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Abstract—Numerous static taint analysis techniques have recently been proposed for identifying information flows in mobile applications.
These techniques are often optimized and evaluated on a set of synthetic benchmarks, which makes the comparison results difficult to
generalize. Moreover, the techniques are commonly compared under different configuration setups, rendering the comparisons inaccurate.
In this paper, we provide a large, controlled, and independent comparison of the three most prominent static taint analysis tools:
FLOWDROID, AMANDROID, and DROIDSAFE. We align the configuration setup for the tools and evaluate them on both a set of common
benchmarks and on real applications from the Google Play app store. We further evaluate the effectiveness of additional reflection
handling mechanism implemented by DROIDRA, applying it to each of the evaluated tools. We compare the results of our analysis to the
results reported in previous studies, identify main reasons for inaccuracy in existing tools, and provide suggestions for future research.
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1 INTRODUCTION

S TATIC taint analysis is commonly used for identifying
information flows in mobile applications and numerous

tools for performing such analysis have being proposed [1]–
[8]. The authors of these tools typically tune and evaluate
them on a set of common benchmarks, such as Droid-
Bench [9] and ICC-Bench [10]. Our experience, however,
shows that the tools are often compared under different
setups, making the comparison inaccurate. The tools are also
mostly compared on a set of synthetic benchmarks, making
it difficult to predict the performance of tools on real apps.

Some authors [2], [5], [11], [12] evaluate a particular
tool on F-Droid [13] and Google Play [14] apps. Others [4],
[15]–[18] compare the tools with each other but, as with
benchmark apps, do not align the tool setups. Moreover, they
mostly focus on reporting the number of detected flows and
runtime failures, without considering the set of expected flows,
analyzing false negatives, and reporting reasons leading to
false positive and false negative results.

We address these limitations in our work, performing an
independent, controlled, and large-scale study comparing
the three most-popular open-source static taint analysis tools
to each other: FLOWDROID, AMANDROID, and DROIDSAFE.
We focus on comparing the performance of the tools in terms
of accuracy, execution time, and memory consumption. We
configure the tools to use a similar setup and we evaluate the
tools on more than 180 benchmark applications and 25 appli-
cations from the Google Play store, for which we carefully
collected the expected flows (82 flows in total). Furthermore,
we augment each tool with a solution supporting better
handling of reflective calls, DROIDRA [19], [20], and evaluate
its effectiveness on both benchmark and Google Play apps.
We compare the results of our study with the results in earlier
reports, discuss the strengths and weaknesses of each tool,
and the implications of our findings. As our team is not
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involved in the development of these tools, our analysis is
completely independent. Moreover, we make the results of
our analysis, the set of subject applications that we used, and
our configuration setup available to the community, making
our study replicable and reproducible.
Our work aims at answering the following research
questions:

RQ1: How well do the tools perform on the benchmark
applications?
RQ2: What are the main causes of inaccuracy for the
benchmark applications?
RQ3: Do the results on the benchmark applications general-
ize to the Google Play applications?

To answer RQ1, we extracted the configuration options used
in the empirical evaluation of FLOWDROID [2], [4], [21],
AMANDROID [5], [11], and DROIDSAFE [6]. As most of these
reports do not provide detailed information about the version
of the tools they used for evaluation, the parameters used
for configuring the tools, the list of the used sources and
sinks, and the exact set of DroidBench and ICC-Bench apps
used in the evaluation, we performed our own experiments,
evaluating each tool with a common configuration setup we
have chosen, on the same set of applications, and using the
same set of sources and sinks.

We used the DroidBench and ICC-Bench benchmark
suites. Our results show that on these benchmark suites,
DROIDSAFE has the highest accuracy, FLOWDROID comes
second, and AMANDROID has the lowest accuracy. DROIDRA,
originally developed and evaluated with an older version of
FLOWDROID in mind, does not help resolve any reflection-
related cases for the newer version of FLOWDROID. Interest-
ingly, it helps to improve the accuracy of AMANDROID and
DROIDSAFE, albeit slightly.

The accuracy of the tools in our experiment often differs
from the results reported in earlier studies. For example, the
authors of AMANDROID report an F-measure of 81% [5] and
96% [11] when executed on the DroidBench benchmark suite;
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we were unable to replicate these results, most likely due
to a different selection of benchmark apps and tool version,
observing an F-measure of 61% for our experimental setup.

For RQ2, we manually analyzed the false positive (FP)
and false negative (FN) results reported by each tool. In a
nutshell, we observed that all tools have major issues in
handling reflection, albeit for different reasons. DROIDRA
helps resolve some of these issues for AMANDROID and
DROIDSAFE but fails to handle complicated reflection-related
constructs. In addition, FLOWDROID fails to accurately parse
and track ICC Intents involving complex string analysis
and list management operations; AMANDROID does not
accurately handle Android framework methods, lifecycle
and callback methods, and location-related flows.

For RQ3, we investigated whether FLOWDROID and
AMANDROID are able to identify the flow in two real
application scenarios: (a) from the login credentials entered
by the user to an Internet transmission operation and (b)
from user- or phone-specific sensitive information to an
Internet transmission operation. We also experimented with
applying DROIDRA. However, we excluded DROIDSAFE
from this analysis as the tool authors explicitly state that the
tool is not designed to run on Google Play apps [22] and our
experiments concur with that statement.

The rationale behind selecting the login case study is that
applications have to send user credentials out to the Internet
to support the login functionality. For the sensitive informa-
tion case study, we selected known spyware applications
that leak private information to their servers. We use this
information transmission as an expected flow in a real-world
app and check how well the tools perform for identifying
this flow. We also manually inspected all other flows the
tools found in each application, identified FP results, and
analyzed the reasons behind the tools’ FPs and FNs.

We configured both tools to run for three days per each
Google Play application and allocated 256 GB of memory
for each run. Our results show that FLOWDROID crashes
with exceptions in 11 out of 25 applications, mostly when
analyzing certain ICC flows and reflective calls. AMANDROID
is able to analyze 14 applications but reports a different
number of flows in each run. For example, for one of the
apps, it reports 0, 3, 28, and 43 flows in four identical runs.
We thus could not perform a reliable analysis of false-positive
and false-negative results for AMANDROID.

For the 14 applications that FLOWDROID successfully
analyzed, it could only detect expected flows in two applica-
tions, having difficulties detecting certain callback methods
and reflective calls, as Google Play apps rely on callback/re-
flection mechanisms not covered in benchmarks. DROIDRA
does not help improve the accuracy of the tool for reflective
calls. Moreover, while FLOWDROID’s modeling of Android
framework methods is accurate for all methods used in the
benchmarks, it does not cover methods used in Google Play
apps, leading to both false-positive and false-negative results.

Overall, our results suggest that despite the success on the
benchmark apps, the tools cannot be used to reliably analyze
flows in real applications. As the failures we observed were
not explicitly covered by existing benchmarks, we created
a sample app isolating each failure and added it to our
own benchmark suite, called UBCBench [23]. We intend to
contribute this suite to DroidBench ; we are also working

with the authors of FLOWDROID and AMANDROID to fix
some of the failures (DROIDSAFE is no longer supported).

Contributions. This paper reports on an extension of our
earlier study published at ISSTA’18 [24]. The ISSTA paper
compared FLOWDROID, AMANDROID, and DROIDSAFE
under the same setup on benchmark apps and reported
on the results of our findings. The follow-up work described
in this paper performs the same experiments using the
latest versions of the tools and benchmark suites. It also
includes a new experiment conducted on the Google Play
apps, comparing the tools in a realistic use case.

The contributions this paper makes are described below:
• It provides an in-depth independent analysis that com-

pares the available static taint analysis tools for Android
applications under a similar setup, on both benchmark
and Google Play apps, and puts the results in the context
of reports from earlier studies.

• It identifies the main strengths and weaknesses of each
tool.

• It provides detailed information about the chosen con-
figuration setup, selected sources and sinks, and appli-
cations used for analysis, making the results replicable
and reproducible.

• It extends the benchmarks used for comparing Android-
specific static taint analysis tools with previously uncov-
ered cases.

• It contributes 25 Google Play apps with manually
established expected flows.

• It makes our experimental setup and results publicly
available, to support replication and reproducibility [23].

The remainder of this paper is structured as follows:
Section 2 provides the necessary background on taint anal-
ysis. Section 3 outlines our study design, including the
selection and configuration of the tools and subject apps,
our definition of expected results, and metrics we used for
tool evaluations. Section 4 presents the results of our analysis
for the benchmark apps and Section 5 – for the Google Play
apps. We outline the limitations of our approach and threats
to the experiment validity in Section 6 and discuss the lessons
learned in Section 7. We finalize the paper with the discussion
of related work in Section 8 and conclusions in Section 9.

2 BACKGROUND: TAINT ANALYSIS

We now introduce the basic concepts of static taint analysis –
a popular information flow analysis technique which tracks
the flow of sensitive information from a set of sensitive
sources to sensitive sinks. In our context, sources define
the information we want to protect on a mobile device
(e.g., phone number, contacts, location, and unique device
identifiers) and sinks define points of unwanted information
release (e.g., methods related to the Internet and SMS
transmission). If data from a sensitive source reaches a sink,
taint tracking identifies the path from the source to the sink
as an instance of data leakage.

Taint analysis can be implemented both statically and
dynamically; this paper focuses on static taint analysis tech-
niques, i.e., those that track taint propagation by analyzing
the code of an Android application without ever running
it. Examples of tools implementing static taint analysis
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1 class A{
2 void sink(String){...}
3 }
4 void foo() {
5 A a1 = new A(); a1.sink("tainted");
6 }
7 void bar() {
8 A a2 = new A(); a2.sink("untainted");
9 }

Fig. 1: Context and object sensitivity.

include FLOWDROID, AMANDROID, and DROIDSAFE. The
tools mostly differ in design decisions they take for making
the analysis accurate and scalable at the same time. Below,
we briefly discuss four main dimensions for such decisions.

1. Sensitivities. To handle aliasing and virtual dispatch
constructs, typical static analysis for Java programs applies
some degree of context, object, and field sensitivity; flow and
path sensitivities are used to control the order of statements
and their correspondence to branches of the program:

A context-sensitive analysis considers the calling context,
i.e., a sequence of call sites, when analyzing the target of a
method call. Specifically, in a k-call-site-sensitive analysis, the
context of a called method includes the current call site of
the method and the call sites of the caller methods, up to a
pre-defined depth k [25]. For the example in Fig. 1, foo()
and bar() are two different call sites for the method call
sink(), which are used by a context-sensitive analysis to
differentiate the flows to this method.

An object-sensitive analysis uses object abstractions, i.e.,
allocation sites, as context [25]. Specifically, the analysis
qualifies the method local variables with the allocation site
of the receiver object of the method call. For the example in
Fig. 1, object sensitive analysis uses the heap addresses of
objects a1 and a2 to differentiate the calls to sink(). That is,
context- and object-sensitive analyses use different program
elements – call sites vs. allocation sites – as differentiating
contextual information.

A field-sensitive analysis distinguishes different fields
of the same abstract object, instead of lumping all fields
together [25], [26].

A flow-sensitive analysis takes the order of statements
into account [25]. For example, for a list of statements
x=1; y=x+1; x=2, a flow-sensitive analysis will be able
to determine that y=2, whereas a flow-insensitive analysis
will conclude that y=2 or y=3.

A path-sensitive analysis collects path information which
indicates the feasibility of a path. For instance, for a branch
condition x > 0, the analysis would assume x > 0 on the
target of the branch and x <= 0 on the fall-through path.

2. Implicit flows. Implicit flows are flows in which sensitive
data indirectly impacts the observed output by affecting
which branch to take in the control flow [27]. A typical ex-
ample is: if taint then output = 1 else output =
0, where taint would affect which branch to take, then
further affect the value of the variable output. Conceptually,
an implicit flow tracker taints all data items that are depen-
dent on the taint from the conditional, hence can result in
large numbers of false-positives.

3. Java-specific features. As Android applications are gen-
erally written in Java, analysis tools need to handle Java-
specific features, such as reflection and exceptions. Reflection
refers to the ability to dynamically access members and type

information of an object, often based on string representa-
tions of the member’s or type’s name. Android developers
heavily rely on reflection, e.g., for backward compatibility,
generality, and sometimes for hiding sensitive information
flows [28]. Accurately resolving reflective calls poses a
challenge to the soundness of static analysis. To address
this problem, some tools consider all possible resolutions for
a reflective call. Others restrict the resolution by type of the
variable, its scope, etc. [29].

Exceptions can be thrown by a statement or expression,
and then read by the catch code block either within the
method or up in the call stack. As exceptions can be
loaded dynamically and the type of exception determines
the code block to execute, precisely handling exceptions is
challenging [30]. Some classic frameworks like SPARK [31]
and PADDLE [32] use an over-approximation approach to
handle exceptions, assigning all exceptions thrown in the
program to a single global variable; the variable is then read
at the exception catch site. That is, this approach assumes
that all possible exceptions are thrown and ignores the
information about what exceptions can propagate to a catch
site [33]. Other frameworks, such as SOOT [34], remove un-
realizable exception edges from the intraprocedural control
flow graphs [30].

4. Android-specific features. Even though Android appli-
cations are often written in Java, several Android-specific
features should be taken into account to achieve accurate
results.

Android modeling: To track taint when an Android appli-
cation interacts with the Android execution environment,
tools typically either (a) conservatively assume that the
return value of all Android framework methods is tainted
if any of the parameters is tainted or (b) precisely model (a
subset of) the framework methods. The latter is performed
either manually or by automated analysis of Android binary
distribution libraries [21].

Application lifecycle: An Android application is composed
of four types of components, namely, Activity, Service,
Broadcast Receiver, and Content Provider. Each compo-
nent has its own lifecycle methods, which are called by
the Android system to start/stop/resume the component.
An application also contains callback methods which are
triggered in response to system and user events (e.g., location
change and button click). Static analysis tools identify and
model lifecycle and callback methods to ensure the correct
propagation of taint. To extract the set of such methods, the
tools rely on information from the Android Open Source
Project and also analyze application code and configuration
files, such as manifest and layout XML.

Inter-component communication (ICC): The multi-
component model of Android allows different components
to communicate with each other and exchange information,
usually via explicit or implicit Intents. The former explicitly
define target components to be invoked while the latter rely
on Android to find the components which implement the
requested functionality. ICC handling is a challenge due to
the difficulty to precisely match the invoked components
in a static manner [35]. Tools like EPICC [1] and IC3 [36]
extract ICC information, enabling ICC-aware information
flow analysis. PRIMO [37] overlays a probabilistic model of
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ICC on top of these static analysis results, further improving
the accuracy of ICC detection.

Inter-app communication (IAC): Similar to ICC, IAC looks
into how sensitive data is transferred between components
of different applications installed on the same device. Tools
such as APKCOMBINER [38] aim at reducing an IAC problem
to an ICC problem by combining different applications into
a single APK on which existing tools can perform inter-app
analysis.

Native code: Android applications can include code writ-
ten in C and C++ and triggered via Java Native Interface
(JNI) [39]. As taint can propagate via such native C and C++
code, a static taint analysis tool needs to be able to track data
flow in C or C++ code. AMANDROID is an example of a tool
that supports such tracking by relying on the inter-language
JN-SAF [40] framework for “stitching” data flows found in
Java and native code.

3 STUDY DESIGN

In this section, we describe our method for selecting and
configuring the static taint analysis tools for the study
(Sections 3.1 and 3.2). We then outline the methodology
we used for evaluating the tools, for benchmarks and Google
Play apps, separately (Sections 3.3 and 3.4), describing how
we selected the subject applications, the set of sources and
sinks that we used, and our specification of expected results.

3.1 Tool Selection

Li et al. [41] performed a systematic literature review
and identified 38 static taint analysis tools for Android
applications. From this list, in our prior work [24], we
selected all open-source tools cited more than 100 times
on Google Scholar [42] as of June 2017. This paper extends
our prior work by analyzing large Google Play applications,
in addition to considering newer versions of the benchmark
suites. To provide up-to-date results, we opted to use more
recent versions of the tools, i.e., those that were available
in January 2020. For example, FLOWDROID was integrated
with STUBDROID [43] since the earlier version we used, as
discussed later in this section.

We further scanned the list of all publicly available
taint analysis tools as of December 2020. To this end, we
combined the results of the survey by Li et al. [41] with our
own systematic literature review covering the timeframe
following the survey: January 2016 and December 2020.
We identified 181 relevant papers in total, which were
independently reviewed by two of the authors. We excluded
17 surveys and comparative studies, like our own one [24];
78 dynamic or hybrid taint analysis techniques, which are
not the focus of this study; 41 papers that utilize existing
taint analysis techniques but do not offer new approaches,
e.g., [44]; and 4 papers that present extended version of tools
that were already in our dataset [45]–[48].

Out of the remaining 41 papers, 15 are designed specif-
ically for IAC, 2 for JavaScript, 5 for native code, and 1
for implicit flow analysis, none of which is the focus of
our study. This leaves 18 relevant publications and we
contacted the authors of each to inquiry about the availability
of the tool and its source code – an artifact we need to

TABLE 1: Selected Tools

Tool # Citation
(Jun. 2017)

# Citation
(Dec. 2020) Version

FLOWDROID 547 1765 2019-Jan-21 (2.7.1)
ICCTA 129 537
AMANDROID 148 395 2018-Dec-28 (3.2.0)
DROIDSAFE 100 408 2016-Jun-22
DROIDRA - 117 2021-Feb-3

investigate reasons for inaccuracies. We identified only
four such tools: DROIDRA [19], [20], HORNDROID [49],
Ripple [50], and DAPA [51]. Discussions with the authors
of HORNDROID [49], Ripple [50], and DAPA [51] confirmed
that these tools are no longer maintained and cannot work on
our selected applications without significant implementation
effort. We thus only included DROIDRA in our study. A
detailed discussion about the availability and applicability
of all relevant tools is available online [23].

The names, citation counts, and release dates of the tools
used in our experiments – FLOWDROID, ICCTA, AMAN-
DROID, DROIDSAFE, and DROIDRA – are listed in Table 1.
Starting from release 2.0, FLOWDROID is integrated with
ICCTA and leverages it for processing ICC flows. We thus
performed our experiments with the combined version.
Experimental data for running FLOWDROID without ICCTA,
as well as experiments with older versions of these tools,
are available in our online appendix [23]. Next, we briefly
describe each of the analyzed tools.

FLOWDROID [2] is a flow-, context-, field-, and object-
sensitive static analysis tool for Android applications, which
is built on top of SOOT [34] and DEXPLER [52]. It precisely
models the Android lifecycle and handles data propagation
via callbacks of UI objects. FLOWDROID can only resolve
reflective calls whose arguments are constant strings; it
bases its exception handling mechanism on that of SOOT.
In the original design, the tool did not support implicit flow
tracking [2], but newer versions of FLOWDROID are able to
handle implicit flows [21].

For modeling Android framework methods, FLOWDROID
relies on STUBDROID [43] which, given a binary distribution
of the Android framework, performs taint analysis for the
most common framework method and computes method
summary that captures the propagation of taint within
the method. For methods that cannot be analyzed with
STUBDROID, e.g., those containing native code, FLOWDROID
applies a conservative strategy, dividing the framework meth-
ods into four types: generation, exclude, kill, and default [21].
When method parameters (including the receiver object itself)
or their fields are tainted, the methods in the generation type
will have their receiver and the return value, as well as all
their fields, tainted; no taint will be propagated for methods
of the exclude type; all taints will be removed for methods
of the kill type. If a method is not assigned with any of
these types, the default rule will apply, propagating the taint
from the receiver object and its fields to the method return
value and its fields. That is, only for the methods in the
generation type FLOWDROID will propagate the taint from
method parameters and will taint the receiver parameter and
its fields; it does not taint any other method parameters in
any of the conservative strategies.
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ICCTA [4] extends FLOWDROID with the analysis of inter-
component communication. It leverages existing ICC extrac-
tion tools, specifically, EPICC [1] and IC3 [36], augmenting
them with application-level instrumentation of ICC-related
methods for extracting precise ICC flows. It also leverages
APKCOMBINER [38], which generates an integrated APK
for two or more applications. As a result, ICCTA builds
a complete intra-component, inter-component, and inter-
application model. In our experiments, we used FLOWDROID
version 2.7.1 from January 2019 [53], which is integrated with
ICCTA and is the latest version of the tool at the time of
writing.

AMANDROID [5], [11] implements a flow- and context-
sensitive intra-component data-flow analysis. On top of an
inter-procedural control-flow graph and data-flow graph,
AMANDROID builds a data-dependency graph for each com-
ponent and then generates a summary table documenting
possible component communication connections. AMAN-
DROID precisely models a subset of Android framework
methods and applies a conservative strategy for the remain-
ing ones. Interestingly, AMANDROID’s strategy is different
from that of FLOWDROID: in addition to the receiver object
and the return value of a method, AMANDROID also taints
all method parameters and their fields. However, it is doing
so only when the method receiver or parameters themselves
are tainted, not when one of their fields is tainted. Strategies
applied by both tools lead to false positive and false negative
results, albeit in different cases, as we show in our evaluation.

Based on proprietary inter-component and inter-
application flow analysis, AMANDROID provides support
for both ICC and IAC detection. However, AMANDROID has
limited capacity to handle exceptions and reflection, and
it cannot handle implicit flows [5], [11]. In our study, we
used version 3.2.0 of AMANDROID released on December 29,
2018 [54]. This is the latest version available today. Yet, it can
only handle applications targeting API level 25 and below.

DROIDSAFE [6] implements an object-sensitive and flow-
insensitive analysis. It builds a comprehensive Android
execution model that contains analysis stubs for most of
the Android framework methods. This allows the tool to
precisely track flows through Android APIs. Yet, it limits
the analysis to a particular Android version. For reflection,
DROIDSAFE uses string analysis to replace reflective calls
with direct calls to the target method, when possible. Yet,
the tool does not have fully-sound handling of reflection.
It uses a proprietary model to handle ICC and IAC flows.
Implicit flows were not supported in the original version of
the tool [6], but the latest version of the source code contains
an option to enable implicit flows. The DROIDSAFE authors
officially stopped supporting the tool since June 22, 2016.
Therefore, in our study, we considered the latest version
that was available as of June 2016 [22], which supports API
level 19 and below.

DROIDRA [19] extends state-of-the-art static analysis
tools for Android by providing a more advanced reflection
handling mechanism. The main idea behind the tool is to
use an inter-procedural, context-sensitive, and flow-sensitive
static analysis to generate constraints which are further
passed to a constraint solver to determine the targets of re-
flective calls. The tool then instruments the input application,
augmenting each reflective call it can successfully resolve

with a direct Java call to the corresponding target. In our
experiments, we run all taint analysis tools, i.e., FLOWDROID,
AMANDROID, and DROIDSAFE, with and without DROIDRA.
In the latter case, we feed the application instrumented by
DROIDRA into each taint analysis tool and compare the
results with those of the original version. We used the latest
version of DROIDRA, which was made available by the
authors in February 2021, after fixing several bugs discovered
by our preliminary analysis.

3.2 Tool Configuration Parameters
Each taint analysis tool provides numerous configuration
parameters: FLOWDROID has 44 parameters, AMANDROID
has 11, and DROIDSAFE has 57; DROIDRA is not configurable.
Because the results of the analysis largely depend on the
tuning of each tool, comparing taint analysis tools under
different configuration setup is not meaningful.

We investigated the tool documentation and configura-
tion setup used in previous studies [4]–[6], [11], to align
the tools along the main configuration dimensions. We
observed that most of the studies do not document the
selected configuration parameters, making the comparison
inaccurate and irreproducible. We also observed that for
some tools, a number of important design decisions are hard-
coded and cannot be configured at all, e.g., object-sensitivity
of FLOWDROID, and that some configuration choices are
not documented, e.g., field sensitivity of DROIDSAFE and
AMANDROID.

In our attempt to align the tools around the same
parameters, we created and ran tests to identify the design
choice implemented by each tool and align different tools
to apply the same decisions, when possible. Our final set of
configuration choices is described below.

1. Sensitivities. The first five rows of Table 2 list five types
of sensitivity-related configurations discussed in Section 2,
namely, field, context, object, flow, and path sensitivities; we
document our decisions in the second column of Table 2.
The remaining columns of the table describe the default
sensitivity choice implemented by each tool and whether this
choice can be configured by the user.

As some tools do not provide an option to enable/disable
certain sensitivity types, we had to pick their default, arriv-
ing at field-sensitive, object-sensitive, and path-insensitive
analysis. Flow sensitivity (row 4) can only be configured in
FLOWDROID; AMANDROID supports flow sensitivity and
DROIDSAFE does not. As such, we were unable to fully align
the tools for this configuration option. Moreover, DROIDSAFE
is context-sensitive for static methods only (row 2). We still
opted for enabling context sensitivity, even though other
tools provide context sensitivity for all rather than only static
methods, as this option is central for obtaining accurate
analysis results. Both FLOWDROID and AMANDROID allow
to set a context sensitivity depth, but use different default
values: five and one, respectively. We followed the default
setup of FLOWDROID and set the context sensitivity depth
to five, to obtain more accurate results; DROIDSAFE does not
allow to set this parameter.

2. Implicit flows. FLOWDROID and DROIDSAFE support
implicit flow tracking; this option is disabled by default
in both tools. AMANDROID does not document whether it
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TABLE 2: Configuration Decisions of FLOWDROID, AMANDROID, and DROIDSAFE

Configuration Selected FLOWDROID AMANDROID DROIDSAFE

Default Configurable? Default Configurable? Default Configurable?

Sensitivity

Field 3 3 yes 3 no 3 no
Context 3 3 yes 3 yes 3a yes
Object 3 3 no 3 no 3 yes
Flow 3 3 yes 3 no 7 no
Path 7 7 no 7 no 7 no

Implicit flows 7 7 yes 7 no 7 yes

Java-specific Reflection 3 7 yes 3 no 3 no
Exception 3 3 yes 3 no 3 yes

Android-specific

ICC 3 7 yes 3 no 3 no
IAC 7 7 yesb 7 yes 7 yes
Native code 7 7 no 3 yes 7 no
UI elements detection 7 3 yes 3 no 7 no

a DROIDSAFE’s context sensitivity is for static methods only.
b FLOWDROID requires APKCOMBINER for IAC analysis.

supports implicit flow tracking or not. In our communication
with the AMANDROID authors, they confirmed that the tool
cannot handle implicit flows. Therefore, we disabled implicit
flow tracking for all tools (row 6).

3. Java-specific features. FLOWDROID, AMANDROID, and
DROIDSAFE all explicitly report that they do not have a
fully-sound handling of reflections. Moreover, support for
resolving reflective calls differs among tools. Yet, handling
reflection is enabled in AMANDROID and DROIDSAFE by
default; we thus enabled this option in FLOWDROID as
well (row 7).

For FLOWDROID and DROIDSAFE, exception handling is
enabled by default, though it can be disabled. AMANDROID
reports on a limited capability to handle exceptions and
provides no configuration parameter regarding exception
handling. As exception tracking is an important property of
static analysis and all tools enabled this option by default,
we proceed with that choice (row 8).

4. Android-specific features. As discussed in Section 3.1,
FLOWDROID allows to use STUBDROID to precisely model a
subset of Android framework methods and use a conserva-
tive strategy to cover the remaining ones. We opted for using
this strategy. Android modeling is enabled by default and is
not configurable for AMANDROID and DROIDSAFE.

We configured FLOWDROID to use the IC3 model for ICC
flow extraction: according to earlier studies, this model has
higher accuracy than EPICC [36]. We did not use PRIMO
because it relies on the statistical similarity between the ana-
lyzed applications, which is absent in the benchmark suites.
In addition, by default, the FLOWDROID version that we
used applies “purification” of ICC-related flows. This means
that the tool deviates from the standard taint analysis seman-
tics and implements additional logic when handling sinks
involved in ICC communication, such as startActivity().
After running a number of experiments, we confirmed that
the purification functionality is not fully implemented and
aligned with its documented behavior. In our communication
with the FLOWDROID authors, they advised us to disable
this functionality using noiccresultspurify parameter,
making the tool adhere to the standard taint flow semantics1.

1. This functionality was removed altogether in subsequent versions
of FLOWDROID

We thus report FLOWDROID results for both switching the
ICC purification on (the default option in the version that we
analyzed) and off.

AMANDROID and DROIDSAFE also implement (different)
proprietary ICC handling mechanisms and do not provide
any configuration options. We relied on the default behavior
of these tools for our study (row 9). Yet, to make the results
reported by different tool comparable with each other, we
also recalculate the accuracy of these tools using the standard
taint flow semantics, as described in Section 4.1.1.

FLOWDROID can detect inter-application flows when
augmented with APKCOMBINER [38]. AMANDROID and
DROIDSAFE can also detect IAC flows, but that option is
disabled by default. As the benchmark suite we used contains
only two IAC cases and we did not consider IAC in our
Google Play experiment, we disabled IAC tracking in all
tools (row 10).

AMANDROID is the only tool that supports native code
analysis. For consistency with the other tools, we disabled
this option in AMANDROID (row 11). Finally, both FLOW-
DROID and AMANDROID are able to detect flows from
sensitive UI elements, such as password fields. This option
is configurable in FLOWDROID but not in AMANDROID.
However, DROIDSAFE does not implement the correspond-
ing feature. We thus disabled sensitive UI detection in
FLOWDROID (row 12) and filtered out all flows from sensitive
UI elements reported by AMANDROID in our analysis.

5. Other configuration parameters. Upon reviewing addi-
tional configuration parameters, we observed that most of
the remaining FLOWDROID and DROIDSAFE parameters deal
with disabling advanced analysis functionality (which we
decided to keep) and provide supportive functions, such
as an option to generate .json reports in DROIDSAFE. The
remaining AMANDROID options control input location in the
file system, debug choices, and other parameters that do not
affect the core flow detection functionality. We left the default
values for all these parameters.

3.3 Evaluation Methodology for Benchmark Apps

We now discuss our selection of benchmark applications,
taint sources and sinks we used in our analysis, our definition
of expected results, and study metrics and measures.
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3.3.1 Subjects
DroidBench and ICC-Bench are the most commonly used
benchmarks for comparing the tools [2], [4]–[6], [11], [15], [16].
These benchmarks are publicly available; the FLOWDROID,
ICCTA, and DROIDSAFE teams contributed to the Droid-
Bench test suite, and AMANDROID team created ICC-Bench .
As all teams participated in the creation of these benchmarks
and also used them for evaluating their tools, this selection
does not unintentionally benefit any of the tools.

We chose the latest version of the DroidBench benchmark
suite, version 3.0 [9], which covers numerous categories
of Android analysis problems, including intra-component
and inter-component communication, handling of reflection,
sensitivity types and more. We used 158 apps from this
suite, excluding 28 apps that focus on testing configuration
options that we disabled, i.e., tracking of implicit flows,
inter-application flow detection, native code analysis, and
sensitive UI elements detection. In addition, we excluded
three applications related to dynamic class loading, as all
three tools explicitly state that they cannot handle that
scenario. The exact list of the excluded benchmarks is found
in our online appendix [23].

The ICC-Bench test suite containing 24 benchmarks was
originally developed by the AMANDROID team to test ICC-
related capabilities of taint analysis tools. We used the
latest version of this suite at the time of writing: version
2.0 [10]. ICC-Bench applications use Android API level 25.
As DROIDSAFE only supports API level up to 19, we did not
run the tool on ICC-Bench . All DroidBench applications are
compatible with the API level 19 and thus DROIDSAFE, as
well as other tools, runs on these applications successfully.

Our benchmark test suite thus consists of 182 applications
in total from DroidBench (158) and ICC-Bench (24), covering
13 DroidBench categories and four ICC-Bench categories.
The full list of the applications we analyzed is available
online [23].

3.3.2 Sources and Sinks
In earlier work, Arzt et al. [2] and Li et al. [4] used the list
of sources and sinks generated by the SUSI project [55]; the
authors of AMANDROID confirmed that they used the sources
and sinks marked in each of the benchmarks [11]. The list of
sources and sinks in DROIDSAFE is not configurable without
modifying the source code of the tool; Gordon et al. [6] thus
ran their experiments with all sources and sinks hard-coded
in the tool (4,051 sources and 2,116 sinks in total).

To use the same sources and sinks for all the tools, we
inspected the headers and comments of all 182 benchmark
applications and extracted the sources and sinks used in these
applications (5 sources and 11 sinks listed in Table 3). We
named this list of sources and sinks SS-Bench . We configured
both FLOWDROID and AMANDROID to use SS-Bench . For
DROIDSAFE, we confirmed that the sources and sinks from
this list are the subset of sources and sinks considered by the
tool. Furthermore, for a fair comparison between the tools,
we ignored flows related to other sources and sinks, if such
flows were reported by DROIDSAFE.

3.3.3 Expected Results
With our selection of sources, sinks, and configuration
parameters discussed earlier, the expected flows for each

TABLE 3: List of Source and Sink Methods for Benchmark
Apps (SS-Bench )

Signature

So
ur

ce
s

android.telephony.TelephonyManager: java.lang.String
getDeviceId()
android.telephony.TelephonyManager: java.lang.String
getSimSerialNumber()
android.location.Location: double getLatitude()
android.location.Location: double getLongitude()
android.telephony.TelephonyManager: java.lang.String
getSubscriberId()

Si
nk

s

android.telephony.SmsManager: void sendTextMes-
sage(java.lang.String,java.lang.String,java.lang.String,
android.app.PendingIntent,android.app.PendingIntent)
android.util.Log: int i(java.lang.String,java.lang.String)
android.util.Log: int e(java.lang.String,java.lang.String)
android.util.Log: int v(java.lang.String,java.lang.String)
android.util.Log: int d(java.lang.String,java.lang.String)
java.lang.ProcessBuilder: java.lang.Process start()
android.app.Activity: void
startActivityForResult(android.content.Intent,int)
android.app.Activity: void
setResult(int,android.content.Intent)
android.app.Activity: void
startActivity(android.content.Intent)
java.net.URL: java.net.URLConnection openConnection()
android.content.ContextWrapper: void
sendBroadcast(android.content.Intent)

benchmark application might deviate from the result spec-
ified by the benchmark designers, e.g., because a source
extracted from one benchmark application could affect
another application. We thus manually analyzed each of
the benchmark applications, extracting all flows expected
under our configuration setup. To ensure validity, the manual
analysis was performed independently and in parallel by two
authors of this paper. The disagreements in manual analysis
(for seven out of 182 cases, a disagreement rate of 4%) were
discussed in a meeting with all the authors, towards reaching
a common resolution.

A full list of all expected flows is available online [23].
In 33 cases listed in Table 4, our expected results de-
viated from those documented in the benchmark itself.
For example, in benchmark ActivityCommunication2, one
additional flow is expected because of an additional sink,
startActivity(Intent), which was added as it appeared
in multiple benchmarks, e.g., DroidBench IntentSink2; in
benchmark IMEI1, no flows are expected because we disabled
implicit flow tracking for all tools. It should be noted that,
as discussed in Section 3.3.1, we excluded from our analysis
benchmarks that were solely designed to check the features
we disabled, e.g., ImplicitFlow1-6 that examine implicit flows.

3.3.4 Metrics and Measures
Similar to the process of establishing the expected flows
for our experiments, two authors of this paper manually
inspected the flows identified by each tool, comparing them
to the expected results. The goal of this analysis was to
identify expected flows detected correctly by a tool: true
positives (TP); unexpected flows mistakenly identified by the
tool: false-positives (FP); and expected flows missed by a tool:
false-negatives (FN). Similar to the process of identifying the
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TABLE 4: Differences in Expected Results for DroidBench
and ICC-Bench

Category Benchmark # Exp. Flows
Orig. Ours

DroidBench

1. Aliasing Merge1 0 1
StrongUpdate1 1 0

2. Android-specific ApplicationModeling1 1 0
PrivateDataLeak3 2 1

4. Callbacks LocationLeak3 1 2
5. Emulator Detection IMEI1 2 0

8. Inter Component
Communication

ActivityCommunication2 1 2
ActivityCommunication3 1 2
ActivityCommunication4 1 2
ActivityCommunication5 1 2
ActivityCommunication6 1 2
ActivityCommunication7 1 2
ActivityCommunication8 1 2
BroadcastTaintAndLeak1 1 2
ComponentNotInManifest1 0 1
IntentSource1 2 0
UnresolvableIntent1 2 3

9. Lifecycle ActivityEventSequence2 1 0

11. Reflection ICC

ActivityCommunication2 1 2
AllReflection 1 2
OnlyIntent 1 2
OnlyIntentReceive 1 2
OnlySMS 1 2
OnlyTelephony 1 2
OnlyTelephony_Dynamic 2 3
OnlyTelephony_Reverse 1 2
OnlyTelephony_Substring 1 2
SharedPreferences1 1 2

ICC-Bench

1. ICC Handling

icc_explicit_src_nosink 0 1
icc_explicit_src_sink 1 2
icc_stateful 3 2
icc_explicit1 1 2

3. Mixed icc_rpc_comprehensive 3 2

expected flows, the differences in the results of this manual
analysis (for six out of 182 cases, a disagreement rate of 3%)
were resolved in a discussion involving all authors of this
paper and, when required, the authors of the tools.

We then calculated the precision, recall, and F-measure
for each tool, as described below.
• Precision: the fraction of correctly reported flows out

of the total number of reported flows, calculated as
TP

TP+FP × 100%.
• Recall: the fraction of correctly reported flows out of the

total number of expected flows, calculated as TP
TP+FN ×

100%.
• F-measure: the weighted harmonic mean of the Precision

and Recall, calculated as 2×Precision×Recall
Precision+Recall .

We also measured the execution time and memory
consumption of each tool and report the averaged results
from five consecutive runs. We ran all experiments on a
Ubuntu 16.04 server with a 12-core CPU and limited the
RAM allocation for each experiment to 64 GB. We set a
two-hour timeout for each benchmark app.

3.4 Evaluation Methodology for Google Play Apps
Identifying expected flows in large and obfuscated Google
Play applications, especially when the set of sources and
sinks is unknown in advance, is a challenging task. Yet,
identifying such flows is necessary to assess the usefulness

of the existing techniques in practice. Furthermore, while
most existing studies focus on analyzing the scalability of the
tools on Google Play samples or analyzing flows detected by
at least one existing tool [2], [4], [5], [11], “ground truth” of
expected flows is essential for identifying cases missed by
all tools. We thus decided to collect the expected flows in
Google Play apps manually. To ensure we can perform this
task reliably, we focused on two taint analysis application
scenarios which contain “hints” helping us detect flows
embedded in apps.

For the first scenario, we considered applications that
perform user authentication. The goal of taint analysis in
this case is to track the flow of the input user credential into
internet-related sinks, e.g., to ensure that all passwords are
sent over the network encrypted [56]. We selected this case
study because to correctly perform user authentication, an
app has to send out the credentials to a third-party server,
which guarantees the presence of the expected flow. The
goal of this case study is thus to check whether the tools can
detect these flows and, if not, why not.

For the second case study, we selected Android spyware
applications that leak user-sensitive information [57]. The
goal of taint analysis in this case is to identify flows between
this sensitive information and internet-related sinks – the
classic use case of taint analysis. To aid identification of
expected flows, we chose spyware samples described in
blogs of security analysis companies, focusing on blogs that
provide details about the type of the leaked information,
which we used to identify sources of sensitive flows.

In the rest of this section, we provide more details about
our criteria for selecting subject applications and our choice
of sources, sinks, and expected results. We also discuss the
metrics we applied and the measures that we performed. For
the tool selection, as discussed in Section 1, DROIDSAFE’s
authors explicitly state that the tool is not designed to
work on Google Play application: “Please do not expect to
run DroidSafe on large apps from the Google Play store, and
expect DroidSafe to complete and/or give you accurate results.”
Moreover, the tool only supports apps with API level up to
19, which are not common at the time of writing. We thus
exclude this tool, focusing our analysis of Google Play apps
on FLOWDROID and AMANDROID only, with and without
DROIDRA.

3.4.1 Subjects

Login scenario. Rows 1-19 in Table 5 outline the login-related
apps we selected for our study, while Figure 2 shows an
overview of our selection process. We started from top 100
apps from each of the 58 free app categories in the Canadian
Google Play Store as of December 2019, arriving at 5,569
apps (some categories contain less than 100 apps). We used
Android Asset Packaging Tool (AAPT) [58] to extract the
API level (i.e., targetSdkVersion) of each app and filtered
out apps of API levels that are not supported by the tools.
Specifically, as AMANDROID only supports API levels up
to 25, we selected apps with API level 25 or below when
comparing the tools. This selection resulted in 188 apps.

Next, two authors of this paper used one device each
and executed every app for around 20 minutes, to check
whether the app contains any authentication functionality
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TABLE 5: List of the Selected Google Play Apps, API Version,
and the Number of Expected Flows

App
ID App Name Size

(MB)
API

Level
# Exp.
Flows

1 com.echangecadeaux 3.0 14 1
2 com.rtp.livepass.android 6.4 17 1
3 com.tripadvisor.tripadvisor 5.3 19 1
4 ca.intact.mydrivingdiscount 8.8 21 1
5 com.asiandate 8.4 1
6 ca.passportparking.mobile.passportcanada 14.0

22

1
7 com.aldiko.android 9.5 1
8 com.passportparking.mobile.parkvictoria 14.7 1
9 com.passportparking.mobile.toronto 14.1 1
10 tc.tc.scsm.phonegap 10.0 1
11 com.onetapsolutions.morneau.activity 10.2 23 1
12 net.fieldwire.app 9.8 1
13 com.ackroo.mrgas 5.2 24 15
14 com.airbnb.android 65.4

25

1
15 com.bose.gd.events 15.1 1
16 com.phonehalo.itemtracker 16.7 3
17 com.viagogo.consumer.viagogo.playstore 13.4 1
18 com.yelp.android 20.5 1
19 onxmaps.hunt 11.2 1
20 com.mobistartapp.flashlight 4.4 21 7
21 com.monitor.phone.s0ft.phonemonitor 0.7 12
22 com.mobistartapp.win7imulator 3.9 23 3
23 com.mobistartapp.windows7launcher 4.6

25
11

24 com.tassaly.flappybird 5.7 7
25 ma.coderoute.hzpermispro 5.2 7

and, if so, to validate that the authentication functionality
is working. After cross-validating the results, we confirmed
reliable authentication mechanism in 51 of the apps. There
were no disagreements between the authors in this case.

We then analyzed the bytecode of the identified 51 appli-
cations to ensure the flow between username / password and
internet-related sinks is fully implemented within the code of
the applications the tools are able to analyze. That excluded
(1) 7 apps that implement login functionality using WebView –
a widget that allows user to input login credentials in a web
page; (2) 5 apps built using cross-platform frameworks such
as Unity [59] and React Native [60]; and (3) 16 apps that
delegate the login functionality to third-party OAuth service
providers, such as Google or Facebook, which implement it
in a separate application or in a WebView. In all these cases,
the expected flows are external to the analyzed apps. We
further excluded three apps that were highly obfuscated and
we could not identify the authentication type and flow, and
one app that was highly similar to a more recent app in our
dataset.

Spyware scenario. For this scenario, we crawled
malware-related posts from the three mobile security
companies consistently ranked on top during the
last two years by Gartner’s Magic Quadrant for Best
Endpoint Security Platforms [61]: Trend Micro [62],
Symantec [63], and Sophos [64]. We focused on
posts in the last two years, between January 2019
and December 2020, and used the search terms
(“Android”|“Google”|“Playstore”|“Play”|“Store”)

188 apps 51 apps 19 apps

Unsupported 

API Level 

Filtering

Authentication

Functionality

Identification

In-app

Login

Identification

Top 5,569 appsTop 5,569 apps

Fig. 2: Login-related apps selection process.

and (“malware”|“malicious”|“malice”) and (“spy-
ware”|“stalkerware”) to identify relevant posts. This
resulted in 44 posts.

However, such automated filtering is rather coarse-
grained and the identified posts often contain advertisement,
description of non-Android malware, description of non-
Java, i.e., ReactNative, malware, etc. Two authors of the paper
thus further read the posts and identified four that fit our
desired criteria: they describe Android-native spyware from
the Google Play market and contain sufficient details about
the secrets stolen by malicious apps. The authors analyzing
the posts cross-validated their results and all disagreements
were resolved in a discussion among all authors of this paper
(2 posts, 5% disagreement rate).

We further extracted identifiers of all apps described
by each of the selected posts (one post can refer to multiple
apps): app, package, and author names. We searched for apps
with these identifiers in academic repositories, e.g., Andro-
Zoo [65], and alternative app markets, e.g., APKPure [66] and
APKCombo [67]. Our assumption was that these repositories
may still contain the malware sample even though it was
already removed from the Google Play store following the
detection by the security company. We identified eight apps
from three posts and further excluded two apps with API
level above 25, as AMANDROID cannot analyze these apps.

We verified that the remaining six apps are indeed
spyware by using VirusTotal [68] – an online service ag-
gregating results from 60 anti-virus scanners. Specifically, all
our apps were marked as spyware by at least 10 scanners
from VirusTotal. Figure 3 summarizes our selection process
for the spyware scenario.

Our final app selection of Google Play apps consists of 25
apps listed in Table 5 and includes apps such as Tripadvisor,
Airbnb, and Yelp. The distribution of apps that we excluded
at each stage of our subject selection process is found in
the online appendix [23]. In what follows, we refer to the
analyzed apps by their app ids listed in the first column of
Table 5, e.g., app #1 refers to com.echangecadeaux.

The third column of the table shows the size of the app
code (.dex file), which ranges from 0.7 MB to 65.4 MB (11.4
MB on average). As a reference, the average size of an app in
our initial dataset of 5,569 Google Play apps is 11.6 MB. We
thus believe that our app selection is representative. Finally,
the fourth column shows the API level of each app and the
last column shows the number of expected flows, identified
using the methodology described in the next section.

We deliberately focused on apps from the Google Play
store in our study because we believe that investigating
the applicability of taint analysis techniques to these apps
is of primary relevance to the users, security experts, and
other researchers. While collecting data for our study, we
considered using applications from the F-Droid repository
of open-source Android apps [13]. However, only 14 out of

4 posts 8 apps 6 apps

Spyware Post

Filtering

App

Identification

Unsupported

API Level

Filtering

44 Security Posts44 Security Posts

Fig. 3: Spyware selection process.
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TABLE 6: List of Source and Sink Methods for Login-Related
Google Play Apps (SS-GPL )

Signature App ID

So
ur

ce
s

android.widget.EditText: android.text.Editable getText() 1-19

Si
nk

s

com.squareup.okhttp.Call: com.squareup.okhttp.Res-
ponse execute() 17

cz.msebera.android.httpclient.client.HttpClient:
cz.msebera.android.httpclient.HttpResponse execute
(cz.msebera.android.httpclient.client.methods.HttpUri
-Request)

3

java.io.OutputStreamWriter: void write(java.lang.String) 5
java.io.PrintWriter: void write(java.lang.String) 16
java.net.HttpURLConnection: int getResponseCode() 4, 7, 16
java.util.zip.GZIPOutputStream: void write(byte[]) 2

okhttp3.Call: okhttp3.Response execute() 12, 14, 15,
19

okhttp3.Call: void enqueue(okhttp3.Callback) 13
org.apache.http.client.HttpClient: org.apache.http.Http-
Response execute(org.apache.http.client.methods.Http-
UriRequest)

1, 8, 9, 10

org.apache.http.client.HttpClient: org.apache.http.Http-
Response execute(org.apache.http.client.methods.Http-
UriRequest, org.apache.http.protocol.HttpContext)

11

org.apache.http.impl.client.DefaultHttpClient: org.apa-
che.http.HttpResponse execute(org.apache.http.client.
methods.HttpUriRequest)

6, 18

1,631 F-Droid apps are in the top Google Play charts and
only two of these apps have API version that satisfies our
selection criteria, which was insufficient for our analysis.

3.4.2 Sources, Sinks, and Expected Results
Two authors of this paper performed manual analysis of
all the selected apps to identify expected flows. To ensure
validity, the authors conducted manual checks independently
and cross-validated their findings. They had disagreements
in two out of 25 apps (8% disagreement rate); like with the
benchmark applications, the disagreements are resolved in
a meeting with all the authors. In the end, we were able to
identify the flows in all 25 apps: one expected flow in each
login-related app and eight, on average, in the spyware apps.
We now discuss this process in detail.

Login scenario. We looked for flows from the password
field to the internet. We used textual input fields, namely,
EditText.getText(), as the source for our expected flows
and then followed the flow to identify internet-related
APIs that send the user’s password over the network. We
considered them as sinks. While doing our analysis, we
noticed that app #16 also writes the password to the log
file, for debugging purposes. This is a concerning behavior
and we added the corresponding flow and the sink to our
expected results. Overall, we identified 21 expected flows:
19 for sending the password over the network (one per app)
and 2 for writing it into a log file. The list of the identified
sources and sinks is shown in Table 6. We refer to this list
as SS-GPL and configured the tools to use this list when
analyzing login-related apps. The last column of Table 6 lists
the ids of apps containing each source and sink.

As source EditText.getText() can cover user inputs
other than the password, tools may detect additional valid
flows which are not login-related. Hence, for each app, two
of the authors independently analyzed all flows identified
by the tools and categorized them into TPs and FPs. The

TABLE 7: List of Source and Sink Methods for Spyware
Google Play Apps (SS-GPS )

Signature App ID

So
ur

ce
s

android.content.ClipData$Item: java.lang.Char-
Sequence getText()

20, 23, 24,
25

android.content.ContentResolver: android.database.
Cursor query(android.net.Uri,java.lang.String[],java.lang.
String, java.lang.String[],java.lang.String)

21, 23

android.location.Location: double getLatitude() 20, 21, 23,
24, 25

android.location.Location: double getLongitude() 20, 21, 23,
24, 25

android.telephony.TelephonyManager: java.lang.String
getDeviceId() 21

android.telephony.TelephonyManager: java.lang.String
getLine1Number() 21

android.telephony.TelephonyManager: java.lang.String
getNetworkCountryIso()

20, 22, 23,
24, 25

java.util.Locale: java.lang.String getCountry() 23

java.util.Locale: java.lang.String getLanguage() 20, 22, 23,
24, 25

Si
nk

s

android.telephony.SmsManager: void sendTextMes-
sage(java.lang.String,java.lang.String,java.lang.String,
android.app.PendingIntent,android.app.PendingIntent)

21

java.io.BufferedWriter: void write(java.lang.String) 20, 22, 23,
24, 25

java.io.OutputStream: void write(byte[]) 22

disagreements (in one app, 5% disagreement rate) were
resolved in a discussion with all the authors. We added the
identified TP flows to our expected results, which resulted
in additional 14 flows in app #13. In total, we identified 35
expected flows, as shown in the fourth column of Table 5.
Note that there could be additional login-unrelated flows
between sources and sinks in SS-GPL , which none of the
tools can detect and we are unable to identify manually due
to the size and complexity of the considered applications.

Spyware scenario. We analyzed the blogs to extract the
description of the user-sensitive information leaked by each
app and further mapped it to the corresponding Android
API. Specifically, two authors of the paper independently
checked each post to extract phrases such as “device ID”,
“SMS”, “location”, “contacts”, and “call logs”. To map these
leaked secrets to Android APIs, we relied on the SUSI
list [55] that contains 18,045 possible sources in Android
projects. Specifically, for each of the apps, we first identified
all SUSI sources invoked at least once in an app (634 sources
on average, min: 346, max: 727, median: 699) and filtered
this list to the type of secrets the app leaks, according to
the post. For example, if an app invokes the source API
TelephonyManager.getLine1Number() and it is reported
to leak the phone number, we mark the API as a source for
the analysis of the app. Following this process, we identified
11 potential sources on average per app (min: 9, max: 13,
median: 11).

We further manually tracked the propagation of informa-
tion from each invocation site of the potential source API in
an app (41 invocation sites on average per app, min: 29, max:
48, median: 43) to the first API on each execution path that
sends information out of a device. If found, we marked that
API as a sink, added the source to this list of sources for that
app, and added the flow to our list of expected flows. At
the end of this process, we were able to identify 47 flows in
the six analyzed apps in total (8 flows per app on average,
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min: 3, max: 12, median: 7). We detected sinks of two kinds:
sending secrets over the Internet or in SMS.

The identified sources and sinks for each app are listed
in Table 7. As the types of secrets leaked by each app are
different, in our analysis, we configured the tools to use the
corresponding list of sources and sinks per each app.

In addition, like with the login-related apps, there could
be other valid flows from the same sources, which we did not
detect in our manual analysis. Hence, similar to login-related
case, two of the authors analyzed all flows detected by the
tools and categorized them into TPs and FPs. This resulted
in no additional flows in any of the apps and there were no
disagreements between the authors during this process. The
final number of expected flows per app is listed in the fourth
column of Table 5.

3.4.3 Metrics and Measures
When detecting expected flows for the Google Play apps,
we augmented our manual analysis of flows corresponding
to the original login or spyware scenario with additional
analysis of flows detected by each to identify other valid TP
cases, as discussed in Section 3.4.2. Thus, the categorization
into FP and FN results was done alongside with establishing
the expected flows. We then calculated precision, recall, and
F-measure for each tool; we also measured the execution time
and memory consumption of each tool and report on the
results averaged over five consecutive runs. All experiments
were run on the same Ubuntu 16.04 server with a 20-core
CPU; we limited the RAM allocation for each experiment to
256 GB.

We set a 72-hour timeout for each Google Play app.
AMANDROID also provides the option to set a maximum
running time for each component in an app. To prevent the
tool from spending the entire allocated time on one compo-
nent and being unable to reach the remaining components,
we set a per-component limit as 72 hours divided by the
number of components declared in an app’s manifest file. As
the number of components in our selected apps ranges from
7 to 314, the timeout set for each component ranges from 14
to 617 minutes, which is larger than 10 minutes set by the
authors of AMANDROID in their experiments [5].

4 RESULTS: BENCHMARK APPS (RQ1-RQ3)
We now answer RQ1–RQ3 introduced in Section 1.

4.1 Tools Performance (RQ1)
To answer RQ1, we ran FLOWDROID, AMANDROID, and
DROIDSAFE, with and without DROIDRA, on the 182
benchmark apps using the configuration setup described
in Section 3.2, and measured the accuracy and execution
time of each tool.

4.1.1 Accuracy
The first row of Table 8 (“Our experiment”) summarizes the
precision, recall, and F-measure obtained in our experiments
with benchmarks, which we report separately for DroidBench
and ICC-Bench . Here, we report on all issues observed in the
versions of the tools listed in Table 1, including those whose
fixes were made available in the later versions of the tools
following our discussion with the tools’ authors.

1 class MainActivity extends Activity {
2 @Override
3 void onCreate(Bundle state) {
4 ...
5 String imei = getDeviceId(); // source
6 Intent i = new Intent(this,

AnotherActivity.class);
7 i.putExtra("imei", imei);
8 startActivity(i); // sink, leak
9 }

10 }
11 class AnotherActivity extends Activity {
12 @Override
13 void onCreate(Bundle state) {
14 ...
15 Intent i = getIntent();
16 String imei = i.getStringExtra("imei");
17 Log.i("TAG", imei); // sink, leak
18 }
19 }

Fig. 4: Flows with ICC-related sinks.

As discussed in Section 3.2, all tools deviate from the
standard taint flow semantics and implement additional
logic when handling ICC-related flows. By inspecting AMAN-
DROID code we learned that starting from 3.1.2, AMANDROID
filters out intra-component flows for ICC-related sinks,
e.g., startActivity(Intent), even though the tool can
successfully detect them. For the example in Fig. 4, the source
in line 5 flows through the sink in line 8 and the sink in line
17. In this case, AMANDROID detects both flows but only
reports the second one (line 17), while the standard taint
analysis semantics assumes two flows.

Similarly, DROIDSAFE also uses its own proprietary logic
to handle ICC flows. Based on DROIDSAFE’s documentation
and our experiments with multiple examples, we learned that
the logic applied by DROIDSAFE is more advanced than that
of AMANDROID. Specifically, it only filters intra-component
flows for explicit Intents; for implicit Intents, the tool always
reports the intra-component part of ICC flow as well, as
components from other applications could also register and
receive this Intent.

FLOWDROID is the only tool that allows to explicitly
turn the proprietary ICC handling logic on and off. Yet, our
experiments and discussions with the authors show that
this option is not fully supported. Moreover, its intended
implementation differs from the logic proposed by both
AMANDROID and DROIDSAFE.

To fairly compare the tools with each other, we re-
calculated the accuracy of the tools based on the standard
taint flow semantics and report these numbers in Table 8.
The original accuracy values for each tool, with its own
proprietary handling of ICC flows, are also reported in
Table 8 in parenthesis, for reference.

In addition, we found that DROIDSAFE does not report
the exact path of the detected flows, making the flow analysis
more difficult. Instead, it reports the source and sink methods
of the identified flow, as well as the location of the entry
method, i.e., the method in which the source is defined,. We
used this information to identify the flows and match them
to the expected ones. Yet, the tool sometimes reports entry
methods incorrectly. For the example in Fig. 5, DROIDSAFE
correctly reports a flow from getDeviceId() (line 5) to
Log.d() (line 12), but considers MyRunnable: void run()
being the entry method, which is incorrect. Overall, there are
17 output record with the correct source and sink methods
but with the entry method pointing to the sink rather than
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TABLE 8: Benchmark Apps: Comparisons of Precision, Recall, and F-measures

Source Benchmark Suite Tool Precision Recall F-measure

1. Our experiment

DroidBench (158 apps from v3.0)

FLOWDROID 88 72 79 (33)
DROIDRA +
FLOWDROID

88 72 79 (33)

AMANDROID 66 56 61 (55)
DROIDRA +
AMANDROID

76 59 66 (60)

DROIDSAFE 88 89 88 (71)
DROIDRA +
DROIDSAFE

88 90 89 (72)

ICC-Bench (24 apps from v2.0)

FLOWDROID 100 65 79 (34)
DROIDRA +
FLOWDROID

100 65 79 (34)

AMANDROID 85 100 92 (67)
DROIDRA +
AMANDROID

85 100 92 (67)

2. Arzt et al. [2] DroidBench (35 apps from v1.0 developed by
FLOWDROID’s authors, no implicit flows)

FLOWDROID
(no ICCTA) 86 93 89

3. Arzt [21] DroidBench (all 189 apps from v3.0)

FLOWDROID
(no ICCTA) 87 84 86

FLOWDROID 91 84 87
DROIDSAFE 91 72 80

4. Li et al. [4] 22 ICC-related apps developed by ICCTA’s authors
and ICC-Bench (9 apps from v1.0)

FLOWDROID 97 97 97
AMANDROID 79 52 63

5. Wei et al. [5]

DroidBench (39 apps from v1.0)
FLOWDROID
(no ICCTA) 86 72 78

AMANDROID 87 75 81

ICC-Bench (16 apps developed by AMANDROID’s
authors)

FLOWDROID
(no ICCTA) 75 45 56

AMANDROID 100 100 100

6. Wei et al. [11]

DroidBench (18 apps from v2.0, ICC-related)
FLOWDROID 86 83 85
AMANDROID 96 96 96
DROIDSAFE 85 96 90

ICC-Bench (24 apps from v2.0)
FLOWDROID 97 90 93
AMANDROID 97 100 98
DROIDSAFE 10 3 5

7. Gordon et al. [6]
DroidBench (94 apps from v1.2) FLOWDROID 73 81 76

DROIDSAFE 88 94 91
DroidBench (40 apps developed by DROIDSAFE’s
authors)

FLOWDROID 79 35 48
DROIDSAFE 100 100 100

8. Li et al. [19], Sun et al. [20] DroidBench (4 reflection-related apps from v2.0)
and 9 apps developed by DROIDRA’s authors

FLOWDROID - 8 -
DROIDRA +
FLOWDROID

- 92 -

1 class ActivityWithRunnable extends Activity {
2 @Override
3 void onCreate(Bundle state) {
4 ...
5 Executors.newCachedThreadPool().execute(

new MyRunnable(getDeviceId())); //
source

6 }
7 class MyRunnable implements Runnable {
8 String deviceId;
9 MyRunnable(String deviceId) { this.

deviceId = deviceId; }
10 @Override
11 void run() { Log.d("ActivityWithRunnable",

deviceId); } // sink, leak
12 }
13 }

Fig. 5: Placement of entry methods.

the source; in 5 cases, the tool produced duplicated flows,
one with the entry method correctly pointing to the source
and another – to the sink; in 1 additional case, the entry
method pointed to a different method altogether.

As the tool still reports the correct sources and sinks for
all these cases, we ignored the placement of entry methods

and duplicated flows when calculating the precision, recall,
and F-measure for DROIDSAFE, not to disadvantage the tool.

Overall, DROIDSAFE achieves the highest accuracy on
DroidBench benchmarks (F-measure of 88%, when executed
without DROIDRA), followed by FLOWDROID (79%) and
AMANDROID (61%). Yet, AMANDROID performs better on
ICC-Bench : 92% vs. 79% for FLOWDROID. We did not run
DROIDSAFE on this benchmark, as discussed in Section 3.3.1.
For six benchmark apps, FLOWDROID crashed with excep-
tions; for one app, DROIDSAFE did not finish after two hours
time limit. As all these benchmarks include expected flows,
we counted these flows as FNs for the corresponding tools.

DROIDRA slightly improves the performance of AMAN-
DROID and DROIDSAFE on DroidBench : for AMANDROID–
from 61% to 66%, and for DROIDSAFE– from 88% to 89%.
We discuss the reasons for this improvement in Section 4.3.
As ICC-Bench does not contain reflection cases, the accuracy
of the tools on this benchmark suite is the same, with and
without DROIDRA.
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4.1.2 Execution Time and Memory Consumption

We measured the execution time and memory consump-
tion of each tool on the DroidBench applications only, as
DROIDSAFE does not run on ICC-Bench . To ensure a fair
comparison, we configured FLOWDROID and AMANDROID
to use the same set of sources and sinks that DROIDSAFE
uses, as the set of sources and sinks in DROIDSAFE cannot
be configured. We performed five runs of each tool on each
benchmark and averaged the measurements from these runs.

Figure 6 shows the execution time of each tool, in seconds,
on a logarithmic scale. We excluded from this report one
benchmark app for which FLOWDROID crashed and one
outlier benchmark app for which DROIDSAFE did not finish
after two hours. Our results show that all the analyzed
tools processed benchmark applications within a relatively
short time, with FLOWDROID being the fastest: 12 seconds
on average (min: 8 seconds, max: 53 seconds, median: 11
seconds), followed by AMANDROID: 17 seconds on average
(min: 14 seconds, max: 29 seconds, median: 16 seconds), and
DROIDSAFE: 139 seconds on average (min: 107 seconds, max:
24.1 minutes, median: 126 seconds). The execution times for
each of the tools are largely consistent across all benchmark
apps (as can be seen from a narrow interquartile range, i.e.,
the difference between the 75th and 25th percentiles), with
only a few outliers.

Figure 7 shows the memory consumption of each tool,
in megabytes (MB). On average, FLOWDROID requires the
lowest amount of memory: 432 MB on average (min: 246 MB,
max: 5228 MB, median: 393 MB). AMANDROID consumes
2426 MB on average (min: 2362 MB, max: 3677 MB, median:
2417 MB). The high accuracy of DROIDSAFE comes at the
expense of its high memory consumption: 6962 MB on
average (min: 6137 MB, max: 27488 MB, median: 6536 MB).
Yet, none of the tools required the entire 64 GB of RAM that
we allocated for benchmark apps in our experiments.

Pre-processing input benchmark apps with DROIDRA
takes around 71 seconds on average (min: 60 seconds, max:
186 seconds, median: 65 seconds) and consumes 12801 MB of
memory on average (min: 12685 MB, max: 14851 MB, median:
12708 MB). There is no noticeable change in execution times
and memory consumption of FLOWDROID, AMANDROID,
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Fig. 6: Execution time (in seconds) on the benchmark apps.
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Fig. 7: Memory consumption (in MB) on the benchmark
apps.

and DROIDSAFE following that processing. Full performance
data for all tools on the benchmark apps is available in our
online appendix [23].

4.2 Comparison with Earlier Experiments

We extracted the accuracy and execution time reported
by previous studies, compared with our results reported
in the previous section, and outlined possible reasons for
differences in results.

We list the tool accuracy reported by other studies
conducted by the tool’s authors themselves [2], [4]–[6], [11],
[19], [21] in rows 2-8 of Table 8. We noticed that the accuracy
observed in our experiments is mostly lower than that
reported in earlier studies. For example, Li et al. [4] (row
4) reported a very higher accuracy of 97% for FLOWDROID,
compared with 79% on both DroidBench and ICC-Bench in
our study. As our experiments include substantially larger
benchmark suites (e.g., 158 DroidBench and 24 ICC-Bench
apps vs. 31 ICC-related apps in Li et al. [4] experiment), we
observe more failures and cannot compare our results to
other studies directly.

Interestingly, there is also a high variability in the results
reported by different studies themselves. This is mainly
because each paper only evaluated the tools on a subset
of benchmarks, focusing on a specific set of challenges. Even
though both Li et al. [4] (row 4) and Wei et al. [11] (row 6)
evaluated FLOWDROID on ICC-related benchmark apps, they
still used a different subset of apps: the former contributed
22 ICC-related apps and used 9 apps from ICC-Bench while
the later selected 18 ICC-related apps from DroidBench and
24 apps from ICC-Bench , most of which were not available
in 2015. In fact, the comparison often involves benchmarks
contributed by the tools’ authors, e.g., [4]–[6], showing a high
accuracy for a particular tool on that subset of benchmarks.

Moreover, the results reported by Arzt et al. [2] (row
2) cannot be directly compared with those of Li et al. [4]
(row 4), because the latter work introduced the integration of
FLOWDROID with ICCTA. Even though both Arzt et al. [2]
(row 2) and Wei et al. [5] (row 5) ran FLOWDROID without
ICCTA integration, they, again, used a different subset of
benchmarks: the former work excluded all benchmarks with
implicit flows while the latter rather selected benchmarks
related to ICC communication.

The authors of DROIDRA [19], [20] evaluated their tool
(row 8) on four reflection-related applications that were avail-
able in DroidBench v2.0 and nine additional applications
developed by the authors themselves, comparing the recall
of one of the older FLOWDROID versions (from 2016) and
the same version of FLOWDROID extended with DROIDRA.
While those experiments substantially improved the accuracy
of FLOWDROID for reflection-related cases, we conducted
our experiments on a later version of FLOWDROID, which
already incorporated handling of these cases “natively”.
Moreover, our experiments are conducted on DroidBench
v3.0, which included 15 additional reflection-related cases,
most of which cannot be handled by FLOWDROID and
DROIDRA+FLOWDROID. We thus did not observe any
improvements for FLOWDROID with DROIDRA. Interestingly,
the authors of DROIDRA did not combine the tool with
AMANDROID and DROIDSAFE, as we did in our experiments;
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thus, the effect of the tool on these solutions was unexplored.
Yet, we observed that DROIDRA is effective in helping these
tools resolve several reflection-related cases.

In addition to the difference in tools, benchmarks, and
parameters used to configure the evaluated tools, the set
of sources and sinks also differs between the studies (e.g.,
DROIDSAFE uses a proprietary and non-configurable set of
sources and sinks), further hindering the comparison. Our
independent and large-scale experiment covering the entire
set of benchmark apps under the common setup is necessary
to assess and compare the performance of the tools.

Comparison with our earlier work [24]. Our current results
are similar to those reported in the earlier version of this
paper [24]. The main difference stems from the upgrade of
the DroidBench benchmark from version 2.0 to version 3.0
used in the current experiments. The DroidBench upgrade
included 49 new and one modified benchmark apps, which
exposed additional weaknesses in all three tools. When
excluding the new and modified DroidBench benchmarks,
FLOWDROID achieves the F-measure of 84% and AMAN-
DROID achieves the F-measure of 65%, which are comparable
with 85% and 68%, respectively, reported in the earlier
work; DROIDSAFE version did not change, so the F-measure
becomes 92%, as before.

Execution Time and Memory Consumption. With respect
to the execution time, our results are consistent with other re-
ports showing that FLOWDROID is faster than AMANDROID,
which is, in turn, faster than DROIDSAFE [4], [6], [24]. We do
not perform a numerical comparison of execution times with
other experiments, as these experiments were performed
using a different hardware setup, such as CPU and RAM
size, and with different configuration selections. We also do
not compare the memory consumption to other reports as
these reports do not provide such data.

4.3 Causes of Inaccuracy (RQ2)

In this section, we analyze the failures we observed in
each of the tools. We start by identifying the target criterion
for each benchmark – a particular aspect of taint analysis
that the benchmark app is designed to test. For example,
the AccessArray1 benchmark app tests whether the analysis
distinguishes between different array positions. We mark this
criterion with the index of its corresponding benchmark, i.e.,
DB3.1 . Numbers prefixed with DB indicate target criteria
extracted from DroidBench (126 target criteria in total,
grouped into 13 categories); numbers prefixed with ICC
indicate target criteria extracted from ICC-Bench (18 target
criteria, grouped into four categories).

A particular benchmark app can evaluate multiple target
criteria, e.g., both reflection and location handling. For
example, in benchmark EventOrdering1, the designers tested
whether the analysis tool is able to take into account different
repeating runs of the same activity. At the end of the first
run, they stored the tainted variable in SharedPreferences
and then retrieved it in the next run. While FLOWDROID and
AMANDROID both failed for this app, the underlying reason
is not that they cannot track the repeating runs of an activity
(criterion DB9.16 ) but rather that the tools cannot model
SharedPreferences (criterion DB8.16 ). We distilled the

1 public class MainActivity extends Activity {
2 @Override
3 public void onCreate(Bundle instance){
4 ...
5 TelephonyManager manager = ...;
6 Class c = Class.forName("android.telephony

.TelephonyManager");
7 Method m = c.getMethod("getDeviceId");
8 String imei = (String) m.invoke(manager);

// source (reflection)
9 Log.v("imei", imei); // sink, leak

10 }
11 }

Fig. 8: U-DB10.6 – Sources or sinks invoked using reflection.

SharedPreferences failure into a separate test case, which
we added to UBCBench .

Moreover, we identified ten additional target criteria
not explicitly mentioned by the existing benchmarks. We
marked them with the “U-” prefix and assigned them the next
available id in their corresponding category, e.g., U-DB10.6
for the criterion we added to the Reflection category DB10.*.
We used the new criteria to explain some of the failures and
also added the corresponding ten benchmark applications
to UBCBench . In total, we added 19 new benchmarks to
UBCBench : nine for untangling benchmarks criteria and ten
for the new target criteria we identified. We did not use these
new benchmarks in our experiments, to focus the analysis
on DroidBench and ICC-Bench only.

Each analyzed benchmark application contains none to
multiple expected flows. In our suite, there are 192 expected
flows – 158 for the DroidBench and 34 for the ICC-Bench
apps. Table 9 shows the number of false positive and false
negative results reported by each tool without the DROIDRA
extension, when evaluated against the set of expected flows.
We aggregated the results for each tool on a particular
benchmark suite by their failing criteria. That is, we inspected
each FP and FN flow observed in our experiment to find the
reason for the failure and indexed it with the appropriate
criterion.

In three cases, we were unable to recover the reasons for
the failures. These cases are indicated by UN in Table 9.
In addition, DROIDSAFE timed out in one case, which
we denoted by TO . FLOWDROID exceptions discussed in
Section 4.1.1 are marked as EX . We also identified several
bugs related to FLOWDROID’s integration with STUBDROID
and its handling of ICC flows in Services and Broadcast
Receivers. These bugs are marked as BUG1 and BUG2,
respectively; we were working with the FLOWDROID authors
to fix these bugs and the corresponding fixes will be released
in the next version of the tool. The full indexed list of
benchmarks, failing criteria for each benchmark and tool,
and the UBCBench test suite are available online [23]. We
now discuss the main reasons for the failures of each tool.

FLOWDROID does not resolve reflective calls when iden-
tifying source and sink methods but rather relies on API
signatures. For the example in Fig. 8, the getDeviceId()
source method is invoked reflectively in line 8. FLOWDROID
will miss this source method and, thus, will miss the
leakage to the sink in line 9. That behavior leads to 13
FN results stemming from six separate benchmarks (out
of 10 in the Reflection ICC category, DB11.*). As none of
these benchmarks specifically focuses on the issue of sources
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TABLE 9: FN/FP Breakdown by Target Criteria for Benchmark Apps

Tool FN FP
# Breakdown # Breakdown

DroidBench
FLOWDROID 45 1x DB2.8 ;1x DB7.10 ;1x DB7.13 ;1x DB7.15 ;1x DB7.16 ;1x DB8.2 ;

1x DB8.6 ;1x DB8.8 ;3x DB8.16 ;2x DB8.18 ;1x DB9.3 ;1x DB9.8 ;
1x DB9.14 ;1x DB9.17 ;1x DB9.18 ;2x DB9.19 ;1x DB12.6 ;
1x U-DB7.24 ;13x U-DB10.6 ;6x U-DB10.10 ;2x BUG1 ;1x BUG2 ;
1x EX ;

15 1x DB2.1 ;1x DB3.1 ;1x DB3.2 ;1x DB3.5 ;
1x DB3.8 ;1x DB3.9 ;1x DB4.14 ;1x DB6.7 ;
1x DB7.4 ;1x DB7.21 ;1x DB7.22 ;1x DB7.23 ;
3x DB13.1 ;

AMANDROID 69 1x DB2.7 ;1x DB2.8 ;1x DB2.11 ;1x DB3.6 ;1x DB3.7 ;1x DB3.10 ;
1x DB4.4 ;1x DB4.5 ;1x DB7.5 ;1x DB7.6 ;1x DB7.10 ;1x DB7.12 ;
1x DB7.16 ;3x DB8.16 ;1x DB8.17 ;1x DB9.1 ;1x DB9.5 ;1x DB9.8 ;
5x DB9.9 ;1x DB9.14 ;1x DB9.17 ;1x DB10.2 ;1x DB10.3 ;1x DB10.4 ;
5x DB10.5 ;20x DB11.1 ;1x DB12.6 ;10x U-DB4.15 ;1x U-DB7.24 ;
2x UN ;

45 1x DB3.1 ;1x DB3.2 ;1x DB3.8 ;1x DB3.9 ;
2x DB4.12 ;1x DB4.14 ;2x DB7.4 ;1x DB7.21 ;
1x DB8.2 ;4x DB13.1 ;22x U-DB2.12 ;
7x U-DB4.15 ; 1x U-DB4.16 ;

DROIDSAFE 18 1x DB2.6 ;13x U-DB10.7 ;1x U-DB10.8 ;1x U-DB10.9 ;1x TO ;1x UN ; 20 5x DB1.1 ;1x DB2.1 ;1x DB3.1 ;1x DB3.2 ;
1x DB3.8 ;1x DB3.9 ;2x DB4.12 ;1x DB4.14 ;
2x DB7.4 ;1x DB8.18 ;1x DB9.2 ;3x DB13.1 ;

ICC-Bench
FLOWDROID 12 1x ICC1.6 ;1x ICC2.4 ;1x ICC2.5 ; 3x BUG2 ;6x EX ; 0 none
AMANDROID 0 none 6 1x ICC2.2 ;1x ICC4.1 ;2x U-DB2.12 ;

2x U-DB4.16 ;

1 public class MainActivity extends Activity
implements View.OnClickListener {

2 @Override
3 protected void onClick(View v) {
4 ...
5 String imei = getDeviceId(); // source
6 ((Button) v).setHint(imei);
7 Log.d("TAG", ((Button) v).getHint().

toString()); // sink, leak
8 }
9 }

Fig. 9: U-DB7.24 – Flows through casted variables.
1 public class MainActivity extends Activity

implements View$OnClickListener {
2 public void onClick(android.view.View) {
3 View $r1;
4 ...
5 String $r3; // tainted by getDeviceId()
6 Button $r4;
7 CharSequence $r5;
8 $r4 = (Button) $r1;
9 virtualinvoke $r4.<Button: void setHint(

CharSequence)>($r3);
10 $r4 = (Button) $r1;
11 $r5 = virtualinvoke $r4.<Button:

CharSequence getHint()>();
12 $r3 = interfaceinvoke $r5.<CharSequence:

String toString()>();
13 staticinvoke <Log: int v(String,String)>("

TAG", $r3); // sink
14 return;
15 }
16 }

Fig. 10: Simplified Jimple code for Fig. 9.

and sinks defined through reflection but rather includes
other “complexities” such as string manipulation and ICC
flow, we created a new target criterion (U-DB10.6 ) and the
corresponding benchmark in UBCBench to pinpoint this
issue. Interestingly, AMANDROID also cannot handle this case
(as it struggles with reflection in general), but DROIDSAFE is
successful in identifying such sources and sinks.

We also discovered that FLOWDROID fails to propagate
taint when the involved objects are accessed via casting
(U-DB7.24 ). For the example in Fig. 9, a View passed as
a parameter to the method is, in fact, a Button. Button-
specific methods, setHint() and getHint(), are accessed
via casting: in line 6, the hint is set to the tainted imei
variable and then the value of the hint is leaked in line 7.

To explain the reasons behind this failure, Fig. 10 shows
the relevant portion of the Jimple code [69] that corresponds
to the bytecode in Fig. 9 (FLOWDROID performs its analysis
on Jimple rather than bytecode level). When the tainted
value in $r3 is assigned to a field of $r4 (via the method
setHint() in line 9), FLOWDROID triggers backward alias
analysis to identify all other variables aliased by $r4, as these
variables should be tainted as well. The analysis reaches $r1
(line 8) but fails to backward-propagate the taint, as the
assignment in this case is performed via a casting. As a
result, when $r1 is assigned to $r4 again (line 10), $r4 is
not tainted. Hence, the taint does not reach the sink (line 13),
resulting in an FN.

As this issue was, again, discovered in a benchmark
whose goal is to test callback handling, we created a separate
benchmark, U-DB7.24, to focus specifically on the casting
problem and added it to UBCBench . AMANDROID also fails
on this benchmark albeit for a different reason: it treats casted
variables as two completely separate entities; DROIDSAFE
manages to handle this case successfully.

Another major reason for FLOWDROID failures is the
ICC handling: there are ten failures in the general ICC
category (DB8.* ) and three in ICC-Bench ( ICC2.4 , ICC2.5 ,
and ICC1.6 ). These failures are related to Intent tracking
through list operations, using complex operations like string
manipulations for defining Intents and their actions, and the
SharedPreferences problems discussed above (DB8.16 ).
The tool also fails to handle advanced ICC involving URIs
and MIME format and ICC-related communication between
activities.

The remaining, less major failures are from the General
Java and Threading categories (eight failures in DB7.* and
one in DB12.6 ), Lifecycle and Callbacks (seven failures in
DB9.* and one in DB4.14 ), Array and Lists (five failures in
DB3.* ), Field and Object Sensitivity (DB6.7 ), Unreachable
Code (three failures in DB13.* ), Android-specific categories
(two failures in DB2.* ).

AMANDROID reports 24 FPs related to its conserva-
tive modeling of Android framework methods: as dis-
cussed in Section 3.1, when one of the parameters of
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1 public class MainActivity extends Activity {
2 @Override
3 public void onCreate(Bundle instance){
4 ...
5 String imei = getDeviceId(); // source
6 int length = Toast.LENGTH_SHORT;
7 Toast.makeText(this, imei, length).show();
8 Log.i("TAG", "" + length); // sink, no

leak
9 }

10 }

Fig. 11: U-DB2.12 – Android framework method modeling
(AMANDROID mistakenly propagates taint from one parameter
to another).

1 class MainActivity extends Activity {
2 LocationManager locManager;
3 LocationListener locListener = new

LocationListener() {
4 double lat;
5 @Override
6 void onLocationChanged(Location loc) {
7 lat = loc.getLatitude(); // source
8 Log.d("TAG", lat); // sink, leak
9 }

10 };
11 ...
12 }

Fig. 12: U-DB4.15 – Location-related flow.

a method is tainted, AMANDROID propagates the taint
to other parameters as well. For the example in Fig. 11,
the method Toast.makeText(Context, CharSequence,
int) in line 7 is an Android framework method that presents
a pop-up on the screen [70]. All the parameters of this method
are independent and there is no data flow between them.
However, AMANDROID propagates the taint from the second
parameter, imei, tainted in line 5, to the third parameter,
length. As a result, the tool reports an FP flow to the sink
in line 8. As this issue is observed in 13 benchmarks aiming
at evaluating exception and lifecycle handling, we created
a new target criterion and the corresponding benchmark in
UBCBench focusing solely on this issue ( U-DB2.12 ).

AMANDROID also reports 7 FPs and 10 FNs that stem
from handling location-related flows (U-DB4.15 ). This is
because the tool hard-codes the Location parameter of
the onLocationChanged() callback as a source, and does
not consider location sources specified by the user like
getLatitude() and getLongitude(). For the example in
Fig. 12, AMANDROID will not report the expected flow from
the specified source getLatitude() to the sink Log.d()
in line 8, but will report a (false-positive) flow from the
callback parameter loc of onLocationChanged() (line 6)
to the sink Log.d(). This behavior is troublesome because
there are cases where the Location object is accessed, but the
retrieved data is not sensitive, e.g., loc.getTime(); hence,
AMANDROID’s conservative handling of location sources
results in many FP flows. We focused on this issue in the
benchmark app U-DB4.15.

Likewise, AMANDROID always considers Intent param-
eters of callbacks as sources. For the example in Fig. 13,
AMANDROID considers the Intent parameter resultData
as a source, and then propagates a flow to the sink in line
5, which is incorrect. We mark this issue as U-DB4.16 in
Table 9; it leads to three FP results.

Another major reason for failures in AMANDROID is
its limited handling of reflection, as confirmed by the
tool’s authors. That results in 28 FNs (DB10.* and DB11.* ).

1 class MainActivity extends Activity {
2 ...
3 @Override
4 void onActivityResult(int requestCode, int

resultCode, Intent resultData) {
5 Log.d("TAG", resultData); // sink, no leak
6 }
7 }

Fig. 13: U-DB4.16 – Callback Intent handling.
1 public class MainActivity extends Activity {
2 @Override
3 protected void onCreate(Bundle

savedInstanceState) {
4 ...
5 Class c = getClass();
6 Method m = c.getMethod("getImei");
7 m.invoke(this, null);
8 }
9 public String getImei() {

10 String imei = getDeviceId(); // source
11 Log.i("TAG", imei); // sink, leak
12 }
13 }

Fig. 14: U-DB10.7 – Reflection via Object.getClass()
method.

AMANDROID also has ten FNs in Lifecycle category ( DB9.* )
and five failures in Callbacks (DB4.* ). That is mainly
because the tool does not model lifecycle methods of
the Application class and does not correctly handle
certain lifecycle methods of Activity and Fragment, e.g.,
Activity’s onRestoreInstanceState() and Fragment’s
onAttach(). The tool also fails to track Intents through
string manipulation and SharedPreferences, leading to
seven ICC-related failures ( DB8.* , ICC2.2 , and ICC4.1 ).

Similarly to FLOWDROID, the tool also does not han-
dle taint propagation through casted variables (U-DB7.24 ).
Other failures include General Java and Threading (eight
failures in DB7.* and one in DB12.6 ), Arrays and Lists
(seven failures in DB3.* ), Unreachable Code (four failures in
DB13.* ), and Android-specific categories (three failures in
DB2.* ).

DROIDSAFE has 15 FNs in handling reflections. Most of them
(13) are due to a singular reason: while the tool can handle the
reflective method Class.forName(String), it cannot iden-
tify the class retrieved via the method Object.getClass()
and further fails to resolve reflective calls to methods
in the retrieved class. We confirmed this issue with a
new benchmark in Fig. 14 and marked it as U-DB10.7 .
In this example, DROIDSAFE fails to recognize the class
MainActivity obtained by getClass() in line 5. As a
result, it misses reflective calls to invoke getImei() (lines 6
and 7), and further misses the leakage inside this method in
line 11. Interestingly, FLOWDROID can handle this case while
DROIDSAFE can handle the reflective calls in Fig. 8 causing
FLOWDROID to fail.

The remaining two reflection-related issues in DROID-
SAFE are due to (1) mishandling of method overloading, i.e.,
cases when methods of the same class have identical name
but different parameters (we confirmed this issue with a
new benchmark, in criterion U-DB10.8 ) and (2) inability to
resolve strings defined in application resource files, when
those strings are used as names for reflection targets (we
confirmed this issue with a new benchmark in criterion
U-DB10.9 ). FLOWDROID and AMANDROID failed on these
benchmarks as well.



17

TABLE 10: The Effect of DROIDRA for the DroidBench Apps

Reflection-related Reflection-unrelated
FLOWDROID AMANDROID DROIDSAFE FLOWDROID AMANDROID DROIDSAFE

# Breakdown # Breakdown # Breakdown # Breakdown # Breakdown # Breakdown

Added TP
0 none 4 1x DB10.2 2 2x U-DB10.7 0 none 0 none 0 none

1x DB10.4
2x DB10.5

Removed TP 0 none 0 none 0 none 0 none 0 none 0 none
Added FP 0 none 0 none 0 none 0 none 0 none 0 none

Removed FP 0 none 0 none 0 none 0 none 16 16x U-DB2.12 0 none
Total 0 4 2 0 16 0

DROIDSAFE also has five failures related to flow insensi-
tivity, which is due to the tool’s design ( DB1.1 ). Five failures
are related to the handling of Callbacks, Lifecycle, and ICC
(DB4.* , DB8.18 , DB9.2 ). These are because DROIDSAFE
assumes all possible callback orders, even those that cannot
occur at runtime. It also conservatively assumes that Intents
which cannot be resolved statically, e.g., those that depend
on user input, can target all components, leading to FPs.
Additional failures are due to the handling of Arrays and
Lists (four failures in DB3.* ), Unreachable Code (three
failures in DB13.* ), Android-specific (two failures in DB2.* ),
and General Java categories (two failures DB7.* ).

DROIDRA helps resolve 4 FNs for AMANDROID and 2
FNs for DROIDSAFE, all in the reflection category. In ad-
dition, it helps resolve 16 FP results for AMANDROID, albeit
not reflection-related. Table 10 summarizes the effect of
DROIDRA, in terms of added and removed TP and FP cases
for each tool, reported separately for reflection-related and
reflection-unrelated categories. We discuss these findings in
detail next.

There are 19 reflection-related benchmarks in DroidBench
v3.0, with 30 flows in total. Out of these, FLOWDROID has
19 FNs, i.e., cannot detect 19 of the 30 flows, AMANDROID –
28, and DROIDSAFE – 15 FN results. For AMANDROID,
DROIDRA helps resolve four FNs where the reflective
calls contain the name and parameters of the callee
methods, which is another method of the apps, e.g., Method
method = getClass().getDeclaredMethod("foo",
String.class); method.invoke(this, "bar");.
However, DROIDRA cannot handle the remaining cases
where (a) the callee method name and its parameters are
constructed dynamically, in app code and (b) the callee
method is a method from the Android framework rather
than the app itself. We created benchmarks U-DB10.10 and
U-DB10.11 to capture each such behavior.

Two of the four FNs that DROIDRA resolves for AMAN-
DROID contain Object.getClass() reflective calls. As
DROIDSAFE cannot handle such calls ( U-DB10.7 ), DROIDRA
helps resolve these two cases for DROIDSAFE as well.
The remaining two are handled “natively” by DROIDSAFE.
FLOWDROID can handle all these “simple” cases, but fails
on reflective calls where the callee method name and its
parameters are constructed dynamically ( U-DB10.10 ).

Overall, we observe that DROIDSAFE implements the
most robust reflection handling mechanism: the combina-
tion of DROIDRA and DROIDSAFE has only 13 FNs on
the benchmark suite and we estimate that the tool can

easily be augmented to resolve at least the two “simple”
Object.getClass() reflective calls discussed above.

Interestingly, for AMANDROID, DROIDRA also helped
eliminate 16 FP flows from four benchmark apps. All these
benchmark apps are related to the framework method
modeling ( U-DB2.12 ) and do not contain any reflective calls.
Upon further investigation, we discovered that this behavior
is actually a side effect of app repackaging performed by
DROIDRA: as it relies on SOOT [34] to read and modify
the bytecode of the original app and further produce the
bytecode of the instrumented app, the application used
as the input to a taint-analysis tool differs for the original
benchmark app. In the case of AMANDROID, that difference
helps eliminate an FP flow related to the AMANDROID
conservative modeling of Android framework. In fact, we
confirmed that a simple repackaging of the apps with SOOT
leads to the same behavior, even without using DROIDRA.

The common pattern among all these benchmarks apps
is that the sink is placed inside a loop. Fig. 15 is a simplified
version of the benchmark apps that we use to illustrate the
issue. In this example, the tainted imei variable (line 5) is
leaked at the sink sendTextMessage(...) in line 9. The
sink itself is placed inside a loop running for five iterations.
The expected behavior of a taint analysis tool is to report
only one flow from line 5 to line 9 (as done by FLOWDROID
and DROIDSAFE).

Fig. 16 shows instruction-level code produced from
the Java code in Fig. 15 by Android Studio – the official
integrated development environment for Google’s Android
operating system [71]. For simplicity, we show the code
in JAWA intermediate representation [72] commonly used
by many static analysis techniques, including AMANDROID.
This code first sets the variable v2 to null (line 1) and the
variable v3 – to the tainted value returned by the source API
(lines 3-4). The variables v6 and v1 are used to check the
loop condition; the loop itself is implemented in lines 8-16.
The important part are variables v4 and v5, which are set
to v2 (i.e., null) and are passed to the sink method, together
with the tainted variable v3 (line 14).

To preserve the loop semantics, AMANDROID unrolls each
loop three times. As such, the sink method in line 14 will be
executed three times in sequence. In the first iteration, as the
variable v3 is tainted, AMANDROID successfully reports the
flow to the sink. However, due to its conservative modeling
of Android framework methods, it also propagates the taint
from v3 to other method parameters, including v2, v4, and
v5. While the variables v0 and v1 are re-assigned in each
iteration of the loop (lines 10-11), v2 keeps the taint and also
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TABLE 11: Failures in Benchmark Apps Grouped by Target Criteria

Target Criteria FLOWDROID AMANDROID DROIDSAFE

Flow Sensitivity ( DB1.1 ) 0 0 5
Android-specific ( DB2.* , U-DB2.12 ) 2 27 (11 after repackaging) 2
Arrays and Lists ( DB3.* ) 5 7 4
Lifecycle and Callbacks ( DB4.* , DB9.* , U-DB4.* ) 8 35 4
Object Sensitivity ( DB6.7 ) 1 0 0
General Java ( DB7.* , U-DB7.* ) 9 9 2
ICC ( DB8.* , ICC*.* ) 11 7 1
Reflection ( DB10.* , DB11.* , U-DB10.* ) 19 28 (24 with DROIDRA) 15 (13 with DROIDRA)
Threading ( DB12.6 ) 1 1 0
Unreachable Code ( DB13.* ) 3 4 3
Total 59 118 36

1 public class MainActivity extends Activity {
2 @Override
3 protected void onCreate(Bundle

savedInstanceState) {
4 ...
5 String imei = getDeviceId(); // source
6
7 for (int i = 0; i < 5; i++) {
8 SmsManager sm = SmsManager.getDefault();
9 sm.sendTextMessage("+49 123456", null,

imei, null, null); // sink, leak
10 }
11 }
12 }

Fig. 15: A loop resulting in different instruction-level code
for Android Studio and SOOT.

1 v2:= 0I;
2 ...
3 call temp:= ‘getDeviceId‘(v7) ... // source
4 v3:= temp @kind object;
5 v6:= 0I;
6 v1:= 5I;
7 /* begin of loop */
8 if v6 >= v1 then goto L18;
9 call temp:= ‘getDefault‘() ...

10 v0:= temp @kind object;
11 v1:= "+49 123456" @kind object;
12 v4:= v2 @kind object;
13 v5:= v2 @kind object;
14 call ‘sendTextMessage‘(v0,v1,v2,v3,v4,v5) ...

// sink, leak
15 v6:= v6 + 1;
16 goto L6;
17 /* end of loop */
18 return @kind void;

Fig. 16: Android Studio version of the example in Fig. 15.

taints v4 and v5 in the next iteration of the loop (lines 12-13).
As a result, AMANDROID reports three FP flows in line 14 for
incorrectly tainted variables v2, v4, and v5 each.

Fig. 17 shows the instruction-level code generated by
SOOT after repackaging this app. The main difference is in
the handling of the loop variables. Here, the variables v2,
v4, and v5 are re-assigned in each iteration of the loop to
variables v14, v15 and v16, respectively (lines 15, 17-18),
which, in turn, are set to null, also inside the loop (lines
10-12). Reassigning the variables in each iteration prevents
FP flows detected by AMANDROID in the previous case.

Summary. Table 11 summarizes the criteria where at least one
of the tools, with and without DROIDRA, fails. It also lists the
total number of failures per criterion for each tool. Overall,
the major issue of all the tools is in reflection handling,
albeit for different reasons. DROIDRA helps resolve simple
reflective calls listing the name and parameters of the callee
methods, but is limited in handling more complex cases

1 call temp:= ‘getDeviceId‘(v9) ... // source
2 v11:= temp @kind object;
3 v12:= 0I;
4 v6:= 5I;
5 /* begin of loop */
6 if v12 >= v6 then goto L23;
7 call temp:= ‘getDefault‘() ...
8 v13:= temp @kind object;
9 v8:= "+49 123456" @kind object;

10 v14:= 0I;
11 v15:= 0I;
12 v16:= 0I;
13 v0:= v13 @kind object;
14 v1:= v8 @kind object;
15 v2:= v14 @kind object;
16 v3:= v11 @kind object;
17 v4:= v15 @kind object;
18 v5:= v16 @kind object;
19 call ‘sendTextMessage‘(v0,v1,v2,v3,v4,v5) ...

// sink, leak
20 v12:= v12 + 1;
21 goto L4;
22 /* end of loop */
23 return @kind void;

Fig. 17: SOOT version of the example in Fig. 15.

involving dynamic method name and parameter generation,
method overloading, and Android framework methods used
as callees. Additionally, FLOWDROID fails to accurately parse
and track ICC Intents involving complex string analysis and
list management operations. AMANDROID has major issues
in handling Android framework methods, location-related
flows, and lifecycle and callback methods. Once these major
problems are fixed, the tools will have a much higher overall
accuracy.

5 RESULTS: GOOGLE PLAY APPS (RQ4)
In this section, we answer RQ3 introduced in Section 1: do
the results on the benchmark applications generalize to the
Google Play apps? We run the tools on 25 apps with API
level 25 or lower, as discussed in Section 3.4 and reporting
the performance of FLOWDROID and AMANDROID, with and
without DROIDRA, on these apps.

5.1 Tools Performance

5.1.1 Accuracy
Table 12 shows the results of app analysis for FLOWDROID:
the number of expected and detected flows, as well as the
breakdown of reasons for FN and FP results of the tool for
each app. FLOWDROID is able to identify flows in only two
apps (#13 and #21), listed in the first two rows of the table.
The remaining rows show apps with no flows detected. We
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TABLE 12: FLOWDROID Results on Google Play Apps (“ ” indicates the tool fully analyzed the app and “ ” indicates the tool
failed to analyze the app)

App ID # Exp. Flows # Detected Flows
FN FP

# Breakdown # Breakdown

13 15 17 0 2 2x U-DB2.12
(15 TP, 2 FP)

21 12 4 8 8x U-DB2.12 0
(4 TP, 0 FP)

3 1 0 1 1x U-DB4.18 0
4 1 0 1 1x DB8.16 0
6 1 0 1 1x U-DB4.17 0
9 1 0 1 1x U-DB4.17 0
10 1 0 1 1x U-DB4.17 0
11 1 0 1 1x U-DB2.12 0
15 1 0 1 1x U-DB10.12 0
17 1 0 1 1x U-DB10.12 0
20 7 0 7 5x DB8.16 ; 2x U-DB2.12 0
22 3 0 3 3x U-DB2.12 0
23 11 0 11 5x DB8.16 ; 6x U-DB2.12 0
25 7 0 7 5x DB8.16 ; 2x U-DB2.12 0

1, 2, 5, 7, 8, 12, 14, 18, 19 1 (per app) 0 9 9x EX 0
16 3 0 3 3x EX 0
24 7 0 7 7x OM 0

Total 82 21 63 16x DB8.16 ; 22x U-DB2.12 ; 3x U-DB4.17 ; 2 2x U-DB2.12
(19 TP, 2 FP) 1x U-DB4.18 ; 2x U-DB10.12 ; 12x EX ; 7x OM

mark with cases where a tool completed the app analysis
and with – cases where the tool failed to analyze an app
due to a runtime ( EX ) or out of memory ( OM ) exception.

FLOWDROID finished analyzing 14 out of 25 apps, ran
out of memory in one app (#24), and produced runtime
exceptions in the remaining 10 apps. We identified three
cases in which the tool throws exceptions: when han-
dling ICC flows in Services (apps #2, #7, and #14), when
handling ICC-related methods with no parameters, e.g.,
PendingIntent.send() (apps #1 and #16), and when call-
ing the underlying SOOT framework to resolve parame-
ters of the reflective Method.invoke(Object, Object[])
method (apps #5, #8, #12, #18, and #19). We reported these
failures to the FLOWDROID authors, discussed possible fixes,
and believe that these fixes will be available in the next
release of the tool.

For app #13 (login-related), 15 out of 17 flows detected by
FLOWDROID are TPs, indicating a high detection accuracy
for this app. However, this is the only app where the tool was
able to detect the expected login-related flow. For app #21
(spyware), the tool can detect four out of 12 expected flows
and has no FP results, leading to a high precision but low
recall. We discuss reasons for why FLOWDROID can detect
only some of the expected flows in Sections 5.2 and 5.3.

Augmenting FLOWDROID with DROIDRA does not in-
crease the number of identified flows. That is, DROIDRA
+FLOWDROID still finds the same flows in apps #13 and #21
only. Moreover, instrumenting apps with DROIDRA resulted
in runtime exceptions in six apps: #3, #7, #17, #19, #20, #22. We
confirmed with the DROIDRA authors that the exception is
due to improper handling of the multi-dex apps.

For AMANDROID, we observed that the number of flows
reported by the tool varies across different runs on the

same machine, same app, and same configuration setup. For
example, on app #11, AMANDROID reported between 0 and
43 flows in different independent isolated runs (specifically,
0, 3, 20, 28, and then 43 flows). As another example, on
app #13, the tool reported between 118 and 275 flows in
different runs (specifically, 118, 126, 130, and 275 flows). We
reached out to the authors of the tool but did not receive
a reply explaining this behavior. Due to the flaky nature
of the results, we excluded the tool from further analysis,
concluding that AMANDROID cannot reliably analyze Google
Play apps.

5.1.2 Execution Time and Memory Consumption

To report execution time and memory consumption, similar
to the benchmarks, we only consider apps that FLOWDROID
analyzed in full and averaged their performance results from
five consecutive runs. There are 14 such apps (marked with
in Table 12). Figures 18 and 19 show the execution time and
memory consumption of FLOWDROID for these Google Play
apps, respectively. Overall, FLOWDROID spent 2.8 hours per
app, on average (min: 1 minute, max: 20.2 hours, median:

1 10 100 1000 2000

FlowDroid

Fig. 18: Execution time (in minutes) of FLOWDROID on the
Google Play apps.

100 1000 10000 30000

FlowDroid

Fig. 19: Memory consumption (in MB) of FLOWDROID on
the Google Play apps.
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TABLE 13: Android framework methods on FLOWDROID TPs in apps #14 and #22.

App
ID

Total
TPs Signature # TPs Taint Prop. STUBDROID?

13 15

android.text.Editable: java.lang.String toString() 7 recv -> ret 3
java.lang.String: java.lang.String substring(int,int) 1 recv -> ret 3
java.lang.String: java.lang.String replaceAll(java.lang.String,java.lang.String) 1 recv -> ret 3
java.lang.String: java.lang.String trim() 6 recv -> ret 3
java.lang.String: java.lang.String valueOf(java.lang.Object) 8 param -> ret 3
org.json.JSONObject: java.lang.String toString() 15 recv -> ret 3
org.json.JSONObject: org.json.JSONObject put(java.lang.String,java.lang.Object) 15 param -> recv 3

21 4
java.lang.Double: java.lang.String toString() 4 recv -> ret 3
java.lang.StringBuilder: java.lang.StringBuilder append(java.lang.String) 4 param -> recv 3
java.lang.StringBuilder: java.lang.String toString() 4 recv -> ret 3

11 minutes) and consumed 4830 MB of RAM per app, on
average (min: 137 MB, max: 23764 MB, median: 1538 MB).

DROIDRA successfully pre-processed 19 out of the overall
26 apps, taking around 19 minutes on average per app (min:
1 minute, max: 2.8 hours, median: 3 minutes). It consumed
27591 MB of RAM per app, on average (min: 21814 MB, max:
37676 MB, median: 27348 MB). As with the benchmark apps,
the tools did not require the entire 256 GB of RAM allocated
for the Google Play apps in our experiments. Moreover, the
execution time and memory consumption of FLOWDROID
on the seven apps that it was able to successfully analyze
after the DROIDRA pre-processing are similar, albeit slightly
higher, than on the original apps. Detailed results of each
apps are available online [23].

We did not perform a numerical comparison of perfor-
mance results with other work due to different hardware
setups and configuration selections. Also, our reported
performance results are not intended to be statistically
representative; we only provide these results for information
purposes, to assess the approximate time and memory
required to run the tools on Google Play apps.

5.2 Analysis of Correctly Detected Flows

For the app #13, 15 out of 17 flows detected by FLOW-
DROID are TPs. Overall, all the 15 flows follow a sim-
ilar pattern: inside a button callback method, a source
method EditText.getText() is invoked. The retrieved
text is converted to a String and added to a JSONOb-
ject. Then, the JSONObject is sent out to the Inter-
net via a HTTP request, with the okhttp3.Call: void
enqueue(okhttp3.Callback) API as the sink.

Fig. 20 shows a slightly shortened example of a TP
flow in the app. The callback of the “submit” button is
specified in the activity layout XML file (line 3). When this
callback method is invoked, it uses the source API method
EditText.getText() to retrieve the card number specified
by the user in the text input widget cardnumber_input
(line 9). It then creates a new JSON object, adds the card
number to it, and converts the object to a string (lines 10-12).
This tainted string is used to initialize the body of an HTTP
request (lines 13-14). Finally, the request is sent over the
Internet via the sink method (line 15), resulting in a leak.

Such flows in app #13 are relatively simple and require
the tool to (1) identify callbacks defined in the layout XML
file and (2) handle Android framework methods, like those
in lines 11-14 of Fig. 20. These challenges are captured

1 /* AddCard activity layout XML file */
2 ...
3 <Button android:id="@+id/submit_button"

android:onClick="submit"/>
4
5 /* Source code */
6 public class AddCard extends

AppCompatActivity {
7 ...
8 public void submit(View view) {
9 cardnumber = String.valueOf(this.

cardnumber_input.getText()); // source
10 JSONObject json = new JSONObject();
11 json.put("cardnumber", cardnumber);
12 String jStr = json.toString();
13 RequestBody reqBody = RequestBody.create(

JSON, jStr);
14 Request request = buildPOSTRequest(reqBody

, "registration/card_no_password");
15 OkHttpClient().newCall(request).enqueue(

new RequestCallback()); // sink, leak
16 }
17 }

Fig. 20: An example of a TP flow in app #14.

1 public class MyClass {
2 void foo(String str) {
3 ...
4 Location location = LocationManager.

getLastKnownLocation("gps");
5 StringBuilder sb = new StringBuilder();
6 sb.append("Lat : ");
7 sb.append(Double.toString(location.

getLatitude())); // source
8 str2 = sb.toString();
9 SmsManager.getDefault().sendTextMessage(

str, null, str2, null, null); // sink
, leak

10 ...
11 }
12 ...
13 }

Fig. 21: An example of a TP flow in app #22.

by benchmarks in the DB4.2 and U-DB2.12 categories,
respectively. In this case, they can be successfully addressed
by the tool: FLOWDROID can handle callbacks defined in the
layout XML file; for the Android framework methods, rows
1-7 in Table 13 list all methods used in the 15 TP flows of this
app, as well as the number of flows containing each method,
the propagation of the taint inside the method (e.g., between
the receiver object, parameters, and the return value), and
whether the method is modeled by STUBDROID. The table
shows that all the framework methods used in these flows
are modeled by STUBDROID and thus FLOWDROID is able to
accurately track taint propagation of all these methods.

For app #21, the tool can detect four out of 12 ex-
pected flows. These four flows are from location-related
source methods, i.e., getLatitude() and getLongitude(),
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1 public class MainActivity extends Activity {
2 @Override
3 protected void onCreate(Bundle

savedInstanceState) {
4 ...
5 pwd = getText().toString(); // source
6
7 HttpPost req = new HttpPost();
8 req.setEntity(new StringEntity(pwd));
9

10 HttpClient httpClient = ...;
11 httpClient.execute(req); // sink, leak
12
13 String uri = new Builder()
14 .appendQueryParameter("password", pwd)
15 .build().getEncodedQuery();
16
17 BufferedWriter writer = ...;
18 writer.write(uri); // sink, leak
19 }
20 }

Fig. 22: U-DB2.12 – Android framework method modeling
(FLOWDROID does not propagate taint from a parameter to the
receiver object and to the return value).

to the sink method sendTextMessage(...), at different
call sites. The flows follow the same pattern shown in
Fig. 21: a location obtained via a call to a source method
is converted to a String and appended to a StringBuilder
object (line 7). The StringBuilder is further converted
to a String (line 8) and leaked via an SMS through
the SmsManager::sendTextMessage(...) sink method
(line 9).

Like in the case of app #13, the flows are rather simple
and the only challenge involved in detecting these flows is
to be able to track taint propagation in Android framework
methods ( U-DB2.12 ). The framework methods used in these
flows are listed in the last three rows of Table 13. Here,
again, all methods are modeled by STUBDROID and thus
FLOWDROID is able to accurately detect them. Next, we
discuss the reasons for FN and FP results.

5.3 Causes of Inaccuracy
The FN and FP columns of Table 12 show the detailed
distribution of the false negative and false positive results
for the apps FLOWDROID analyzed in full. Similar to the
benchmarks, we assign a failing criterion for each FN and
FP result: for each failure, we first checked whether the
failure occurs due to a reason already captured by a certain
target criterion from the benchmark apps. If so, we marked
the failure with that target criterion. Otherwise, we created
a new target criterion ( U-DB4.17 , U-DB4.18 , U-DB10.12 )
and also added a corresponding benchmark application to
UBCBench .

FLOWDROID missed 22 flows in six apps, #11, #20, #21, #22,
#23, and #25, due to the incorrect modeling of Android frame-
work methods. We mark this failure with the U-DB2.12 tar-
get criterion, as in the benchmark apps. Fig. 22 shows a snip-
pet of code producing such FN result: in this case, an Android
framework method HttpPost.setEntity(HttpEntity)
is used to set the content of an HTTP request (line 8). It
is parameterized with an StringEntity object, which is
tainted because the pwd field is tainted (line 5). As the
framework method is not supported by STUBDROID and
is not explicitly classified in any of the conservative frame-
work method modeling strategies described in Section 3.1,

1 public class MainActivity extends Activity {
2 String pwd = "";
3 @Override
4 protected void onCreate(Bundle

savedInstanceState) {
5 ...
6 this.pwd = getText().toString(); // source
7 String name = this.getString(R.string.

app_name);
8
9 PrintWriter writer = ...;

10 writer.write(name); // sink, no leak
11 }
12 }

Fig. 23: U-DB2.12 – Android framework method modeling
(FLOWDROID mistakenly propagates taint from a parameter’s
field to the return value).

FLOWDROID applies the default strategy: when a receiver
object or one of its fields is tainted, the taint is propagated
to the method return value and its fields. As the default
strategy does not propagate the taint from the method
parameter to the receiver object req, the tool misses the
flow to the HttpClient.execute(...) sink (line 11). This
led to FLOWDROID missing one flow in app #11.

Similarly, in line 14, Android framework method
Uri$Builder.appendQueryParameter(String,String)
is used to add a query string to an URI. The return value
uri should be tainted as it contains the tainted pwd string.
Again, FLOWDROID applies the default strategy on this
method, where the taint is not propagated from the method
parameters to the return value. As a result, the tool also
misses the flow to the BufferWriter.write(...) sink
(line 18). This led to FLOWDROID missing the remaining 21
flows in apps #20, #21, #22, #23, and #25. One way to fix these
failures is to assign the generation type to both methods,
which would propagate the taint from the method parameter
to the receiver object req (line 8) and the return value uri
(line 13).

Another case of framework method misclassification, this
time leading to two FP results (both in app #13) is exemplified
in Fig. 23. Here, Context.getString(int) is an Android
framework method that allows developers to retrieve a string
resource, e.g., the app name (line 7). The pwd field of the
method’s receiver object, this, is tainted (line 6). However,
this method is, again, not supported by STUBDROID as it
contains native code and is not explicitly classified in any
of the conservative framework method modeling strategies.
Applying the default strategy in this case propagates the taint
to the method’s return value, which is further assigned to the
variable name (line 7). The tainted name variable flows to the
sink PrintWriter.write(...) (line 10). Yet, this is an FP
result as the return string of the Context.getString(int)
is not, in fact, affected by the tainted value. To fix the failure,
this method should have been assigned to the exclude type,
which would not propagate the taint.

While FLOWDROID has no failure of this kind on
the benchmark apps, Google Play apps contain Android
framework methods not covered by the benchmarks,
which expose additional weaknesses and the need to tune
FLOWDROID to better represent the entire range of Android
framework methods. Moreover, even though propagating
the taint from a method parameter to the method receiver
(like in Figure 22) can be solved by FLOWDROID’s generation
conservative modeling strategy, none of the tool’s strategies
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1 public class MainActivity extends Activity {
2 int id = R.layout.activity_main;
3 @Override
4 protected void onCreate(Bundle

savedInstanceState) {
5 ...
6 setContentView(id);
7 }
8 // Callback defined in a layout file
9 public void buttonClick(View view){

10 String pwd = getText().toString(); //
source

11 PrintWriter writer = ...;
12 writer.write(pwd); // sink, leak
13 }
14 }

Fig. 24: U-DB4.17 – Missing callbacks.

supports propagating taint between explicit method
parameters. Such behavior is required, for example, for the
android.database.DatabaseUtils::appendValueTo-
Sql(StringBuilder sql, Object value) framework
method. FLOWDROID framework modeling strategy needs to
be refined to support this case; interestingly, such modeling
pattern is supported by AMANDROID. That is, for framework
methods that are not accurately modeled by the tools,
FLOWDROID and AMANDROID apply different types of
conservative strategies, both with their own strengths and
weaknesses.

Besides framework-modeling-related failures, three addi-
tional FNs, in apps #6, #9, and #10, relate to callback method
analysis. Fig. 24 shows a simplified version of the code lead-
ing to the failure marked as U-DB4.17 . In this code snippet,
R.layout.activity_main is a unique identifier of a file
defining the UI elements and their corresponding callback
methods for an activity. The identifier is assigned to a variable
id (line 2); that variable is further used in onCreate(...)
method to set the layout for the activity (line 6). The layout
file defines a callback method buttonClick(), which is
called when a button is clicked. The implementation of this
method contains a flow from the source pwd (line 10) to the
sink PrintWriter.write(...) (line 12).

To detect the expected flow, FLOWDROID needs to detect
the callback method first. It does that by identifying and
parsing all layout resource files passed as a parameter
to setContentView(int). However, we observed that
FLOWDROID can only handle layout files when the value of
the parameter is a primitive integer rather than a variable.
Unlike in this app, all benchmarks and several Google Play
apps use R.layout.activity_main, which is a final static
variable that is replaced by its integer value at compile time,
directly as an input to the setContentView(int) method.
FLOWDROID does not perform any analysis on the app to
retrieve the value of the id variable and thus cannot detect
the layout file. As a result, it misses the callback and its
related flows.

Moreover, while FLOWDROID models the lifecycle meth-
ods of fragments – reusable UI parts defined within an
Activity – it does not collect callbacks dynamically registered
in fragments’ lifecycle methods. For example, the onClick()
callback method in Fig. 25 (line 9) is dynamically registered in
the fragment’s onCreateView(...) lifecycle method (line
6). FLOWDROID is unable to collect this callback method and
considers it as unreachable. As a result, it cannot identify the
flow inside this callback method: from the source getText()
(line 10) to the sink PrintWriter.write(...) (line 12).

1 public class MyFragment extends Fragment
implements View.OnClickListener {

2 @Override
3 public View onCreateView(LayoutInflater

inflater, ViewGroup container, Bundle
savedinstanceState) {

4 ...
5 Button button = ...;
6 button.setOnClickListener(this);
7 }
8 @Override
9 public void onClick(View v) {

10 String pwd = getText().toString(); //
source

11 PrintWriter writer = ...;
12 writer.write(pwd); // sink, leak
13 }
14 }

Fig. 25: U-DB4.18 – Callback methods registered in frag-
ments.

1 public class MyClass {
2 public MyClass() {
3 String pwd = getText().toString(); //

source
4 PrintWriter writer = ...;
5 writer.write(pwd); // sink, leak
6 }
7 }
8 public class MainActivity extends Activity {
9 @Override

10 protected void onCreate(Bundle
savedInstanceState) {

11 ...
12 Class<?> cls = Class.forName("MyClass");
13 Constructor cstr = cls.getConstructor();
14 MyClass obj = (MyClass) cstr.newInstance(

this);
15 }
16 }

Fig. 26: U-DB10.12 – Reflective invocation of class construc-
tors.

We marked this issue as U-DB4.18 in Table 12, which leads
to one FN (in app #3). This is a serious limitation: while
approximately 90% of the current Google Play apps contain
at least one fragment [73], DroidBench only contains two
benchmark apps (FragmentLifecycle1 and FragmentLifecycle2)
focusing on fragment lifecycle method modeling.

Another source of failures leading to two FNs, in apps
#15 and #17, is due to using reflective calls to invoke
class constructors. Fig. 26 shows an example where class
MyClass (lines 1-7) is instantiated via reflection (lines 12-14).
Because FLOWDROID cannot handle the reflective method
Class.getConstructor(), it cannot reach the constructor
method and misses the flow inside that method. We mark
this issue as U-DB10.12 .

We identified this issue while analyzing FN results in
applications using a framework called ButterKnife [74], which
simplifies the code for registering callbacks of UI elements.
ButterKnife automatically generates a helper class for each
Activity and relies on reflective calls similar to the one in
Fig. 26 to invoke the constructor of the helper class and
to perform callback registrations. As ButterKnife is used by
many Google Play applications, lack of support for reflective
constructors hinders the applicability of FLOWDROID in
practice.

Finally, 16 additional FNs for FLOWDROID, in apps #4,
#20, #23, and #25, are due to a reason we already observed
in benchmarks: lack of support for SharedPreferences
( DB8.16 ).
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1 public class MyClass {
2 public MyClass() {
3 String pwd = getText().toString(); //

source
4 PrintWriter writer = ...;
5 writer.write(pwd); // sink, leak
6 }
7 }
8 public class MainActivity extends Activity {
9 @Override

10 protected void onCreate(Bundle
savedInstanceState) {

11 ...
12 Constructor cstr = findConstructor();
13 MyClass obj = (MyClass) cstr.newInstance(

this); // Missed by DroidRA
14 }
15
16 public Constructor findConstructor() {
17 Class<?> cls = Class.forName("MyClass");
18 Constructor cstr = cls.getConstructor();
19 ...
20 return cstr;
21 }
22 }

Fig. 27: U-DB10.12 – Class constructors returned by a method.

DROIDRA does not help improve FLOWDROID’s
accuracy for two reflection-related FNs (in apps
#15 and #17), which are caused by using the
reflective methods Class.getConstructor() and
Constructor.newInstance(). Interestingly, when calls to
these methods are located within the same host method, like
in our example in Fig. 26, DROIDRA can successfully identify
the source and target of reflective calls. However, in apps #15
and #17, calls to these reflective methods are located in two
different host methods, like in the example in Fig. 27. Here,
Class.getConstructor() is called inside the method
findConstructor() in line 18. This method returns the
Constructor object, which is further assigned to the variable
cstr in line 12 of the method onCreate(). The cstr
variable is then used in Constructor.newInstance()
in line 13 of onCreate(). In this case, DROIDRA fails to
replace the reflection call to MyClass() invoked in line 13
with a direct call. As a result, FLOWDROID still misses the
tainted flow in lines 3-5. We add an additional benchmark to
UBCBench to cover this case.

Summary. Our experiments identified several major issues
not covered by existing benchmarks, such as flakiness of
AMANDROID on several large-scale apps. For FLOWDROID,
main issues include inaccurate handling of Android frame-
work methods, callbacks, fragments, and reflective calls.
DROIDRA did not help resolve missed reflection cases
due to its limited support for reflective invocation of class
constructors. In addition, the applicability of existing tools
for real-world applications is hindered by a large number
of runtime exceptions, timeouts, and out-of-memory errors.
That is, the high accuracy of the tools on the benchmark apps
does not translate to a high accuracy on Google Play apps;
our experience shows that none of the tools can be used to
reliably detect flows in Google Play apps.

6 LIMITATIONS AND THREATS TO VALIDITY

The main threat to the validity of our results stems from
the manual analysis we performed to identify the expected
results for each benchmark and Google Play app, the FP
and FN flows in each tool, and the causes of these flows.

We mitigated this threat in three ways: first, two authors of
this paper performed the analysis independently and then
cross-checked each other’s results. Second, we constructed
and ran our own test cases, to confirm each hypothesis for
a possible cause of a FP/FN result. We also reached out to
the authors of each tool to resolve cases where a definite
conclusion could not be reached. Finally, we shared a draft
of this report with all tool authors to obtain their feedback
and addressed all feedback we receive at the time of writing.

As the set of sources and sinks in DROIDSAFE is not
configurable without code modifications, we ignored flows
detected by DROIDSAFE when these flows did not involve
sources and sinks in our set. While this part of the process
was automated, we could have mistakenly missed important
flows. Again, we mitigated this threat by independently
inspecting the results by at least two authors of the paper.
Yet, we acknowledge that running the tool with an extended
set of sources and sinks could alter its behavior.

Finally, as DROIDSAFE does not support applications
above API level 19 and ICC-Bench applications require API
level 25, we did not report DROIDSAFE results on ICC-Bench .
Moreover, limited API support of AMANDROID constrained
the range of Google Play apps we tested the tool on. As we
only run each tool on apps it can support, we believe the
experiment is valid. Yet, performing our analysis on apps
with API level < 25 is a limitation of our approach. As the
issues that we identified, e.g., the limited support of reflection
and framework modeling, are not specific to apps with these
API levels, they are likely to occur in apps with higher API
levels as well. We thus believe our results generalize.

7 DISCUSSION AND LESSONS LEARNED

The absence of accurate information on tool configuration
as well as sources, sinks, and benchmarks apps used for the
analysis, hinders the replicability of earlier studies. When
each of the analyzed tools was introduced, it reportedly
outperformed the others. That is because the tools were
evaluated under different configuration setups, with different
sets of sources and sinks, and only on a selected subset
of benchmarks. To further add to the confusion, as our
experience analyzing ICC communication shows, the tools
also have different interpretations of Android-specific flow
semantics. Comparing the tools to each other under the
same setup helps identify their strengths and weaknesses,
e.g., in Android framework method modeling approaches
implemented by FLOWDROID vs. AMANDROID.

Our experience evaluating the tools on Google Play apps
shows that the high accuracy on the benchmarks does not
necessarily translate to a high accuracy on Google Play apps.
While the tools are tuned to perform well on the benchmark
apps, AMANDROID largely fails to produce reliable results on
real apps and FLOWDROID misses cases not covered by the
benchmarks, e.g., certain types of reflective calls, callbacks,
and Android framework methods. Our study helped identify
several such cases. We conclude that evaluations of the tools
on real applications, with a detailed analysis of each failure,
as we did in Section 5.3, is a difficult yet productive direction
for future work, which will help improve tools’ applicability
in practice.
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Furthermore, based on our study, we observed that the
current way of measuring tools accuracy is sub-optimal:
as multiple FP and FN flows might be caused by the
same underlying reason, just counting FP and FN flows
can produce false impressions with respect to the real tool
accuracy. In fact, such counting might produce accuracy
metrics that look artificially low, even though the tool
outperforms others in many aspects. To mitigate this problem,
we suggest to (a) simplify the benchmarks and ensure they
focus, as much as possible, on one particular aspect of the
analysis and (b) investigate reasons behind each failure, as
we did in Sections 4.3 and 5.3.

In our work, we separated tangled benchmarks and
extracted new benchmarks representing issues found in the
analyzed Google Play apps. We included newly identified
benchmarks in UBCBench and augmented this suite with
tests of different types of sensitivities. We clearly articulated
potential reasons for failures in each of the benchmarks and
made our setup and experimental data publicly available for
others to build on.

We hope our work will benefit tool builders, as it
highlights some of the main factors impeding the successful
adoption of the tools in practice: scalability, handling of
callbacks and reflections, and accurate support of Android
framework methods. We also hope our work will help tool
users to better interpret the results of analysis and tune the
tools for their needs.

8 RELATED WORK

Our discussion of related work focuses on the (a) internal
evaluation of the tools we selected for our study, (b) external
evaluation of the tools, and (c) surveys on Android static
taint analysis tools.
Internal tool evaluation. We start by discussing the evalua-
tion of the tools performed by their authors. Arzt et al. [2]
compared the precision and recall of FLOWDROID with two
commercial tools, IBM APPSCAN SOURCE [75] and FORTIFY
SCA [76] on DroidBench version 1.0, which contained 39
benchmarks at that time. They provided a detailed kit
explaining how to reproduce their experiments [77]. The
authors also ran FLOWDROID (without ICCTA) on 500 most
popular Google Play applications and 1,000 known malware
apps from the VirusShare dataset [78]. They concluded
that FLOWDROID was able to detect leakages of sensitive
information into log files. However, the authors did not
report on the number of apps the tool successfully analyzed
and the number of flows the tool reported per app. They also
did not classify all flows into FP and FN results.

Li et al. [4] conducted a comparison between FLOWDROID
without ICCTA, FLOWDROID with ICCTA, DIDFAIL [79], and
AMANDROID on 22 ICC-related benchmarks the authors de-
veloped and nine benchmarks from ICC-Bench . The authors
also ran FLOWDROID (with ICCTA) on 15,000 randomly
selected Google Play applications and showed that the tool
reported 2,395 ICC-related leakages in 337 apps. Like in the
previous study, the authors did not further check the validity
of the reported flows. When comparing the execution time of
FLOWDROID (with ICCTA) and AMANDROID on 50 randomly
selected Google Play applications, the authors showed that

FLOWDROID was faster than AMANDROID, which concurs
with our findings.

Wei et al. [5] compared AMANDROID with EPICC [1]
and FLOWDROID, also focusing on ICC handling ability.
The subject programs consisted of 39 applications from
DroidBench , 16 applications from ICC-Bench , and another
four proprietary test cases. Later, the same authors upgraded
the tool and conducted a new comparison [11], focusing on
18 DroidBench and 24 ICC-Bench applications related to ICC
and IAC. In these two reports, the authors also evaluated
AMANDROID on 753 and 2,300 Google Play apps, respectively,
showing that the tool is able to detect data leakages in
practice. Again, they did not provide an in-depth analysis of
the validity of the flows reported by the tool.

Gordon et al. [6] compared DROIDSAFE with FLOWDROID
using 94 applications from DroidBench , 40 additional bench-
marks developed and contributed to DroidBench by the
team, and 24 applications from a proprietary benchmark.
The authors did not run DROIDSAFE on any Google Play
apps, stating the tool is not designed for this purpose.

Finally, Li et al. [19] and Sun et al. [20] compared FLOW-
DROID with and without DROIDRA on 4 reflection-related
apps from DroidBench version 2.0 and 9 apps developed
by the authors. The authors also evaluated the tools on 100
real-world applications, but did not analyze the correctness
of the detected flows. Our work extends this evaluation to
consider the combination of DROIDRA with AMANDROID
and DROIDSAFE as well; we also perform a detailed analysis
of the detection results.

A detailed comparison with all these works is pre-
sented in Section 4.2. In a nutshell, executing the tools
on different subsets of benchmark applications and with
different versions of the tools makes the results incomparable.
Moreover, the detailed tool configuration setup used in
these experiments is rarely described. Experiments with
Google Play apps focus on evaluating the scalability rather
than the accuracy of the tools. In our work, we make a
particular effort to align the tool configurations and also
focus on a larger common set of benchmarks. As our team
was not involved in developing these tools, we provide
an independent assessment of their accuracy. Furthermore,
we perform an in-depth analysis to investigate the reasons
leading to FP and FN results on both the benchmark and
Google Play apps for each tool.
External tool evaluation. The closest to ours is the work
by Pauck et al. [16], which proposed a framework for
automatically evaluating reports produced by Android taint
analysis tools and used the framework for comparing the
accuracy and execution time of six static taint analyzers
(including FLOWDROID, AMANDROID, and DROIDSAFE).
The authors evaluated the tools on DroidBench version
3.0, ICC-Bench version 2.0, and the DIALDroid-Bench [80]
benchmark consisting of 30 apps collected from Google Play
in June 2015. For the DIALDroid-Bench apps, the authors
manually analyzed all flows reported by at least two tools
and determined whether these flows are TP or FP results;
they identified 22 TP and 4 FP flows, which formed the
baseline for their experiment. Unlike us, the authors ran each
tool with its default configuration. They also did not analyze
the reasons for failures in details, untangle the benchmarks,
or propose additional new benchmarks. Moreover, in our
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work, we manually identified the expected analysis result,
which allowed us to include many expected flows that are
missed by all tools. Our analysis thus identified new failures
missed by earlier work, such as those related to modeling
Android framework methods, handling reflective constructor
calls, callbacks in fragments, and more.

Bonett et al. [17] proposed a framework that leverages mu-
tation analysis to discover undocumented flaws of Android
static taint analysis tools. The authors used the framework
to generate and inject 2,026 mutants (i.e., data leakages) to
seven open-source Android apps, showing that DROIDSAFE
can detect the highest number of leakages, followed by
FLOWDROID and AMANDROID. The authors further showed
that all tools miss flows due to inaccurate handling of
callback methods and FLOWDROID and AMANDROID further
have issues related to multi-threading. Our work differs as
we focused on real rather than injected leakages, which
allowed us to identify issues such as unsupported reflective
constructor calls used by the ButterKnife framework.

Rodriguez and Kouwe [18] ran FLOWDROID, AMAN-
DROID, and DROIDSAFE on 48 benign and 48 malicious apps,
randomly selected from AndroZoo [65] – a repository that
crawls apps from Google Play and alternative markets. The
authors observed a large number of crashes and timeouts
when running the tools, looked into the reasons for such
crashes, and concluded that AMANDROID and DROIDSAFE
have de-compilation issues causing these tools to miss
Android APIs. Yet, some of these failures are expected, as
the tools do not support the newest Android API levels. In
our work, we ran the tools only on apps with supported API
levels.

Luo et al. [12] aimed at providing insights into what
can be done to increase the precision of taint analysis. They
proposed a tool, named COVA, to compute partial path
constraints that capture the circumstances under which
taint flows may actually occur in practice. The authors
further used the tool to conduct a qualitative study on taint
flows reported by FLOWDROID on Google Play apps. They
showed that many flows occur only under specific conditions,
e.g., environment settings, user interaction, I/O. Unlike our
work, the authors did not conduct a comparative analysis
evaluating multiple tools, focusing on the recommendations
of including such path constraints in future taint analysis
approaches.

Tiwari et al. [81] compared the accuracy of FLOWDROID
(with and without ICCTA), AMANDROID, DIDFAIL [79], IBM
AppScan Source [75], DIALDROID [80], and the authors’ own
tool, IIFA, on a large set of ICC- and IAC-related benchmarks.
The authors also ran the tools on 90 Google Play apps. They
reported that IIFA is the only tool that supports IAC analysis
of apps with an API level above 19, while other tools either
fail or crash. Our analysis does not focus on ICC/IAC flows
in particular. Like Tiwari et al., we also observe limited
applicability of the tools for Google Play apps. However,
unlike Tiwari et al., we manually built the set of expected
flows, which allowed us to identify reasons for undetected
and incorrectly detected flows.
Surveys. Several papers survey Android-specific static analy-
sis techniques for identifying permission and privacy leakage
detection [82], robustness against obfuscation [83], and intra-
and inter-application communication vulnerabilities [35]. Su-

fatrio et al. [84] provide a taxonomy of security vulnerabilities
in Android. Li et al. [41] and Sadeghi et al. [85] perform large-
scale systematic literature reviews on static analysis tools for
Android. They also propose a taxonomy, classifying Android
security assessment mechanisms and research approaches.

Apart from the conceptual surveys discussed above,
Reaves et al. [15] also augment their survey with an empirical
experiment comparing the surveyed static analysis tools. This
work evaluated usability, performance, and precision of the
tools for DroidBench applications, mobile bank applications,
and the top 10 most popular financial applications in
Google Play. The primary emphasis of this experiment is
on investigating the usability and accessibility of the tools,
the understandability of the results, and the usefulness of the
documentation provided by the tools. They reported on the
number of applications that each tool was able to process,
without a detailed analysis of the accuracy of each tool.
Moreover, experiments with different tools were conducted
using the default configurations of those tools, which hinders
the validity of the results. In contrast, our study starts by
aligning configurations of the tools and reports not only the
overall accuracy for each tool but also the reasons for all
failures, summarizing the main weaknesses of each tool. To
the best of our knowledge, our study is the first large-scale,
in-depth, comparative analysis of these tools under the same
setup. Moreover, our configuration and results are publicly
available, to allow reproducibility.

9 CONCLUSION

This paper reports on the results of a large-scale, controlled,
and independent experiment we conducted to evaluate
the most prominent static taint analysis tools for Android
applications: FLOWDROID, AMANDROID, and DROIDSAFE.
We also augmented each tool with the additional reflection
handling mechanism implemented by DROIDRA and eval-
uated its effectiveness. We aligned the tools along the same
configuration setup, used them to analyze 182 benchmark
applications, compared our results to those reported in
earlier work, and discussed the identified differences. We also
extracted expected flows from 25 Google Play applications
and used FLOWDROID and AMANDROID to analyze these
applications as well. We observed that AMANDROID cannot
reliably analyze large real applications, reporting flaky
results. For FLOWDROID, we inspected all reported false-
positive and false-negative flows to identify the main reasons
for inaccuracy. Furthermore, we inspected true-positive flows,
to identify the successful analysis cases and to discuss the
difference between them and the failing scenarios. Finally, we
identified several deficiencies in existing benchmarks, such
as missing checks and dependent checks that are encoded in
a single benchmark app.

Our work emphasizes the importance of providing
detailed information about an experimental setup, which
is required to ensure the correctness and reproducibility of
reported comparisons. We make our entire configuration
setup, including the tool configuration parameters, the set
of sources and sinks, the precise version of each benchmark
application used, the list of selected Google Play applications,
and our expected results available to other researchers.
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