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Abstract—Software maintenance constitutes a large portion of
the software development lifecycle. To carry out maintenance
tasks, developers often need to understand and reproduce bug
reports. As such, there has been increasing research activity
coalescing around the notion of automating various activities
related to bug reporting. A sizable portion of this research interest
has focused on the domain of mobile apps. However, as research
around mobile app bug reporting progresses, there is a clear
need for a manually vetted and reproducible set of real-world
bug reports that can serve as a benchmark for future work. This
paper presents ANDROR2: a dataset of 90 manually reproduced
bug reports for Android apps listed on Google Play and hosted
on GitHub, systematically collected via an in-depth analysis of
459 reports extracted from the GitHub issue tracker. For each
reproduced report, ANDROR2 includes the original bug report,
an apk file for the buggy version of the app, an executable
reproduction script, and metadata regarding the quality of the
reproduction steps associated with the original report. We believe
that the ANDROR2 dataset can be used to facilitate research in
automatically analyzing, understanding, reproducing, localizing,
and fixing bugs for mobile applications as well as other software
maintenance activities more broadly.

I. INTRODUCTION

Software maintenance activities are known to be generally
time consuming, so much so that prior studies have illustrated
they can often comprise more than half of the development
effort for a given software project [1]. While developers carry
out a vast array of maintenance activities, perhaps no artifact
is more central to a wider variety of maintenance tasks than
the bug reports filed in issue tracking systems.

A sizable portion of the research around automating ac-
tivities related to bug report management has focused upon
the domain of mobile applications [2], [3], [4], [5], as mo-
bile devices and apps continue to grow in their ubiquity
and popularity (e.g., 3 million apps on Google Play [6]),
and developers require new techniques and tools to cope
with challenges related to rapidly evolving and fragmented
devices [7], [8] and a growing user base [9]. However, most
existing studies on automating bug management activities for
mobile applications are limited by the lack of a reliable
and systematically created dataset, and tend to be evaluated
against a manually curated sets of bug reports [2], [3], [4].
This complicates measuring the progress of automation in
this research area due to the difficulty to compare techniques
developed for similar maintenance tasks.

To help address these current limitations of research on
automated management of mobile app bugs, this paper in-
troduces the ANDROR?2 dataset [10]. ANDROR?2 consists of
90 manually-reproduced bug reports, collected via an in-
depth analysis of 459 issues systematically mined from the
bug tracking system of Android apps hosted on GitHub and
available on the Google Play Store [6]. ANDROR2 includes
23 reports describing a failure that manifests as a crash
and 67 reports detailing a non-crashing failure. Each bug
report in the ANDROR2 dataset was manually verified to
be fully reproducible by at least two authors of this paper;
the dataset includes both executable .apk files and Android
device configurations that allow for the reproduction of each
reported bug. Furthermore, given that prior work illustrated the
criticality of reproduction steps (S2Rs) to the quality of bug
reports [11], [2], for each included bug, we offer an extensive
analysis of the S2Rs and include structured data representation
of information related to the number of steps, issues with the
reported steps (e.g., missing information), as well as the setup
or environmental constraints required for the bug to manifest.
Finally, we include automated scripts that fully reproduce the
failures described in the reports.

We believe that this dataset will support future work and
studies related to automating various bug reporting activities.
In particular, by including both the (often) flawed user reported
S2Rs, as well as "ground truth" sets of reproduction steps, we
believe that the dataset can directly support future work on
bug report quality assessment and reproduction. Additionally,
we describe how ANDROR?2 and its intermediate artifacts can
be used and extended to support research in a broad range of
software testing and maintenance activities.

II. ORIGINALITY OF THE DATASET

There are a number of datasets from prior work on auto-
mated bug report management. Most notable are the datasets
from the papers introducing FUSION [5] (15 reports), EU-
LER [2] (24 reports), YAKUSU [3] (48 reports and 12 trivial
reports), and ReCDroid [4] (51 reports).

The ANDROR?2 dataset is largely complimentary to these
datasets (it includes only one bug report contained in these
datasets) and exhibits several key differences that set it
apart. First, the ANDROR?2 dataset includes different types of
bugs representing a more diverse population of faults (i.e.,
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Figure 1: High-level overview on the methodology used to build ANDROR?2.

faults leading to crashing and non-crashing failures), whereas
the largest datasets from prior work focused exclusively on
crashes [3], [4]. Second, ANDROR2 was built using a sys-
tematic methodology for mining, filtering, and reproducing the
reports that focuses on reports written by non-contributors (e.g.
likely originating from end-users). This diversity in reporters
is important for future work on automatically analyzing bug
reports, as prior work has shown that reporters of different
levels of expertise construct bug reports differently [12]. Third,
ANDROR?2 contains important metadata related to the S2Rs
of the collected bugs, which can support new and continuing
lines of research as described in Section V. Finally, our dataset
is both the largest to date and contains automated scripts for
reproducing the reported bugs.

III. DATASET CREATION

In this section, we present the methodology used to build
ANDROR?2 and also discuss the key challenges faced during
its construction. Figure 1 provides a high-level overview of our
methodology workflow, which consisted of three main phases:
the bug reports collection phase, the bug reports filtering
phase, and the failure reproduction phase. The rest of this
section describes the three phases in detail.

A. Bug Reports Collection

In the bug reports collection phase, we built a dataset of bug
reports based on GitHub issues [13]. We selected GitHub as
the source for building ANDROR2, both due to its popularity
and integration of source code hosting and issue tracking,
which allowed us to both mine relevant bug reports and build
executable .apk files from source code. To identify relevant
issues, we built a tool based on the GitHub REST API [14]
that mines issues containing reported bugs.

First, we mined all GitHub issues posted between January
Ist, 2016 and November Ist, 2020 that met the following
criteria: (i) are part of repositories that use Java and (ii) have
the label “bug”. We performed this task by creating one query
for each day during the 5 year date range, and the query
was retrieving the issues created on the day (each individual
query never returned more than 1,000 results, which is the
search limit associated with the GitHub REST API [15]).
We considered issues created in the last five years to avoid
frequently encountered problems in building or finding the
executables (i.e., .apks [16]) of app versions corresponding
to older reports. We selected issues labelled as “bug” to
effectively identify those likely related to bug reports and
ignore issues discussing ideas, enhancements, or tasks.

Second, for each issue identified in the first step, we used
our mining tool to determine whether the issue was part of
a repository containing an Android app. This was accom-
plished by cloning the repository associated with the issue and
checking whether it contained an AndroidManifest.xml file, as
each Android app requires this file to properly compile [17].
Once we confirmed that an issue was part of a repository
likely containing an Android app, we included the issue as a
document in a MongoDB [18] database. At the end of this
first phase, this bug reports database contained 82,455 issues.

B. Bug Reports Filtering

In this phase, we systemically collected a set of issues
from the bug reports database with the objective of building
a representative set of bug reports which could then be
further analyzed manually. To this end, we first identified and
selected issues that belong to repositories whose app is on
the Google Play Store to help eliminate issues with trivial
apps. This resulted in a set of 28,501 issues. Second, because
ANDROR?2 aims to foster research on bug reports and their
S2Rs, we collected issues that contain the word ‘steps’ in
any portion of the report. We used this measure to avoid
manually processing a large number of issues without S2Rs
during the failure reproduction phase. This step resulted in
6,365 issues. Third, we further refined the set of issues to
only contain those created by a GitHub user that had not
contributed to the repository, resulting in 3,842 issues. Fourth,
we selected issues that were closed at the time the issues
were mined (November 2020). We focused on closed issues
so that we could more easily identify whether the issues were
also originally reproduced by the developers and to provide
a higher likelihood of manual bug reproduction in the next
phase. This filtering resulted in 3,005 reports. Fifth, after
analyzing the set of issues, we found that some repositories
had a much larger number of issues compared to others. To
avoid overfitting ANDROR?2 to a specific app, we considered
at most ten issues per repository. When a repository had more
than ten issues, we randomly selected ten from this set (we did
this operation for 24 repositories). The resulting set of issues
consisted of 459 bug reports for 121 apps. Finally, to further
facilitate the process of reproducing the issues, two authors of
this paper read each of the 459 issues and filtered out those
that were either not reproduced by the developers (170) by
looking for this information in the discussion associated with
the report or were trivial, i.e., occur by simply opening the
app (15). This resulted in 274 issues for 88 apps, and we call
this set the filtered bug reports.



C. Failure Reproduction Phase

In the last phase of our dataset creation process, we
manually processed the filtered 274 bug reports to create
ANDROR?2. Specifically, we first analyzed each of the fil-
tered bug reports to manually reproduced the failures. This
process resulted in 90 successfully reproducible bug reports.
Then, for each reproducible report, we derived reproduction
metadata (detailed in Section IV) on the quality of the S2Rs
in bug reports, and created executable reproduction scripts.
The reproducible bug reports, the reproduction metadata, the
reproduction scripts, and the relevant APKs (i.e., the relevant
app executables) make up the content of ANDROR?2 dataset.

Five of the authors worked to reproduce the failures de-
scribed in the filtered bug reports. When reproducing a bug
report, the authors first identified the version of the app
associated with that report. If the bug report did not provide the
version information, the authors used the latest version of the
app that was released before the date the report was submitted.
Second, the authors checked whether the report identified the
version of the Android OS on which the user experienced the
failure. If the report contained this information, the authors
used that version to reproduce the failure. Otherwise, the
authors extracted the targetSdkVersion value [19] from the
app and used that value as the version of the Android OS on
which to reproduce the failure. Finally, the authors attempted
to reproduce the failure by interacting with a Pixel 2 emulator
running the app and Android versions they identified.

To reproduce a failure, the authors followed the S2Rs
contained in the bug report by mapping the steps to GUI
actions in the app. If a report had missing S2Rs, the authors
manually explored the functionality of the app to identify the
minimal sequence of GUI actions that would account for those
missing steps. (The authors used a trial-and-error approach
in this situation.) For successfully reproduced failures, the
authors repeated the reproduction steps at least one additional
time as a sanity check and two authors tried to reproduced
the same bug report to ensure that reproduced failure was the
same as the one described in the report. The authors then
encoded the GUI actions in a reproduction script using the
UIAutomator framework.

To ensure the reliability of the manual reproduction phase,
the work was divided into two stages. In the first stage, we
divided the filtered bug reports among the five authors, and
they attempted to reproduce the bug reports. In the second
stage, we selected the bug reports that were not reproduced
successfully and reassigned them so that another author made
a second reproduction attempt. At the end of the second stage,
we had 90 reproducible bug reports. The reasons we could not
reproduce certain bug reports were as follows: we could not
reproduce the failure even if we followed the S2Rs in the
report (76 cases); could not build or find a suitable APK for
reproducing the bug (56 cases); the bug report required the use
of an additional device (24 cases); a personal account is needed
for reproducing the report (16 cases); the bug report required
the use of additional files we could not access (7 cases); the
bug report required the use of a real device (5 cases). It is

worth noting that the effort required to undertake this process
was quite high: around six man-months. This phase was the
one that introduced the main challenges in building ANDROR?2
as it required carefully mapping S2Rs to GUI actions while
accounting for missing or ambiguous S2Rs.

IV. DATASET CHARACTERISTICS

ANDROR?2 is available as on Zenodo [10]. The dataset
contains the reproducible bug reports, the reproduction meta-
data, the relevant .apks, and the reproduction scripts. The
reproducible bug reports are located in the reports folder and
are in their original HTML format. The reproduction metadata
is in the metadata folder and encoded in JSON files. The
relevant APKs are in the apks folder. The reproduction scripts
are in the scripts folder and are encoded as UIAutomator
tests. We used UIAutomator as it allows for interacting with
both the Android OS and other apps, which is necessary
for some reports. The dataset also contains a README.md
that describes its content. Finally, the scripts and tools we
developed to build ANDROR2 are in the code folder.

Dataset Details. To detail the data stored in ANDROR2, we
use a bug report (BR#160) contained in the dataset as a running
example. Figure 2 shows the relevant portion of the bug report,
Figure 3 presents the metadata associated with the bug report,
and Figure 4 illustrates part of the reports’ reproduction script.

The bug report contains three S2Rs (under the header
“Reproduction Steps”). The reproduction metadata provides
information on the failure reproduction task and how it
connects to the bug report’s information. The metadata also
contains a detail natural language description of all the S2Rs
necessary to reproduce the failure of the report. (We provide
a full description of the metadata in [10].) In short, id is
the identifier for the bug report in ANDROR?2, github_issue
provides the link to the GitHub issue, and failure_type
describes the type of failure associated with the report. We
classified failures under three categories: crash identifies a
crash in the app, output represents an error in the output
of the app, and gui identifies an error in the properties of the
app’s GUL For BR#160, the failure is of type gui because an
app icon is not displayed correctly.

Further, s2rs provides the number of S2Rs in the report.
We counted S2Rs as follows. If the report provided a bulleted
(numbered) list for the S2Rs, we counted how many bulleted
(numbered) items are listed. If the S2Rs are described through
text paragraphs, we counted the number of sentences in the
paragraphs. gui_actions is the number of GUI actions exer-
cised by authors to reproduce the failure. setup_gui_actions
is the number of GUI actions that were necessary before the
author could perform the GUI action(s) associated with the
first S2R. For BR#160, there are eight such actions. Two
actions are necessary after a fresh install of the app, and six
actions are required to create a flashcard required by the S2Rs
of the report. rs_gui_actions provides the number of report-
specific GUI actions, that is, the number of actions associated
with the sequence of S2Rs in the report. ANDROR2 also
includes scripts for reproducing the failures of the reports.
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Title: Problem with the eraser tab {"id": 160,

Reproduction Steps "commit_id"”: "abdldb2...

1. Click on whiteboard tab while reviewing flashcards "android_os”:"11",
and use the feature to write/draw anything "failure_type":"gui",
2. Click on the erase tab till you have undone the "s2rs":3,

drawing and the erase tab grays out
3. Redraw anything by clicking on the whiteboard icon

"gui_actions”:14,
"setup_gui_actions”:8,
"rs_gui_actions”:6,
Expected Result

Upon redrawing, the eraser tab should revert its color
from gray to white

"sgas_in_android_os":1,
"sgas_outside_app"”:0,
"rsgas_in_android_os":0,
"rsgas_outside_app”:0,
"sga_nl_description”: "

Actual Result
On redrawing, the eraser tab still remains grayed out.

Debug info
...AnkiDroid Version = 2.10beta3
Android Version = 10...

\

"github_issue”: "https://...",

"rs_missing_gui_actions”
"multiple_gui_action_s2rs:":1,
"gui_actions_in_mgas2rs"”

"rsga_nl_description”: "

N\
1 public class Script160 {
2 ...
", 3 @Test
4 public void reproduce() {
5 ...
6 UiObject2 Default = mDevice.wait(
7 Until.findObject(By.text( "Default”)),2000);
8 Default.click();
9
:0, 10 UiObject2 More = mDevice.wait(
11 Until.findObject(By.desc( "More options”)),2000);
14, 12 More.click();
13
14 UiObject2 Whiteboard = mDevice.wait(
15 Until.findObject(By.text( "Enable whiteboard”)),2000);
16  Whiteboard.click();
s 17
3 18 mDevice.drag(300,300, 600, 600, 1);
9 ...
7

Figure 2: Bug report #160.

Figure 4 shows part of the script for reproducing BR#160 and
includes four GUI actions (lines 6, 10, 14, and 18).

Dataset Summary Statistics. ANDROR2 contains 90 repro-
ducible bug reports. Among the bug reports, 23 describe
crashes, 34 detail output errors, 33 report GUI errors, 77
require setup GUI actions, 33 have report-specific GUI actions
not mentioned by the S2Rs, and 57 contain at least one S2R
that leads to multiple GUI actions. ANDROR?2 also contains 90
executable scripts reproducing the failure of the bug reports.

V. APPLICATIONS, LIMITATIONS, AND EXTENSIONS

The primary use of our dataset is to facilitate research
related to automated analysis, understanding, and reproduction
of bug reports. For example, recent approaches that utilize
program analysis and natural language processing to automat-
ically reproduce crashes in Android apps [20], [3], [21] could
use our dataset to measure the fraction of successfully repro-
duced reports. Such approaches can also utilize our manually-
produced “ground truth” execution scripts, comparing the
number of steps in the automated and manually produced
versions to ensure that an automated reproduction does not
produce excessively long and cumbersome scripts. ANDROR?2
could be also used be used to perform bug report prioritization
based on the quality of S2Rs. Finally, the dataset could be used
by techniques that aim to map S2Rs into GUI actions [22].

Additional Usages. Beyond the bug report management sce-
narios, ANDROR?2 could be used to benefit research in:

1) Targeted app exploration approaches, e.g., [23], [24], [25],
[26], rely on static and dynamic program analysis to force
execution towards a particular line of code or app screen.
Such approaches could set faults in our dataset as exploration
targets, verifying the ability of an approach to successfully
reach the target (without relying on the bug report for that
purpose) and, when successful, comparing the number of steps
in the produced execution to those in our execution scripts.

2) ANDROR2 can be used as a benchmark to assess the
efficiency and scalability of dynamic application slicing tech-
niques [27], [28]. Such techniques are typically used for
debugging purposes, with a fault set as the slicing criteria.

Figure 3: Metadata.

Figure 4: Reproduction script.

3) Similarly, fault localization techniques [29], especially for
Android applications [30], could benefit from our collection
of apps with “verified” faulty behaviors.

4) Finally, automated approaches for analyzing video record-
ings of Android app usages into replayable scenarios,
e.g., [31], could use execution scripts in our dataset as a testbed
for evaluating whether the tools can accurately analyze and
replay scenarios from screen recordings.

Dataset Extensions. The most obvious way of extending our
dataset is to analyze and reproduce more bug reports. To
facilitate such extension, we include with ANDROR?2 a tool
for mining, extracting, and storing issues from GitHub. In
addition, we provide a database of current 82,455 collected
issues.

ANDROR?2 can be further extended through the addition
of assertion statements to the reproduction scripts of bugs
without an explicit oracle (i.e., crashing bugs) in order to
create a set of functional tests. With such assertions added,
the dataset could help to foster research related to automated
bug repair techniques, to validate that the proposed repairs are
successful and lead to a passing test. Furthermore, augmenting
the execution scripts with assertions can provide the needed
reference model to evaluate automated assertion generation
techniques, e.g., [32].

Another way to extend ANDROR? is by including multiple
different variants of bug reproduction scripts, i.e., those that
perform different sets of actions that lead to the same bug, as
opposed to the minimal action sequences currently provided.
Such an extension could facilitate research which examines
test case selection and prioritization techniques [33] as well as
research on detecting duplicate video-based bug reports [34].

VI. CONCLUSIONS

This paper presented the ANDROR2 dataset. We believe
that this dataset fosters open, reproducible future research
on automated bug report management, software testing, and
software maintenance more broadly.
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