tree. Let K denote the set of all transformation
sequences which can be represented as a slicing tree—see
Fig. 5. The root of the tree is the input history H , and

1The detailed proof of several properties is found in the supplementary
materials: https://sites.google.com/view/genslice.

H

S(H) C(H) D(H)

SS(H) SC(H) SD(H) CS(H) CC(H) CD(H) DS(H) DC(H) DD(H)

CSC(H)…
… …

…

Fig. 5. An example slicing tree over transformation operators S, C, and D.

every other node represents a sub-history of H . Each node
in the tree has n child nodes, where n is the number of
possible transformation operators that can be applied on that
node. A child node represents the result of applying the
corresponding transformation operator. To illustrate, consider
the splitting operator S, the lightweight slicing operator C and
the iterative slicing operator D. The node S has three children:
SS, SC, and SD, representing S(S(H)), C(S(H)), and D(S(H)),
respectively. There are a few notable facts of the slicing tree.
First, its height is unbounded: For any given node, the tree
can always be expanded by applying additional transformation
operators. Second, all child nodes produce shorter- or equal-
length history slices than their parents, by the definitions of the
transformation operators. Finally, for a given node in the tree,
any sequence that ends with the node requires more computing
resources to execute than a sequence ending in the parent of
the node.

Navigating the slicing tree. Consider a slicing tree K defined
by three history transformation operators, S, C, and D. Because
all three operators preserve the semantic properties, every node
in K represents a semantic history slice of the root. Now the
problem of finding a best sequence of history transformations
can be converted into the problem of identifying a node in the
slicing tree s.t. there exists no semantic history slice shorter
than the one produced at that node. Given resource constraints,
the slicing tree can be expanded to a limited depth, and the best
transformation sequences (of a given length) can thus be derived
by comparing all the leaf nodes in a finite tree expansion of
the given depth. Here we only optimize over the precision of
the transformation sequence, rather than its performance. Later,
we study the performance of these sequences empirically in
Sect. VI-D.

To efficiently compute all history slices for the leaf nodes
(up to some depth of the tree), we propose a tree expan-
sion algorithm with optimizations on suffix sharing of the
transformation sequences. At the high level, we perform a
depth-first-search of the slicing tree to a given depth, and
at the same time, cache the intermediate results of explored
paths, in case they can be reused in exploring other paths.
Alg. 1 shows the details. The inputs to the algorithm are
the slicing tree (K), the input change history (H), and the
set of tests (T ) that defines a functionality of interest. The
algorithm returns slice_map which maps each sequence k to
its corresponding semantic history slice obtained by running
the sequence, i.e., k(H) |= T . The function EXPLORETREE

https://sites.google.com/view/genslice


Algorithm 1: Slicing Tree Expansion with Suffix
Sharing.

input :K: the slicing tree; H: the input history; T : the
functionality test set; state_map: the state cache;

output : slice_map: a map containing semantic history slice of all
the transformation sequences; each key is the name of a
sequence, of which the corresponding value is the semantic
history slice of H w.r.t. T obtained by running the
sequence;

1 suffix_map← ∅;
2 root← the root of K;
3 slice_map← EXPLORETREE(K, root, slice_map, H, T, state_map);
4 return slice_map;
5
6 Function EXPLORETREE(K, k, slice_map, H, T, state_map):
7 H′ ← RUNSINGLESEQUENCE(k,H, T, state_map);
8 slice_map(k)← H′;
9 foreach k′ ∈ the children of k in K do

10 if k′ /∈ slice_map then
11 slice_map←

EXPLORETREE(K, k′, slice_map, H, T, state_map);

12 return slice_map;

13 Function RUNSINGLESEQUENCE(k,H, T, state_map):
14 if k ∈ state_map then
15 if state_match(H, state_map(k)) then
16 saver_conf ← state_match(H, state_map(k));
17 suffix_map(k)(k)← suffix_map(k)(matched);
18 return suffix_map(k)(saver_conf );

19 H′ ← H;
20 state_map(k)(k)← H;
21 for m ∈ [1, |H| − 1] do
22 H′ ← RUN(T,H′);
23 if k[m+ 1 : |H|] ∈ state_map then
24 if state_match(H′, state_map(k[m+ 1 : |H|])) then
25 saver_conf ←

state_match(H′, state_map(k[m+ 1 : |H|]));
26 suffix_map(k[m+ 1 : |H|])(k)←

suffix_map(k[m+ 1 : |H|])(saver_conf );
27 return suffix_map(k[m+ 1 : |H|])

28 state_map(k[m+ 1 : |H|])(k)← H′;

29 return H′;

(Lines 6–12) drives the tree exploration, and for each tree node,
it calls the RUNSINGLESEQUENCE (Lines 13–29) to execute
the transformation sequence and collect the results.

The function RUNSINGLESEQUENCE executes a given
transformation sequence k, and naturally reuses the results
of any prefix of k which is already executed in previous runs.
For example, when running CD, the result of C (obtained
in earlier runs) can be used as the starting point for D. In
addition, it opportunistically matches the remaining suffix of k
with cached runs, in case their results can be reused (Lines 14–
18, 23–27). For example, the sequences CDSD and DSD share
a common suffix SD. If their intermediate results after CD and
D, respectively, are exactly the same, then we can be sure that
the results of CDSD and DSD are exactly the same as well.

C. Sequence Pruning with Sequence Equivalence

So far, we assumed that the iterative history slicing operator
produces 1-minimal results. Our experience shows that in prac-
tice, DEFINER produces minimal history slices. As computing
minimal slices is NP-hard, we cannot validate this hypothesis
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Fig. 6. The slicing tree when D is minimal.

for all possible histories. However, we experimented with nine
instances (see Table I) where we could fully enumerate all sub-
histories of the produced history slices. The results show that
none of the slice sub-histories are themselves valid semantics-
preserving slices, which means that the results produced by
DEFINER are minimal.

While this study does not prove the optimality or minimality
of DEFINER, it does suggest potential heuristics which can
be used to further optimize the exploration of the slicing
tree. In order to have a systematic understanding of the
transformation sequences, we study the relationships between
different sequences, under two assumptions: (1) when D is
optimal, and (2) when D is minimal.

First, we consider the case when D produces optimal
semantic history slices, i.e., any semantic history slice of H is
larger or equal to D(H). Then the best transformation sequence
is SD (i.e., Split→DEFINER) among all possible sequences (K),
as given by Thm. 1:

Theorem 1. If D produces optimal semantics-preserving slices,
then SD is an optimal transformation sequence of K.

To see this, for any path in K, we consider two cases: (1) S
is on the path; and (2) S is not on the path. For case (1), SD is
trivially the best transformation sequence, since D is optimal
and no additional transformation would improve the result.
For case (2), suppose there exists a transformation sequence
producing a sub-history H ′ which is smaller than SD(H). Then
S(H ′) is also smaller than SD(H), because of Prop. 1. This
contradicts the assumption that D is optimal.

Next, we relax the assumption on D and consider the case
when it produces minimal (rather than optimal) semantic history
slices, i.e., D(H) cannot be reduced further and stays a valid
semantic history slice of H . We rely on Prop. 1 to Prop. 6
when studying the transformation sequences. We say that
two transformation sequences are equivalent if they always
produce the same output histories given the same input histories.
A sequence KA dominates a sequence KB if history slices
produced by KA are always sub-histories of the ones produced
by KB .

Fig. 6 shows the slicing tree, assuming D is minimal.
The solid arrows between tree nodes indicate the dominance
relations. For instance, the arrow pointing from CD to C
indicates that C is dominated by CD since the latter always
produces a sub-history of the former. The dashed lines between



two nodes indicate that the two corresponding transformation
sequences are equivalent. For example, S and SS are connected
by a dashed line, since we have S(H) ≡ SS(H) (recall
Prop. 2). Based on the equivalence relations, some sequences
can be pruned because it suffices to run only one of the
equivalent sequences. For instance, CSC can be pruned since it
is equivalent to SC (given by Prop. 6). Note that any expansion
to the tree in Fig. 6 results in a sequence equivalent to one
of the existing tree node, i.e., all equivalence classes of K are
captured by this tree.

In particular, we would like to find out whether the set of
transformation sequences can be classified into a small number
of equivalence classes according to their domination power.
Based on this, we can then identify the optimal transformation
sequences which are not dominated by others. Under the
assumption that D is minimal, we are able to show that the
optimal transformation sequences are within at most seven
choices.

Theorem 2. If D produces minimal semantics-preserving slices,
then the optimal transformation sequences of K are within the
set K∗ = {SD, SCD,CSD,CDSD,CDSCD,DSD,DSCD}.

Proof. We begin by recognizing that there are the total of
14 equivalence classes of K, namely, ECK = {[S], [CS],
[DS], [SC], [SD], [CDS], [SCD], [CSD], [DSC], [DSD], [CDSC],
[CDSD], [DSCD], [CDSCD]}, as highlighted in Fig. 6. We
use [X] to denote the equivalence class of transformation
sequences represented by X. The nodes surrounded by dashed
boxes are non-terminal classes and the ones surrounded by
solid boxes are terminal classes. We prove by induction that
any other transformation sequence k ∈ K belongs to one of
these equivalence classes.

First, consider the base case where k0 ∈ {C,D,CD} or
[k0] ∈ ECK. Since C ≡ CS, D ≡ DS, and CD ≡ CDS by
Prop. 2, [k0] ∈ ECK and the induction hypothesis trivially
holds. Next, for any transformation sequence k, suppose
[k] ∈ ECK holds. We need to show that if any one of the
three transformation operators (S, C, and D) is appended to k,
the resulting transformation sequence k′ still belongs to the
equivalence classes in ECK, i.e., k′ ∈ [k]. This can be proven
by considering all 14 equivalence classes case-by-case. We
do one of these; others are very similar. When k ∈ [CS],
k′ is equivalent to either CSS, CSC, or CSD. Again, we
have CSS ≡ CS by Prop. 2; hence CSS ∈ [CS]. We also
have CSC ≡ SC by Prop. 6, and thus CSC ∈ [SC]. Finally,
CSD belongs to [CSD]; therefore, the hypothesis holds when
k ∈ [CS].

With the set of equivalence classes established, we then
show that the optimal transformation sequences of K are within
the seven sequences identified by K∗. We can divide ECK
into the terminal classes (K∗) and the non-terminal classes
(ECK \K∗), and show by case analysis that every non-terminal
class is dominated by some terminal class by Def. 13, i.e.,
D(H) ⊆ H for any H . Therefore, the optimal transformation
sequence not dominated by any other sequences must be one
of the terminal classes K∗.

GenSlice. Based on Thm. 2, a practical and efficient way to
obtain the optimal transformation sequence is to explore the
pruned slicing tree following Alg. 1 and compare the seven
terminal nodes. The best results among the seven are also the
best achievable (optimal) history slices with any transformation
sequence, given that DEFINER is minimal. We empirically
evaluate the precision and efficiency of GenSlice in Sects. VI-C
and VI-D, respectively.

VI. EVALUATION

We aim to answer the following questions through the
empirical evaluation:
RQ1 (Applicability): How frequently does the assumption
that D is minimal hold in practice?
RQ2 (Precision): What is the improvement on precision of
optimal slicing transformation sequence(s) compared with other
transformation sequences?
RQ3 (Efficiency): Which optimal slicing transformation se-
quence(s) are the most efficient?

RQ1 aims to find out whether GenSlice’s theoretically
optimal sequences given by Thm. 2 are applicable in practice;
RQ2 aims to measure the precision improvement of the optimal
transformation sequences over non-optimal transformation
sequences. RQ3 aims to compare the efficiency among the
optimal sequences and identify the most efficient ones.

A. Subjects

We conducted the experiments on a benchmark consisting of
28 functionalities selected from the DoSC dataset [11]. Each
functionality is identified by a unique key which refers to its
corresponding issue ID on the JIRA issue tracker [12] and is
accompanied by a set of tests. DoSC includes the starting and
ending versions of the software history which determine the
development life cycle of a functionality.

DoSC includes functionalities from nine open source projects:
Compress [13], Configuration [14], CSV [4], Flume [15],
IO [16], Lang [17], Maven [18], Net [19], and PDFBox [20].
All of these projects are written in Java and have openly
accessible change histories. Initially, five functionalities were
randomly selected from each project available in DoSC. We
then removed functionalities that are currently not supported
by CSLICER (e.g., those which include changes modifying
non-Java files) or take more than two hours to analyze with
DEFINER. In the end, our experiments used 28 functionalities
from nine projects—see Fig. 9 for their unique keys.

We conducted the experiments on a 6-core Intel(R) Core(TM)
i7-8700 CPU@3.20 GHz machine with 64GB of RAM, running
Ubuntu 18.04, with Java 1.8.0_151 and Python 3.6.7.

B. RQ1: Applicability

In the first experiment, we enumerated the history slices
obtained by running the standalone D on the subjects, checking
whether any subset of D(H) is still a functionality-preserving
history slice. Note that not all the results of D(H) of all
the subjects are feasible to enumerate. A given D(H) with
N commits requires running 2N combinations to check its



TABLE I
THE RESULT OF MINIMALITY CHECKING OF D IN PRACTICE.

Functionality |H| |D(H)| Minimal?

compress-375 15716 110 Yes
configuration-626 3170 45 Yes
csv-159 3489 136 Yes
flume-2628 28542 392 Yes
io-275 11153 203 Yes
io-288 11153 842 Yes
pdfbox-3069 16393 478 Yes
pdfbox-3307 1440 76 Yes
pdfbox-3418 16393 331 Yes

minimality. Each combination includes cherry-picking all of
the commits in the history slice to a new branch and executing
tests to check if they pass. As N increases, the resources
required by enumeration grow exponentially. Thus, we set a
limit N = 5, and only performed the minimality checking on
the subjects where |D(H)| < N (the number of commits). As
a result, we performed minimality checking on nine subjects.
These subjects are from six projects ranging from simple IO
handling to large distributed services. Structure-wise, there are
four single-module and two multi-module Maven projects. We
consider these subjects reasonably diverse for our experiment.

Table I shows the results. Column |H| represents the size of
the original history. Column |D(H)| represents the size of the
history slice obtained by D. The last column shows whether
D(H) is the minimal history slice. The results indicate that D
obtained the minimal history slice on all of the functionalities
where we performed the minimality checking.

Answer to RQ1. On all the functionalities where D(H) is
feasible to enumerate, the assumption that D is minimal holds.
This finding supports our claim that GenSlice’s theoretically
optimal sequences defined in Thm. 2 are applicable in practice.

C. RQ2: Precision
Our second experiment involves running all of the sequences

of the non-terminal classes in Fig. 6, comparing their reduction
rate with the result of GenSlice, and measuring the improve-
ment of the optimal slicing sequences over other sequences.
Fig. 7 shows the result of the comparison; each bar depicts the
average reduction rate of a sequence over the original history, in
terms of the number of changed lines, on all the subjects. The
bars are sorted in the order of levels of the tree in Fig. 6. The
rightmost bar, “GenSlice”, represents the reduction rate of the
optimal sequences, 94.60%, over the original history. We did
not compare with S (splitting standalone) because S changes
only the granularity of commits but does not perform reduction.
Similarly, C ≡ CS, D ≡ DS, and CD ≡ CDS in terms of
the slice size. Thus, we only compare with C, D, and CD,
but not with CS, DS, or CDS. The maximum improvement of
GenSlice over other sequences is observed w.r.t. the sequence C
(137.87%). The minimum improvement of GenSlice is observed
w.r.t. sequences DSC and CDSC (1.32%). On average, across
all non-terminal class sequences, the improvement is 35.35%.

Answer to RQ2. On average, GenSlice obtains a 35.35%
improvement in the reduction rate over all non-terminal class
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sequences, with the maximum being 137.87% and the minimum
being 1.32%. The results confirm that the optimal sequences
of GenSlice are more precise than others.

D. RQ3: Efficiency

Next, we compare the execution time across all the optimal
sequences—see Fig. 8 for the results. Blue bars show the
execution time of each sequence, averaging over all the 28
subjects; the number of subjects on which each sequence
achieves the best performance is shown in the parentheses
of the annotation above each bar. We ran each sequence
five times for each functionality and report the average. For
each sequence, the average variation across the executions is
always less than 3%. The detailed timing data is available at:
https://sites.google.com/view/genslice.

Based on these results, we make the following observations.
First, of all the sequences, CDSCD achieves the best efficiency
overall. It takes the least time, on average, and obtains the best
efficiency on more subjects. Second, SD performs the worst
overall, taking the longest time, on average, and performing
the best on only one case.

SD is the least efficient sequence because S increases the
number of commits, bringing more workload on D. We use a
case analysis of io-305 to show how adding a certain operator,
e.g., C, speeds up SD’s execution. We choose this case because
on it, SCD (427.76 seconds) is significantly (1.8X) faster than
SD (770.22 seconds). For both sequences, the first S splits the
original history into 546 file-level commits. After that, SD’s D
phase is directly executed on all of these file-level commits.
On the other hand, SCD’s C phase significantly reduces the
history slice, from 546 to 52 file-level commits (taking only 23

https://sites.google.com/view/genslice
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seconds), greatly decreasing the workload of the subsequent D
phase and thus resulting in a substantial speedup.

To study the difference in execution time between different
sequences, we detailed out the execution time and the reduction
rate of each operator in a sequence. Fig. 9 shows the execution
times and Fig. 10 shows the reduction rates for each operator in
two sequences, CDSCD and SCD, on an illustrative subset of
subjects. Results for all subjects are available on our website.

We observe that CDSCD performs well for projects with
focused commit, i.e., when each commit in the selected history
range either directly contributes to the target functionality or
is irrelevant to it. The three mng examples (mng-4904, mng-
4909, mng-4910) in Fig. 9 are of this kind: the commits in
their final history slice contribute to the target functionality in
full. Splitting such commits is ineffective as GenSlice always
makes the same decisions on all commit parts. Therefore, S
has little effect on the slicing result, i.e., SCD has almost
the same precision as CD. On the other hand, as S increases
the number of commits for the subsequent CD to process, it
decreases the overall efficiency of the sequence. We believe
that creating focused commits is a good practice, advocated by
many developers [21], [22], as it simplifies maintenance and
collaboration. The fact that all the three functionalities belong
to the Maven project also indicates that Maven developers are
in the habit of creating focused commits.

Our second finding is that the size of the target functionality
also influences the efficiency of some transformation sequences.
This is because the lengths of the history slices produced by
the C operator grow when the target functionality is large (its
corresponding test cases cover many code entities). In general,
on large functionalities, CDSCD clearly outperforms SCD;
otherwise, their difference is small. Specifically, in Fig. 9, the
four csv examples (csv-159, csv-175, csv-179, and csv-180) are
also focused, but CDSCD and SCD have similar performance.
SCD even takes slightly shorter time on three of these cases.
The reason is that these csv functionalities are much smaller
than those mng examples. Thus, although their original histories
are of similar lengths, after SC, D needs to process only 38
file-level commits for csv (it varies from 77 to 82 for mng),

making its execution fast and its efficiency similar to CDSCD.
Our third finding is that if the 1-minimal history slice is very

small, then running S first is potentially wasteful. For example,
S takes most of the time when executing SCD on io-173, io-275,
io-288, and io-290 (see Fig. 9), causing it to be less efficient
than CDSCD. The reason is that D’s underlying technique is
a delta debugging-style refinement. If the 1-minimal result is
small, it can quickly drop a large portion of the commits. For
such cases, running CD first is a more appropriate choice.

Our final finding is that if the commits on the target
functionality are not focused, D tends to be inefficient. For
example, the first D in CDSCD spends much more time on
io-305 than on the other four io examples. Combining with
results in Figs. 9 and 10, we also observed that running D on
io-305 reduces much less changes than on other io examples.
Inspecting io-305 manually, we determined that its functionality
is not focused but rather implemented by multiple commits
spreading over the history, where each relevant commit has
multiple purposes. D’s partition is extremely inefficient in such
a case, incurring the large overhead.

Interestingly, in practice, longer sequences of operators may
be more efficient than shorter ones. For instance, SCD and
CDSCD both outperformed SD in terms of the execution time.
CDSCD suggests a methodology of pipelining transformation
operators: we should begin by applying coarse-grained analysis
to obtain an initial valid history slice and then apply fine-grained
analysis only on those commits that need further refinement.

Answer to RQ3. Of the seven sequences in Thm. 2, CDSCD
is deemed to be the best overall: its achieves the least average
execution time among all optimal sequences. Therefore, we
recommend that developers use CDSCD in history slicing tasks.
We also discover two important characteristics—focusing and
size—of the target functionality that influence the efficiency of
sequences. CDSCD performs extremely well when the target
functionality is focused and large.

E. Threats to Validity

Our work has several threats to validity. Our findings may
not generalize to software projects other than those used in our



evaluation. To mitigate this threat, we used several projects
from the largest dataset related to history slicing.

Results reported in this paper were obtained on a single
machine, and our findings related to execution time might differ
on another machine. While working on the implementation
of our tool, we have used several machines with different
hardware configurations and observed similar trends in terms
of execution time. We also repeated each experiment five times
and averaged the execution times.

Our experiment scripts and implementation of the slicing
operators may have bugs. We mitigate this threat by imple-
menting our tool on top of existing history slicing tools. We
make the raw results and replication package available at
https://doi.org/10.21979/N9/LPHCUS.

VII. RELATED WORK

There is a large body of work on analyzing and understanding
software histories. The basic research goals are retrieving
useful information from change histories to help understand
development practices [23], [24], [25], [26], localize bugs [10],
[27], and suggest likely further code changes [28], [29].

A. Change History Transformations

Servant and Jones [26] first proposed the concept of history
slicing, which extracts version histories relevant to a selected
set of lines of code. The results of history slicing is a graph
that links every line of the selected code with its corresponding
previous version through the history of the software project.
The goal is to provide a reduced amount of information about
the code of interest, in order to assist a number of tasks such as
inferring design rationale from past code changes or assessing
developer expertise for a software feature or bug. However,
history slicing [26] and semantic history slicing [30], [31], [1]
are two different techniques. The former operates completely
on the syntactic level, i.e., on the text-based view of change
histories. The latter takes into account both the syntax and
the semantics of changes, and produces semantics-preserving
history slices.

Another interesting direction on history analysis is history
transformation [32], [23]. Muşlu et al. [23] introduced a
concept of multi-grained development history views. Instead of
using a fixed representation of the change history, the authors
propose a more flexible framework which can transform change
histories into different representations at various levels of
granularity to better facilitate the tasks at hand. As a potential
future direction, such transformations can be combined with
semantic history slicing to build a view of change history
that clusters semantically related changes. Barnett et al. [33]
proposed an automatic technique for decomposing change sets
into multiple independent code differences based on syntactical
relationships between changes, aiming to assist developers to
understand changes in a code review. Unlike their approach,
GenSlice splits commits based on changed files, and our goal of
splitting is improving the precision of semantic history slicing.

B. Fault Localization in Version Histories

Delta debugging [10] uses divide-and-conquer-style iterative
test executions to narrow down the causes of software failures.
Delta debugging was applied to minimize the set of changes
which cause regression test failures. This problem can be
considered as finding minimal semantic history slices w.r.t. the
failure-inducing properties. However, in contrast to DEFINER
(one of the operators in GenSlice), which extracts semantic
information from test results to guide its subsequent partition,
delta debugging does not exploit this information, and its
partition scheme is fixed. Regarding slice quality, Zeller
and Hildebrandt [27] consider an approximated version of
minimality, i.e., 1-minimality, which guarantees that removing
any single change breaks the target properties.

Selective bisection debugging [34] is an enhancement over
the traditional bisection debugging approaches based on binary
search over a software change history (e.g., Git-bisect [35]).
Bisection debugging is widely used in practice to identify bug
introducing commits, but it can be expensive due to costly
compilation and test execution. Selective bisection debugging
uses test selection and commit selection to reduce the number
of tests to run and the number of commits to consider. In
particular, commit selection uses test coverage information to
predict whether a certain commit in a bisection step does not
lead to a failing test and thus can be skipped to save time. This
is similar to DEFINER as they both rely on test signals to make
predictions to reduce overall cost of computation. Conceptually,
though, there is a difference: selective bisection debugging tries
to find which commits cause the test to fail, while we look
for commits that cause the test to pass. Another difference is
that bisection debugging tries to locate a certain version while
GenSlice attempts to find a 1-minimal history slice, which is
a more difficult problem (O(log n) vs. O(n2)).

VIII. CONCLUSIONS

Semantic history slicing addresses the problem of identifying
changes related to a particular high-level functionality from the
software change histories. Existing solutions to this problem
are either imprecise, resulting in larger-than-necessary history
slices, or inefficient, taking a long time to execute. To overcome
these limitations, we presented GenSlice, a novel framework
that abstracts change history management operations and
existing history slicing techniques as transformation operators,
which can be applied sequentially in various orders. We studied
and proved properties of several operator combinations and
devised a systematic approach for efficiently producing history
slices which are optimal for practical purposes. We reported
on an empirical evaluation of our framework demonstrating its
effectiveness on a set of real-world case studies and highlighted
the most efficient sequences.
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