
A Survey of Feature Location Techniques

Julia Rubin and Marsha Chechik

Abstract Feature location techniques aim at locating software artifacts that imple-
ment a specific program functionality, a.k.a. a feature. These techniques support de-
velopers during various activities such as software maintenance, aspect- or feature-
oriented refactoring, and others. For example, detecting artifacts that correspond
to product line features can assist the transition from unstructured to systematic
reuse approaches promoted by software product line engineering (SPLE). Manag-
ing features, as well as the traceability between these features and the artifacts that
implement them, is an essential task of the SPLE domain engineering phase, during
which the product line resources are specified, designed and implemented. In this
chapter, we provide an overview of existing feature location techniques. We describe
their implementation strategies and exemplify the techniques on a realistic use-case.
We also discuss their properties, strengths and weaknesses and provide guidelines
that can be used by practitioners when deciding which feature location technique to
choose. Our survey shows that none of the existing feature location techniques are
designed to consider families of related products and only treat different products of
a product line as individual, unrelated entities. We thus discuss possible directions
for leveraging SPLE architectures in order to improve the feature location process.

Key words: Software product lines, software maintenance, feature location.

1 Introduction
Software Product Line Engineering (SPLE) techniques [10, 25] capitalize on iden-
tifying and managing common and variable product line features across a product
portfolio. SPLE promotes systematic software reuse by leveraging the knowledge
about the set of available features, relationships among the features and relation-
ships between the features and software artifacts that implement them. However, in
reality, software families – collections of related software products – often emerge

Julia Rubin
IBM Research, Haifa, Israel and University of Toronto, Canada, e-mail: mjulia@il.ibm.com

Marsha Chechik
University of Toronto, Canada, e-mail: chechik@cs.toronto.edu

1

ad-hoc, from experiences in successfully addressed markets with similar, yet not
identical needs. Since it is difficult to foresee these needs a priori and hence to de-
sign a software product line upfront, software developers often create new products
by using one or more of the available technology-driven software reuse techniques
such as duplication (the “clone-and-own” approach), source control branching, pre-
processor directives and more.

Essential steps for unfolding the complexity of existing implementations and as-
sisting their transformation to systematic SPLE reuse approaches include identifi-
cation of implemented features and detection of software artifacts that realize those
features. While the set of available features in many cases is specified by the product
documentation and reports, the relationship between the features and their corre-
sponding implementation is rarely documented. Identification of such relationships
is the main goal of feature location techniques.

Rajlich and Chen [8] represent a feature (a.k.a. a concept) as a triple consisting
of a name, intension and extension. The name is the label that identifies the feature;
intension explains the meaning of the feature; and extension is a set of artifacts that
realize the feature. Location: intension → extension, is identified by the authors
as one of the six fundamental program comprehension processes. Its application to
features is the subject of this survey.

In the remainder of the chapter, we illustrate the surveyed concepts using a prob-
lem of locating the automatic save file feature, previously studied in [32], in the
code of the Freemind1 open source mind-mapping tool. A snippet of Freemind’s
call graph is shown in Fig. 1. Shaded elements in the graph contribute to the imple-
mentation of the automatic save file feature – they are the feature extension which
we want to locate. Feature intension can be given, for example, by the natural lan-
guage query “automatic save file”, describing the feature2.

The feature is mainly implemented by two methods of the MindMapMapModel

sub-class doAutomaticSave: the constructor and the method run (elements #1 and
#2). doAutomaticSave class is initiated by the MindMapMapModel’s constructor
(element #4), as shown in Fig. 2. The constructor assigns values to several con-
figuration parameters related to the automatic save file function and then registers
the doAutomaticSave class on the scheduling queue. This initiates the class’s run
method (element #1) which subsequently calls the saveInternal method (element
#3) responsible for performing the save operation.

Obviously, not all program methods contribute to the automatic save file fea-
ture. For example, element #3 also initiates a call to FreeMindNodeModel’s save(
Writer, MindMapMapModel) method (element #5), which, in turn, calls element
#6 – save(Writer, MindMapMapModel). Both of these methods are irrelevant to the
specifics of the automatic save file implementation. Element #3 itself is called by el-
ement #7 (MindMapMapMode’s save(File) method), which is called by element #8
(MindMapController’s actionPerformed(ActionEvent)). These methods are
also not relevant to the feature implementation because they handle a user-triggered

1 http://freemind.sourceforge.net
2 We denote features by italic font, place natural language queries “in quotes”, and denote code
elements by a monospaced font.

2

MindMapMapModel.

save(File)

MindMapMapModel.

doAutomaticSave.

doAutomaticSave

(MindMapMapModel,

int, boolean, File)

FreeMindNodeModel.

save(Writer,

MindMapMapModel)

MindMapMapModel.

saveInternal

(File, boolean)

MindMapMapModel.

doAutomaticSave.

run()

MindMapController.

actionPerformed

(ActionEvent e)

MindMapMapModel.

MindMapMapModel()

FreeMindEdgeModel.

save()

1

2

3 4

7

5

6 8

Fig. 1 The automatic save file call graph
snippet.

public MindMapMapModel(MindMapNodeModel root,

FreeMindMain frame) {

 // automatic save:

 timerForAutomaticSaving = new Timer();

 int delay = Integer.parseInt(getFrame().

 getProperty("time_for_automatic_save"));

 int numberOfTempFiles = Integer.parseInt(getFrame().

 getProperty("number_of_different_files_for_automatic_save"));

 boolean filesShouldBeDeletedAfterShutdown = Tools.

 safeEquals(getFrame().

 getProperty("delete_automatic_save_at_exit"),"true");

 String path = getFrame().getProperty("path_to_automatic_saves");

 timerForAutomaticSaving.schedule(new doAutomaticSave(

 this, numberOfTempFiles,

 filesShouldBeDeletedAfterShutdown, dirToStore),

 delay, delay);

);

}

. . .

. . .

Fig. 2 The MindMapMapModel code snippet.

save operation instead of automatic save. In fact, element #8 initiates calls to an
additional twenty-four methods, all of which are irrelevant to the implementation of
the feature. In Fig. 1, irrelevant methods are not shaded.

While all feature location approaches share the same goal – establishing trace-
ability between a specific feature of interest specified by the user (feature intension)
and the artifacts implementing that feature (feature extension), they differ substan-
tially in the underlying design principles, as well as in assumptions they make on
their input (representation of the intension). In this chapter, we provide an in-depth
description of twenty-four existing feature location techniques and their underly-
ing technologies. We exemplify them on a small but realistic program snippet of
the Freemind software introduced above and discuss criteria for choosing a feature
location technique based on the qualities of the input program. We also assess the
techniques by the amount of required user interaction.

Our specific interest is in applying feature location techniques in the context of
software families where a feature can be implemented by multiple products. How-
ever, none of the existing techniques explicitly consider collections of related prod-
ucts when performing feature location: the techniques are rather applied to these
products as if these are unrelated, singular entities. Thus, another contribution of
our work is a discussion of research directions towards a more efficient feature lo-
cation, taking advantage of existing families of related products (see Sec. 6).

A systematic literature survey of eighty-nine articles related to feature location is
available in [11]. That survey provides a broad overview of existing feature defini-
tion and location techniques, techniques for feature representation and visualization,
available tools and performed user studies. The purpose of that work is organizing,
classifying and structuring existing work in the field and discussing open issues and
future directions. Even though 22 out of the 24 techniques surveyed here are covered
by [11], our work has a complementary nature. We focus only on automated feature
location techniques while providing insights about the implementation details, ex-
emplifying the approaches and discussing how to select one in real-life settings. The
intended audience of our survey is practitioners aiming to apply a feature location
technique for establishing traceability between the features of their products and the

3

implementation of these features. As such, these practitioners have to understand
the implementation details and properties of the available approaches in order to
choose one that fits their needs.

The rest of the chapter is organized as follows. In Sec. 2, we start by introducing
basic technologies used by several feature location techniques. Sec. 3 introduces the
classification that we use for the surveyed feature location techniques. A detailed
description of the techniques themselves is provided in Sec. 4. We discuss criteria
used when selecting a feature location technique in Sec. 5. Sec. 6 concludes our
survey and presents directions for possible future work on feature location in the
context of SPLE.

2 Basic Underlying Technologies
In this section, we introduce basic technologies commonly used by feature location
techniques, describe each technology and demonstrate it on the example in Sec. 1.

2.1 Formal Concept Analysis (FCA)
Objects/
Attributes

o1 o2 o3 o4 o5 o6 o7 o8

action √
automatic √ √
controller √
do √ √
file
free √ √
internal √
map √ √ √ √ √ √
mind √ √ √ √ √ √ √ √
model √ √ √ √ √ √ √
node √ √
performed √
run √
save √ √ √ √ √ √

fca-table.pdf

(condensed)

Fig. 3 Formal context for the example in
Fig. 1. Objects are method names, attributes
are tokens of the names.

Formal Concept Analysis (FCA) [16] is
a branch of mathematical lattice theory
that provides means to identify meaning-
ful groupings of objects that share common
attributes. Groupings are identified by an-
alyzing binary relations between the set of
all objects and all attributes. FCA also pro-
vides a theoretical model to analyze hierar-
chies of these identified groupings.

The main goal of FCA is to define a con-
cept as a unit of two parts: extension and
intension3. The extension of a concept cov-
ers all the objects that belong to the con-
cept, while the intension comprises all the
attributes, which are shared by all the ob-
jects under consideration. In order to apply FCA, the formal context of objects and
their respective attributes is necessary. The formal context is an incidence table in-
dicating which attributes are possessed by each object. An example of such a table
is shown in Fig. 3, where objects are names of methods in Fig. 1 and attributes
are individual words obtained by tokenizing and lower-casing these names. For ex-
ample, object o1 corresponds to element #1 in Fig. 1 and is tokenized to attributes
automatic, do, map, mind, model, run, save, which are “checked” in Fig. 3.

From the formal context, FCA generates a set of concepts where every concept
is a maximal collection of objects that possess common attributes. Fig. 4(a) shows
all concepts generated for the formal context in Fig. 3.

3 These are not to be confused with the extension and intension of a feature.

4

c1 ({o1,o2,o3,o4,o5,o6,o7,o8},
{mind})

c2 ({o1,o2,o3,o4,o5,o6,o7},
{mind, model})

c3 ({o1,o2,o3,o4,o7,o8},
{map, mind})

c4 ({o1,o2,o3,o4,o7},
{map, mind, model})

c5 ({o1,o2,o3,o5,o6,o7},
{mind, model, save})

c6 ({o8},
{action, controller, map, mind, performed})

c7 ({o5,o6},
{free, mind, model, node, save})

c8 ({o1,o2,o3,o7},
{map, mind, model, save})

c9 ({o3},
{internal, map, mind, model, save})

c10 ({o1,o2},
{automatic, do, map, mind, model, save})

c11 ({o1},
{automatic, do, map, mind, model, run, save})

(a) Concepts

({o5,o6},
{free, mind,
model, node, save})

c3

c10

c2

c4

c9

c7 c8

c6c5

({o1,o2,o3,o4,o7,o8},
{map, mind})

({o1,o2,o3,o4,o5,o6,o7},
{mind, model})

({o1,o2,o3,o4,o7},
{map, mind, model})

c1

({o1,o2,o3,o4,o5,o6,o7,o8}, {mind})

c11

({o1,o2,o3,o5,o6,o7},
{mind, model, save})

({o8},
{action, controller,
map, mind, performed})

({o1,o2,o3,o7},
{map, mind, model, save})

({o3},
{internal, map,
mind, model, save})

({o1,o2},
{automatic, do, map,
mind, model, save})

({o1},
{automatic, do, map,
mind, model, run, save})

(b) Concept lattice
Fig. 4 Concepts and the corresponding concept lattice generated for the formal context in Fig. 3.

Formally, given a set of objects O, a set of attributes A, and a binary relationship
between objects and attributes R, the set of common attributes is defined as σ(O) =
{a ∈ A | (o, a) ∈ R ∀o ∈ O}. Analogously, the set of common objects is defined as
ρ(O) = {o ∈ O | (o, a) ∈ R ∀a ∈ A}. For example, for the relationship R encoded
in Fig. 3, σ(o4) = {map, mind, model} and ρ(automatic, do) = {o1, o2}.

A concept is a pair of sets (O,A) such that A = ρ(O) and O = σ(A). O is
considered to be the extension of the concept and A is the intension of the con-
cept. The set of all concepts of a given formal context forms a partial order via
the superconcept-subconcept ordering ≤: (O1, A1) ≤ (O2, A2) ⇔ O1 ⊆ O2, or,
dually, (O1, A1) ≤ (O2, A2)⇔ A2 ⊆ A1.

The set of all concepts of a given formal context and the partial order ≤ form
a concept lattice, as shown in Fig. 4(b). In our example, this lattice represents a
taxonomy of tokens used for naming the methods – from the most generic used by
all methods (the root element c1, which represent the term mind used in all names)
to the more specific names depicted as leaves (e.g., c6 which represents unique terms
action, controller and performed used in the name of element #8).

2.2 Latent Semantic Indexing (LSI)

Latent Semantic Indexing (LSI) [21] is an automatic mathematical/statistical tech-
nique that analyzes the relationships between queries and passages in large bodies
of text. It constructs vector representations of both a user query and a corpus of text
documents by encoding them as a term-by-document co-occurrence matrix. Each
row in the matrix stands for a unique word, and each column stands for a text pas-
sage or a query. Each cell contains the frequency with which the word of its row
appears in the passage denoted by its column.

5

Documents/
Terms

d1 d2 d3 d4 d5 d6 d7 d8 q

action 0 0 0 0 0 0 0 1 0
automatic 1 2 0 0 0 0 0 0 1
controller 0 0 0 0 0 0 0 1 0
do 1 2 0 0 0 0 0 0 0
file 0 0 0 0 0 0 0 0 1
free 0 0 0 0 1 1 0 0 0
internal 0 0 1 0 0 0 0 0 0
map 2 2 2 4 0 0 2 1 0
mind 1 1 1 2 1 1 1 1 0
model 1 1 1 2 1 1 1 0 0
node 0 0 0 0 1 1 0 0 0
performed 0 0 0 0 0 0 0 1 0
run 1 0 0 0 0 0 0 0 0
save 1 2 1 0 1 1 1 0 1

A = q =

Fig. 5 Term-by-document co-occurrence matrix for the ex-
ample in Fig. 1. Documents are method names, terms are
tokens of the names and the query.

Fig. 5 shows such an en-
coding for the example in
Fig. 1, where ”documents” are
method names, the query “au-
tomatic save file” is given by
the user, and the set of all
terms is obtained by tokeniz-
ing, lower-casing and alpha-
betically ordering strings of
both the documents and the
query. In Fig. 5, matrix A rep-
resents the encoding of the
documents and matrix q rep-
resents the encoding of the
query. Vector representations
of the documents and the query
are obtained by normalizing and decomposing the term-by-document co-occurrence
matrix using a matrix factorization technique called singular value decomposi-
tion [21]. Fig. 6 shows the vector representation of the documents d1 . . . d8 and
the query q in Fig. 5 in a three dimensional space.

0

0.2

0.4

0.6

−0.4−0.200.20.40.6

−0.6

−0.4

−0.2

0

0.2

0.4
d

4

d
8

d
3

d
7

d
1

d
5

d
6

q

d
2

Fig. 6 Vectorial representation of the documents and the
query in Fig. 5.

The similarity between a
document and a query is typ-
ically measured by the co-
sine between their correspond-
ing vectors. The similarity in-
creases as the vectors point “in
the same general direction”,
i.e., as more terms are shared
between the documents. For
the example in Fig. 6, docu-
ment d2 is the most similar to
the query, while d8 is the least
similar. The exact similarity measures between the document and the query, as cal-
culated by LSI, are summarized in Table 1. It is common to consider documents
with positive similarity values as related to the query of interest (i.e., d1, d2, d5 and
d6 in our example), while those with negative similarity values (i.e., d3, d4, d7 and
d8) – as unrelated.

Table 1 Similarity of the documents and the query in Fig. 5 as calculated by LSI.
d1 d2 d3 d4 d5 d6 d7 d8

0.6319 0.8897 -0.2034 -0.5491 0.2099 0.2099 -0.1739 -0.6852

2.3 Term Frequency - Inverse Document Frequency Metric

Term frequency – inverse document frequency (tf-idf) is a statistical measure often
used by IR techniques to evaluate how important a term is to a specific document in

6

the context of a set of documents (corpus). Intuitively, the more frequently a term
occurs in the document, the more relevant the document is to the term. That is, the
relevance of a specific document d to a term t is measured by document frequency
(tf (t, d)). For the example in Fig. 5 where “documents” are names of methods in
Fig. 1, the term save appears twice in d2, thus tf (save, d2) = 2.

The drawback of term frequency is that uninformative terms appearing through-
out the set D of all documents can distract from less frequent, but relevant, terms.
Intuitively, the more documents include a term, the less this term discriminates be-
tween documents. The inverse document frequency, idf(t), is then calculated as fol-
lows: idf (t) = log(|D|

|{d∈D | t∈d}|). The tf-idf score of a term w.r.t. a document is
calculated by multiplying its tf and idf scores: tf-idf (t, d) = tf (t, d)× idf (t). In our
example, idf (save) = log(86) = 0.12 and tf-idf (save, d2) = 2× 0.12 = 0.24.

Given a query which contains multiple terms, the tf-idf score of a document with
respect to the query is commonly calculated by adding tf-idf scores of all query
terms. For example, the tf-idf score of d2 with respect to the query “automatic save
file” is 1.44, while d3 score with respect to the same query is 0.12.

2.4 Hyper-link Induced Topic Search (HITS)

Hyper-link Induced Topic Search (HITS) is a page ranking algorithm for Web mining
introduced by Kleinberg [19]. The algorithm considers two forms of web pages –
hubs (pages which act as resource lists) and authorities (pages with important con-
tent). A good hub points to many authoritative pages whereas a good authority page
is pointed to by many good hub pages.

The HITS algorithm operates on a directed graph, whose nodes represent pages
and whose edges correspond to links. Authority and hub scores for each page p
(denoted by Ap and Hp, respectively) are defined in terms of each other: Ap =∑

{q | q points to p}Hq and Hp =
∑

{q | p points to q}Aq . The algorithm initializes
hub and authority scores of each page to 1 and performs a series of iterations. Each
iteration calculates and normalizes the hub (authority) value of each page. It does
so by dividing the value by the square root of the sum of squares of all hub (author-
ity) values for the pages that it points to (pointed by). The algorithm stops when it
reaches a fixpoint or a maximum number of iterations.

When applied to code, HITS scores methods in a program based on their
“strength” as hubs – aggregators of functionality, i.e., methods that call many oth-
ers, and authorities – those that implement some functionality without aggregation.
For the example in Fig. 1, elements #2 and #6 are authorities as they do not call any
other methods and thus their hub score is 0. Elements #1 and #8 are hubs as they are
not called by other methods. Thus, their authority score is 0. Elements #3 and #4
get a higher authority score than other elements as they are called by two methods
each, while elements #7 and #8 get a higher hub score than the rest as they call two
methods each.

7

Chen et al. 2000 [8]
(CLDS)

Walkinshaw et al. 2007 [41]

Shepherd et al. 2007 [38]
(Find-Concept)

Zhao et al. 2006 [44]
(SNIAFL)

Robillard 2005 [30]
(Suade)

Saul et al. 2007 [35]

Marcus et al. 2004 [23, 24]

 Poshyvanyk et al. 2007 [26]

Shao et al. 2009 [36]

Hill et al. 2007 [18]
(Dora)

Chen et al. 2001 [7]
(CVSSearch)

Wilde et al. 1995 [42]
(Software Reconnaissance)

Koschke et al. 2005 [20]

Eisenbarth et al. 2003 [14]

Wong et al. 1999 [43]

Eisenberg et al. 2005 [15]

Liu et al. 2007 [22]
(SITIR)

Rohatgi et al. 2008 [33]

Poshyvanyk et al. 2007 [27]

Plain Guided

Output

St
at

ic
D

y
n

am
ic

Im
p

le
m

e
n

ta
ti

o
n

 S
tr

a
te

g
y Robillard et al. 2008 [31]

Trifu 2009 [40]

Asadi et al. 2010 [2]

Eaddy et al. 2008 [12]
(Cerberus)

Revelle et al. 2010 [29]

Fig. 7 Surveyed techniques and their categorization.

3 Classification and Methodology
In this section, we discuss the classification of feature location techniques that we
use for organizing our survey. We also discuss main properties that we highlight for
each technique.

Primarily, feature location techniques can be divided into dynamic which collect
information about a program at runtime, and static which do not involve program
execution. The techniques also differ in the way they assist the user in the process
of interpreting the produced results. Some only present an (unsorted) list of arti-
facts considered relevant to the feature of interest; we refer to these as plain output
techniques. Others provide additional information about the output elements, such
as their relative ranking based on the perceived relevance to the feature of interest
or automated and guided output exploration process which suggests the order and
the number of output elements to consider; we refer to these as guided output tech-
niques. Fig. 7 presents the surveyed techniques, dependencies between them and
their primary categorization.

Feature location approaches can rely on program dependence analysis (PDA) that
leverages static dependencies between program elements; information retrieval (IR)
techniques – in particular, LSI, tf-idf and others, that leverage information embed-
ded in program identifier names and comments; change set analysis that leverages
historical information and more. While dynamic approaches collect precise infor-
mation about the program execution, they are safe only with respect to the input that

8

was actually considered during runtime to gather the information, and generalizing
from this data may not be safe [20]. In addition, while generally a feature is a real-
ization of a system requirement – either functional or non-functional – executable
test-cases or scenarios can exhibit only functional requirements of the system that
are visible at the user level. Thus, dynamic feature location techniques can detect
only functional features. On the other hand, static approaches can locate any type of
feature and yield safe information, but because many interesting properties of pro-
grams are statically undecidable in general, static analysis is bound to approximate
solutions which may be too imprecise in practice. Dynamic analysis yields “under-
approximation” and thus might suffer from many false-negative results while static
analysis yields “over-approximation” and thus might have many false-positives. In
order to find a middle ground, hybrid approaches combine several techniques.

Based on the chosen implementation technique, the analyzed program can be
represented as a program dependence graph (PDG), a set of text documents repre-
senting software elements, an instrumented executable that is used by dynamic tech-
niques and more. Fig. 8 provides detailed information about each of the surveyed
techniques, listing its underlying technology, the chosen program representation, the
type of user input, as well as the amount of required user interaction, ranging from
low (denoted by ‘+’) to high (denoted by ‘+++’).

4 Feature Location Techniques
In this section, we describe automated feature location techniques from the litera-
ture. As discussed in Sec. 1, we focus on those techniques that assist the user with
feature location rather then feature definition or visualization. Static approaches
(those that do no require program execution) are described in Sec. 4.1; dynamic
are in Sec. 4.2.

4.1 Static Feature Location Techniques
In this section, we describe techniques that rely on static program analysis for locat-
ing features in the source code.

4.1.1 Plain Output

Chen et al. [8] present one of the earliest static computer-assisted feature location
approaches based on program dependence analysis (PDA). The analyzed program
is represented as a program dependence graph (PDG) whose nodes are methods or
global variables and edges are method invocations or data access links (the paper
refers to the PDG as the abstract system dependence graph). Given an initial ele-
ment of interest – either a function or a global variable – the approach allows the
user to explore the PDG interactively, node-by-node, while storing visited nodes
in a search graph. The user decides whether the visited node is related to the fea-
ture and marks related nodes as such. The process stops when the user is satisfied
with the set of found nodes, and outputs the set of relevant nodes aggregated in the
search graph. For the example in Fig. 1, the system generates the depicted call graph
from the source code and interactively guides the user through its explanation. The

9

Technique Underlying

Technology

Program Representation Input User

Interaction

Chen et al. [8]

(CLDS)

PDA PDG method or

global variable

+++

Walkinshaw at al. [41] PDA call graph two sets of methods +

Shepherd et al. [38]

(Find-concept)

PDA,

NLP

AOIG query ++

Zhao et al. [44]

(SNIAFL)

TF-IDF, vector space

model, PDA

BRCG set of queries +

Robillard et al. [31] clustering algorithms change history transactions set of elements +

Trifu [40] PDA concern graph set of variables +++

Robillard [30]

(Suade)

PDA PDG set of methods and

global variables

++

Saul et al. [35] PDA,

web-mining algorithm

call graph method ++

Marcus et al. [23, 24] LSI text docs for software elements query +

Poshyvanyk et al. [26] LSI,

FCA on retrieved docs

text docs for software elements query +

Shao et al. [36] LSI,

PDA

call graph,

text docs for software elements

query +

Hill et al. [18]

(Dora)

PDA,

TF-IDF

call graph,

text docs for software elements

method,

query

+

Chen et al. [7]

(CVSSearch)

textual search lines of code,

CVS comments

query +

Wilde et al. [42]

(Sw. Reconnaissance)

trace analysis executable set of test cases +++

Wong et al. [43] trace analysis executable set of test cases +++

Eisenbarth et al. [14] trace analysis (FCA),

PDA

executable,

PDG

set of scenarios +++

Koschke et al. [20] trace analysis (FCA),

PDA

executable,

statement dependency graph

set of scenarios +++

Asadi et al. [2] trace analysis, LSI,

genetic optimization

executable,

text docs for methods

set of scenarios ++

Eisenberg et al. [15] trace analysis executable set of test cases ++

Poshyvanyk et al. [27] trace analysis,

LSI

executable,

text docs for methods

set of scenarios,

query

+++

Liu et al. [22]

(SITIR)

trace analysis,

LSI

executable,

text docs for methods

scenario,

query

+

Rohatgi et al. [33] trace analysis,

impact analysis

executable,

class dependency graph

set of scenarios ++

Eaddy et al. [12]

(Cerberus)

PDA, trace analysis,

TF-IDF, vector space

model

PDG, executable,

text docs for software elements

set of queries,

set of scenarios

+++

Revelle et al. [29] trace analysis, LSI,

web-mining algorithm

executable,

text docs for methods

scenario,

query

+

D
y

n
a

m
ic

P
la

in
G

u
id

e
d

S
ta

ti
c

P
la

in
G

u
id

e
d

Fig. 8 Underlying technology, program representation and input type of the surveyed techniques.

technique relies on extensive user interaction (denoted by ‘+++’ in Fig. 8), and thus
provides the user with “intelligent assistance” [6] rather than being a heuristic-based
technique aiming to determine relevant program elements automatically.

Walkinshaw et al. [41] provide additional automation to the feature location pro-
cess based on PDA. The analyzed program is represented as a call graph – a sub-
graph of PDG containing only methods and method invocations. As input, the sys-
tem accepts two sets of methods: landmark – thought to be essential for the im-
plementation of the feature, and barrier – thought to be irrelevant to the imple-
mentation. For the example in Fig. 1, landmark methods could be elements #1 and
#2, while barrier methods – #5 and #7. The system computes a hammock graph
which contains all of the direct paths between the landmarks. That is, a method

10

call belongs to the hammock graphs only if it is on a direct path between a pair of
landmark methods. Additional potentially relevant methods are added to the graph
using intra-procedural backward slicing [39] (with the call sites that spawn calls in
the hammock graph as slicing criteria). Since slicing tends to produce graphs that
are too large for practical purposes, barrier methods are used to eliminate irrelevant
sections of the graph: all incoming and outgoing call graph edges of barrier meth-
ods are removed, and thus these are not traversed during the slice computation. The
approach outputs all elements of the resulting graph as relevant to the feature.

In our example in Fig. 1, no direct call paths exist between elements #1 and #2;
thus, the approach is unable to find additional relevant elements under the given
input. The technique is largely automated and does not require extensive user inter-
action (denoted by ‘+’ in Fig. 8) other than providing and possibly refining the input
sets of methods.

Shepherd et al. [38] attempt to locate action-oriented concepts in object-oriented
programs using domain knowledge embedded in the source code through identi-
fier names (methods and local variables) and comments. It relies on the assumption
that verbs in object-oriented programs correspond to methods, whereas nouns cor-
respond to objects.

The analyzed program is represented as an action-oriented identifier graph model
(AOIG) [37] where the actions (i.e., verbs) are supplemented with direct objects of
each action (i.e., objects on which the verb acts). For example, the verb save in
Fig. 1 can act on different objects in a single program, such as MindMapMapModel
and MindMapNodeModel; these are the direct objects of save. An AOIG represen-
tation of a program contains four kinds of nodes: verb nodes, one for each distinct
verb in the program; direct object (DO) nodes, one for each unique direct object in
the program; verb-DO nodes, one for each verb-DO pair identified in the program
(a verb or a direct object can be part of several verb-DO pairs); and use nodes, one
for each occurrence of a verb-DO pair in comments or source code of the program.
An AOIG has two kinds of edges: pairing edges connecting each verb or DO node
to verb-DO pairs that use them, and use edges connecting each verb-DO pair to all
of its use nodes.

As an input, the user formulates a query describing the feature of interest and
decomposes it into a set of pairs (verb, direct object). The technique helps the user
to refine the input query by collecting verbs and direct objects that are similar (i.e.,
different forms of words, synonyms, etc.) to the input verbs and direct objects, re-
spectively, as well as words collocated with those in the query, based on the verb-
DO pairs of the program AOIG. For example, MindMapMapModel is collocated with
MindMapNodeModel in verb-DO pairs for the verb save. The collected terms are
ranked by their “closeness” to the words in the query based on the frequency of col-
location with the words in the query and on configurable weight given to synonyms.
Ten best-ranked terms are presented to the user. The system then recommends that
the user augment the query with these terms as well as with program methods that
match the current query.

Once the user is satisfied with the query, the system searches the AOIG for all
verb-DO pairs that contain the words of the query. It extracts all methods where

11

the found pairs are used and applies PDA to detect call relationships between the
extracted methods. The system then generates the result graph in which nodes rep-
resent detected methods and edges represent identified structural relationships be-
tween them. The graph is returned to the user.

For our example in Fig. 1, the input query (doAutomaticSave, MindMapMapModel)
might get expanded by the user with the terms save and saveInternal, because
they are collocated with MindMapMapModel. Then, the system outputs elements #1
through #4 and #7, together with the corresponding call graph fragment. The tech-
nique requires a fair amount of user interaction to construct and refine the input
query, and thus is marked with ‘++’ in Fig. 8.

Zhao et al. [44] accept a set of feature descriptions as input and focus on locating the
specific and the relevant functions of each feature using PDA and IR technologies.
The specific functions of a feature are those definitely used to implement it but are
not used by other features. The relevant functions of a feature are those involved in
the implementation of the feature. Obviously, the specific function set is a subset of
the relevant function set for every feature.

The analyzed program is represented as a Branch-Reserving Call Graph (BRCG)
[28] – an expansion of the call graph with branching and sequential information,
which is used to construct the pseudo execution traces for each feature. Each node
in the BRCG is a function, a branch, or a return statement. Loops are regarded as
two branch statements: one going through the loop body and the other one exiting
immediately. The nodes are related either sequentially, for statements executed one
after another, or conditionally, for alternative outcomes of a branch.

The system receives a paragraph of text as a description of each feature. The text
can be obtained from the requirements documentation or be provided by a domain
expert. It transforms each feature description into a set of index terms (consider-
ing only nouns and verbs and using their normalized form). These will be used as
documents. The system then extracts the names of each method and its parameters,
separating identifiers using known coding styles (e.g., using the underline ’ ’ to sep-
arate words) and transforms them into index terms. These will be used as queries.

To reveal the connections between features and functions, documents (feature
descriptions) are ranked for each query (function) using the vector space model [3,
pp. 27-30] – a technique which, similarly to LSI, treats queries and documents as
vectors constructed by the index terms. Unlike LSI, the weights of index term in
documents and queries are calculated using the tf-idf metric (see Sec. 2.3) between
the term and the document or query, respectively. For the example in Fig. 1, auto-
matic save file could be a document while “mind map model do automatic save”
could be a query corresponding to the element #2. For the vector space model, the
weight of the term save in the query is 0.24, as calculated in Sec. 2.3. Note that LSI
calculates this weight as being 2 (see the value of the term save in the column that
corresponds to d2 in Fig. 5).

Similarity between a document and a query is computed as a cosine of the an-
gle between their corresponding vectors, as for LSI. For each document (feature),
the system creates a sorted list of queries (functions), ranked by their similarity de-
grees and identifies a pair of functions with the largest difference between scores.

12

All functions before this pair, called a division point, are considered initial specific
functions to the feature. In our example, these are elements #1 and #2.

Next, the system analyzes the program’s BRCG and filters out all branches that
do not contain any of the initial specific functions of the feature, because those
are likely not relevant; all remaining functions are marked as relevant. Functions
relevant to exactly one feature are marked as specific to that feature.

The system also builds pseudo-execution traces for each feature by traversing
the pruned BRCG and returns those to the user. For our example in Fig. 1, BRCG is
rooted in element #8. Since there is no direct call to element #1 (the call is performed
via an event queue – see the last statement in Fig. 2), the technique returns only those
branches that contain element #2, that is, elements #8, #7 and #4. The technique
requires no user interaction besides the definition and the refinement of the input
feature descriptions, as reflected by ‘+’ in Fig. 8.

Robillard et al. [31] propose searching the change history (change transactions)
of a software system to identify clusters of program elements related to a task.
The analyzed program is represented as a set of program elements such as fields
and methods, as well as change history transactions that capture modifications of
these elements. The system considers all available transactions and filters out those
with more than twenty or fewer than four elements. The thresholds are set empiri-
cally: experiments revealed that large transactions generate overly large clusters that
would require developers to spend an unreasonable amount of effort to study, while
small transactions cannot be clustered efficiently. The system then clusters the re-
maining transactions based on the number of overlapping elements using a standard
clustering algorithm.

Next, given a small set of elements related to a feature of interest (usually two or
three), the system extracts clusters containing all input elements and removes those
satisfying the following conditions:

1. An input element appears in at least 3% of the transactions of the cluster. The
rationale is that querying the change history for elements that are being continuously
modified (and thus are central or critical elements to the entire system) returns too
many recommendations to be useful.

2. The degree of overlap between elements that correspond to the transactions
in a cluster is lower then 0.6. The rationale is that these clusters do not represent
changes that are associated with a high-level concept.

3. The number of transactions in a cluster is less than 3. The rationale is to avoid
returning results that are single transactions or very small groups of transactions
which may have been spontaneously clustered. However, using a value higher than
3 as a threshold produces too few recommendations to be useful.

All elements of the resulting clusters are returned to the user. The technique
requires no user interaction besides the definition and the refinement of the input
elements, as reflected by ‘+’ in Fig. 8.

Unfortunately, the evaluation of the proposed technique which is included in the
paper shows that the benefits of using change clusters are relatively small: the anal-
ysis of almost 12 years of software change data for a total of seven different open-

13

source systems showed that fewer than 12% of the studied changes could have ben-
efited from finding elements relevant to the change using change clusters.

Trifu [40] proposes an approach that uses static dataflow information to determine
the concern skeleton – a data-oriented abstraction of a feature. The analyzed pro-
gram is represented as a concern graph whose nodes are variables found in the
source code and whose edges are either dataflow relationships that capture value
transfer between variables or inheritance relationships that insure consistent han-
dling of variables defined in polymorphic methods. A path between two variables
indicates that the start variable is used to derive the value of the end variable.

The approach treats a feature as an implementation of functionality needed to
produce a given set of related values. It receives as input a set of variables that store
key results produced by the feature of interest – information sinks – and computes a
concern skeleton which contains all variables in the concern graph that have a path
to one of the information sinks. The approach can be optionally provided with an
additional set of input variables – information sources – that act as cutting points for
the incoming paths leading to an information sink. That is, the computed concern
skeleton includes only portions of the paths from the given information sources to
the given information sinks. The computed concern skeleton is returned to the user.

The approach provides some help in identifying the input set of information sinks
by computing a reduced concern graph in which certain variables are filtered out
(e.g., those that have no incident edges in the concern graph). Still, identifying in-
formation sinks is not a trivial task which involves semantic knowledge about what
the system does. Also, the user has to do the mapping from variables of the resulting
concern skeleton to program statements that use them. Thus, the technique relies on
extensive user interaction, as indicated by ‘+++’ in Fig. 8.

4.1.2 Guided Output

Robillard [30] leverages static program dependencies analysis to find elements that
are related to an initial set of interest provided by the user. The analyzed program is
represented as a PDG whose nodes are functions or data fields and edges are func-
tion calls or data access links. Given an input set of interest – a set of functions
and data fields that the user considers relevant to the feature of interest, the system
explores their neighbors in the dependency graph and scores them based on their
specificity – an element is specific if it relates to few other elements, and reinforce-
ment – an element is reinforced if it is related to other elements of interest. For the
example in Fig. 1, if the initial set of interest contains elements #3 and #4, reinforce-
ment of element number #7 is high as two of its three connections are to elements
of interest. Reinforcement of element #1 is even higher, as its sole connection leads
to an element of interest. Yet, specificity of element #7 is lower than that of element
#1 since the former is connected to three elements whereas the latter – just to one.

The set of all elements related to those in the initial set of interest is scored and
returned to the user as a sorted suggestion set. The user browses the result, adds
additional elements to the set of interest and reiterates. The amount of the required
user interaction in this approach is moderate, as indicated by ‘++’ in Fig. 8: the

14

technique itself only browses the direct neighbors of the elements in the input set of
interest while the user is expected to extend this set interactively, using the results
generated by the previous step.

Saul et al. [35] build on Robillard’s technique [30]) and introduce additional heuris-
tics for scoring program methods. The proposed approach consists of two phases:
in the first, a set of potentially relevant methods is calculated for an input method of
interest. These are the union of caller and callee methods (“parents” and “children”),
methods called by the caller functions (“siblings”) and methods that call the callee
methods (“spouses”). For example, for the element #4 in Fig. 1, elements #2, #3, #7
and #8 are potentially relevant.

The calculated set of potentially relevant methods is then scored using the HITS
web mining algorithm (see Sec. 2.4) based on their “strength” as hubs (methods
that aggregate functionality, i.e., call many other methods) or authorities (methods
that largely implement functionality without aggregating). The calculated authority
score is used to rank the results returned by the algorithm. That is, a method gets a
high score if it is called by many high-scored hub methods. In our example, element
#7 has a lower score than #4, because the former is called only by method #8 which
is a low-scored hub method as it calls only one method. Element #4 has a higher
score because (1) it is called by both elements #7 and #8, and (2) element #7 has a
higher hub score as it calls two methods rather than one.

Similar to [30], the technique requires a moderate amount of user interaction, as
indicated by ‘++’ in Fig. 8.

Marcus et al. [23, 24] introduce one of the first approaches for using IR techniques
for feature location. The approach is based on using domain knowledge embedded
in the source code through identifier names and internal comments.

The analyzed program is represented as a set of text documents describing soft-
ware elements such as methods or data type declarations. To create this set of docu-
ments (corpus), the system extracts identifiers from the source code and comments,
and separates the identifiers using known code styles (e.g., the use of underline ’ ’
to separate words). Each software element is described by a separate document con-
taining the extracted identifiers and translated to LSI space vectors (see Sec. 2.2)
using identifiers as terms.

Given a natural language query containing one or more words, identifiers from
the source code, a phrase or even short paragraphs formulated by the user to identify
a feature of interest4, the system converts it into a document in LSI space, and uses
the similarity measure between the query and documents of the corpus in order to
identify the documents most relevant to the query.

In order to determine how many documents the user should inspect, the approach
partitions the search space based on the similarity measure: each partition at step
i + 1 is made up of documents that are closer than a given threshold α to the most
relevant document found by the user in the previous step i. The user inspects the sug-

4 Several approaches, e.g., [4, 9], address the problem of input query definition. They consider not
only the query but also related terms when evaluating the document models. As discussed earlier,
these approaches are out of the scope of this chapter.

15

gested partition and decides which documents are part of the concept. The algorithm
terminates once the user finds no additional relevant documents in the currently in-
spected partition and outputs a set of documents that were found relevant by the
user, ranked by the similarity measure to the input query.

For the example in Fig. 1, assume that similarities between documents and a
query are calculated as specified in Sec. 2.2 and summarized in Table 1. That is,
only terms from method names (and not from method bodies) are used. Under this
setting, if α is set to 0.3, the first partition will contain only document d2 and the
second – only d1. No other document is within 0.3 of d1 and thus the algorithm will
terminate and output d1 and d2.

The technique requires no user interaction besides the definition and the refine-
ment of the input query, and thus is marked with ‘+’ in Fig. 8.

Poshyvanyk et al. [26] extend the work of Markus et al. [23, 24] with Formal
Concept Analysis (see Sec. 2.1) to select most relevant, descriptive terms from
the ranked list of documents describing source code elements. That is, after the
documents are ranked based on their similarity to the input query using LSI, as
in [23, 24], the system selects the first n documents and ranks all terms that appear
uniquely in these documents. The ranking is based on the similarity between each
term and the document of the corpus, such that the terms that are similar to those in
the selected n documents but not to the rest are ranked higher. Terms that are sim-
ilar to documents not in the selected n results are penalized because they might be
identifiers for data structures or utility classes which would pollute the top ranked
list of terms. For the example in Fig. 1, given the LSI ranking with respect to the
automatic save file query shown in Table 1, if n is set to 2, documents d1 and d2 are
selected. The unique terms in these are “automatic”, “do” and “run”, all ranked high
as they are not similar to any of the terms in the rest of the documents.

After the unique terms are ranked, the system selects the top k terms (attributes)
from the first n documents (objects) and applies FCA (see Sec. 2.1) to build the
set of concepts. For the three terms in our example, the concepts are ({d1,d2},
{automatic, do}) and ({d1}, {automatic, do, run}). The terms describe the re-
sulting documents. The user can inspect the generated concepts – the description
and links to actual documents in the source code – and select those that are rele-
vant. Similar to [23, 24], the technique requires a low amount of user interaction, as
indicated by ‘+’ in Fig. 8.

Shao et al. [36] introduce another approach that extends the work of Marcus et
al. [23, 24] by completing the LSI ranking with static call graph analysis. Each
method of the analyzed program is represented by a document containing its identi-
fiers. After the LSI rank for each document with respect to the input query is calcu-
lated, the system builds a set of methods corresponding to documents ranked above a
certain threshold and computes a set of all callers and callees of these methods. The
LSI score of the elements in the computed set is augmented to represent their call
graph proximity to one of the methods ranked high by LSI. The algorithm outputs
a list of all methods organized in a descending order by their combined ranking.
For the example in Fig. 1, element #3 is ranked low by LSI with respect to the

16

query “automatic save file” (-0.2034 in Table 1). However, it is called by element
#1 which has a high LSI rank (0.6319 in Table 1). Thus, the score of element #3 will
be augmented and it will be ranked higher.

The technique requires no user interaction except defining and refining the input
query describing the feature of interest, as indicated by ‘+’ in Fig. 8.

Hill et al. [18] combine call graph traversal with the tf-idf -based ranking (see
Sec. 2.3). The analyzed program is represented as a call graph and a set of text
documents. Each document corresponds to a method of the program and includes
all identifiers used in the method. The user provides an initial query that describes
the feature, a seed method from which the exploration starts, and the exploration
depth which determines the neighborhood to be explored (i.e., a maximal distance
of explored methods from the seed).

Starting from the input seed method, the system traverses the program call graph
and calculates the relevance score of each explored method by combining the fol-
lowing three parameters: (1) the tf-idf score of the identifiers in the method name;
(2) the tf-idf score of the identifiers in the method body; and (3) a binary parameter
specifying whether the method is from a library or part of the user code. If the score
of a method is higher than a preset relevance threshold, the method is marked as
relevant. If the score is higher than a preset exploration threshold (which is usually
lower than the relevance threshold) and the distance of the element from the seed is
lower than the exploration depth, the system continues exploring the neighborhood
of this element. Otherwise, the element becomes a “dead-end”, and its neighborhood
is not explored. When there are no additional elements to explore for the given ex-
ploration depth, the system outputs the call-graph neighborhood of the seed method
in which all elements are scored and relevant elements are marked.

For the example in Fig. 1, if the element #1 is used as a seed and the exploration
depth is set to 3, all elements other than #2 can be potentially explored. For the sake
of the example, we disregard the terms that appear in method bodies and assume that
the program does not use any binary methods. In such a case, the calculated score
of element #3 is based on the tf-idf similarity of the method name to the input query
– 0.12 for the input query “automatic save file”, as shown in Sec. 2.3. Thus, setting
the exploration threshold above this value results in not exploring the part of the
graph starting with element #1, and thus no elements are returned to the user. The
exploration threshold of up to 0.12 results in further exploration of the call graph.

The relevance threshold specifies which of the explored elements are considered
relevant. Both relevance and exploration thresholds are set empirically, based on the
experience with programs under analysis. The technique requires no user interaction
besides the definition and the refinement of the input feature description and seed
method, and thus is marked with ‘+’ in Fig. 8.

Chen et al. [7] present a technique for retrieving lines of code that are relevant
to an input query by performing textual search on the cvs comments associated
with these lines of code. The analyzed program is represented as a set of lines for
a newest revision of each file. The system examines changes between subsequent
versions of each file using the cvs diff command, and associates the corresponding

17

comment with each changed line. It stores all associated cvs comments for each line
of a file in a database and retrieves all lines whose cvs comments contain at least
one of the input query’s words. The results are scored to indicate the quality of the
match: the more query words appear in the comment, the higher is the score. In
addition, the system searches the source code to find lines containing at least one
of the query’s words. It outputs a sorted list of files so that those with the highest
number of matches appear first. Within each file, a sorted list of all lines that either
match the query or are associated with a cvs comment that matches it is presented.

The technique is largely automated and requires no user interaction other than
providing and possibly refining the input query, as indicated by ‘+’ in Fig. 8.

4.2 Dynamic Feature Location Techniques
In this section, we describe techniques that rely on program execution for locating
features in source code. The majority of such techniques address the feature loca-
tion task for sequentially executed programs, thus we focus the section on those
techniques. We note that some of the described approaches have been extended,
e.g., [13, 1], to handling distributed and multi-threaded systems as well.

4.2.1 Plain Output

Widle et al. [42] introduced one of the earliest feature location techniques taking
a fully dynamic approach. The main idea is to compare execution traces obtained
by exercising the feature of interest to those obtained when the feature of interest
is inactive. Towards this end, the program is instrumented so that the components
executed on a scenario / test case can be identified. The granularity of components,
e.g., methods or lines of code, is defined by the user. The user specifies a set of test
cases that invoke each feature. The system runs all input test cases and analyzes
their execution traces, identifying common components – executed by all test cases.
In addition, for each feature, it identifies (1) potentially involved components – exe-
cuted by at least one test case of the feature; (2) indispensably involved components
– executed by all test cases of the feature; and (3) uniquely involved components –
executed by at least one test case of the feature and not executed by any test case
of the other features. The system outputs sets of potentially involved, indispensably
involved and uniquely involved components for each feature, as well as the set of
all common components.

For the example in Fig. 1, the execution trace of the automatic save file feature
can be compared to the that of the manual save file feature. In this case, elements #3,
#5 and #6 are considered common, since the automatic save file feature relies on the
execution of manual save file and, thus, these methods are executed in both scenar-
ios. Element #1 is considered uniquely involved as it is executed by the automatic
save file feature only.

Since the user is required to define two sets of scenarios for each feature – those
that exercise it and those that do not, the technique requires heavy user involvement
and we assess it as ‘+++’ in Fig. 8.

18

Wong et al. [43] present ideas similar to [42]. Its main contribution is in analyz-
ing data flow dependencies in addition to the control flow (method calls) and in
presenting a user-friendly graphical interface for visualizing features.

Eisenbarth et al. [14] attempts to address one of the most significant problems of
dynamic approaches discussed above – the difficulty of defining execution scenarios
that exercise exactly one feature. Their work relies on the assumption that execution
scenarios can implement more than one feature and a feature can be implemented by
more than one scenario. The work extends [42] with FCA (see Sec. 2.1) to obtain
both computation units for a feature as well as the jointly and distinctly required
computation units for a set of features.

The analyzed program is represented by an instrumented executable and a static
program dependence graph whose nodes are methods, data fields, classes, etc. and
whose edges are function calls, data access links and other types of relationships
obtained by static analysis. While in general the technique is applicable to compu-
tation units on any level of granularity, the approach is implemented and evaluated
for method-level components. The system first executes all given input scenarios,
each of which can invoke multiple features. Optionally, users can identify special
start and end scenarios whose components correspond to startup and shutdown op-
erations and are excluded from all executions.

Users select a subset of execution scenarios they wish to investigate. Then, the
approach uses FCA (see Sec. 2.1), where computation units are objects, scenarios
are attributes and relationships specify whether a unit is executed when a particular
scenario is performed, to create a concept lattice. Based on the lattice, the following
information is derived: (1) a set of computation units specific to a feature – those
used in all scenarios invoking the feature, but not in other scenarios; (2) a set of
computation units relevant to a feature – used in all scenarios invoking the feature,
and possibly in other scenarios; (3) a set of computation units conditionally specific
to a feature – those used in some scenarios invoking the feature, but not in scenarios
that do not invoke the feature; (4) a set of computation units conditionally relevant
to a feature – those used in some scenarios invoking the feature, and possibly in
other scenarios that do not invoke the feature; and (5) a set of computation units
irrelevant to a feature – those used only in scenarios that do not invoke the feature.
In addition, for each feature, the system builds a starting set in which the collected
computation units are organized from more specific to less. It also builds a subset
of the program dependency graph containing all transitive control flow successor
and predecessors of computation units in the starting set (i.e., method callers and
callees). The graph is annotated with features and scenarios for which the computa-
tion units were executed.

The user inspects the created program dependency graph and source code in the
order suggested by the starting set, in order to refine the set of identified compu-
tation units for a feature by adding and removing computational units. During the
inspection, the system also performs two further analyses to assist with the call
graph inspection: strongly connected component analysis and dominance analysis.
The former is used for identifying cycles in the dependency graph. If there is one
computation unit in the cycle that contains feature-specific code, all computation

19

units of the cycle are related to the feature because of the cycle dependency. The
purpose of the latter is to identify computation units that must be executed in or-
der to reach one of the computation units containing feature-specific code. All such
computation units are related to the feature as well.

At the end of the process, a set of components deemed relevant for each feature
is generated. Even though the technique attempts to assist the user in defining input
scenarios, the required level of user interaction in defining the scenarios, selecting
the order in which the scenarios are processed, as well as interactively inspecting
and refining the produced result is still high, as indicated by ‘+++’ in Fig. 8.

Koschke et al. [20] extend the work of Eisenbarth et al. [14] by considering
statement-level rather than method-level computation units.

Asadi et al. [2] propose an approach which combines IR, dynamic-analysis and
search-based optimization techniques to locate cohesive and decoupled fragments
of traces that correspond to features. The approach is based on the assumptions that
methods responsible for implementing a feature are likely to share some linguistic
information and be called close to each other in an execution trace.

For an input set of scenarios that exercise the features of interest, the system
collects execution traces and prunes methods invoked in most scenarios (e.g., those
related to logging). In addition, it compresses traces to remove repetition of one
or more method invocations and keeps one occurrence of each method. Next, it
tokenizes each method’s source code and comments, removing special characters,
programming language keywords and terms belonging to a stop-word list for the
English language (e.g., ‘the’, ‘is’, ‘at’). The remaining terms are tokenized sepa-
rating identifiers using known coding styles. The terms belonging to each method
are then ranked using the tf-idf metric (see Sec. 2.3) with respect to the rest of
the corpus. For the example in Fig. 1, when considering only terms of the method
names, the term mind appears in all documents and thus is ranked 0 , while the term
controller appears only in one document (that corresponds to element #8) and
thus gets a higher rank – 0.9. The obtained term-by-document co-occurrence matrix
is transformed to vectors in the LSI space (see Sec. 2.2). A cosine similarity between
two vectors in LSI space is used as a similarity measure between the corresponding
documents (methods).

Next, the system uses genetic optimization algorithm [17] – an iterative proce-
dure that searches for the best solution to a given problem by evaluating various
possible alternatives using an objective function, in order to separate each execu-
tion trace into conceptually-cohesive segments that correspond to the features being
exercised in a trace. In this case, an optimal solution is defined by two objectives:
maximizing segment cohesion – the average similarity between any pair of methods
in a segment, and minimizing segment coupling – the average similarity between a
segment and all other segments in a trace, calculated as average similarity between
methods in the segment and those in different ones. That is, the algorithm favors
merging of consecutive segments containing methods with high average similarity.

The approach does not rely on comparing traces that exercise the feature of in-
terest to those that do not and does not assume that each trace corresponds to one

20

feature. Thus, the task of defining the execution scenarios is relatively simple. How-
ever, the approach does not provide any assistance in helping the users to understand
the meaning of the produced segments and tracing those to the features being ex-
ercised in the corresponding scenario; thus, this step requires a fair amount of user
interaction. In Fig. 8, we rate this approach as ‘++’.

4.2.2 Guided Output

Eisenberg et al. [15], similar to Eisenbarth et al. [14], present an attempt to deal
with the complexity of scenario definition. The approach assumes that the user is
unfamiliar with the system and thus should use pre-existing test suites, such as those
typically available for systems developed with a Test-Driven Development (TDD)
strategy. It accepts as input a test suite that has some correlation between features
and test cases (i.e., all features are exercised by at least one test case). Tests that
exhibit some part of a feature functionality are mapped to that feature and referred
to as its exhibiting test set. Tests which are not part of any exhibiting test set are
grouped into sets based on similarity between them and are referred to as the non-
exhibiting test set.

For each feature, the system collects execution traces obtained by running all
tests of the feature’s exhibiting test set and generates a calls set which lists <caller,
callee> pairs for each method call specified in the collected traces. It then ranks
each method heuristically based on the following parameters: (1) multiplicity – a
relationship between the percentage of tests in the exhibiting test set of the feature
that execute the method and the percentage of tests in non-exhibiting test sets that
execute that method; (2) specialization – the percentage of test sets that exercise the
method. (If a method is exercised by many test sets, it is more likely to be a utility
method); and (3) depth – the call depth (the number of stack frames from the top)
of the method in the exhibiting test set compared to that in non-exhibiting test sets.
The rationale behind these heuristics is that the exhibiting test set focuses on the
feature in the most direct way. This is correlated with the call depth of the methods
that implement this feature – the more “directly” a method is exercised, the lower
its call depth.

For each feature, both the ranked list of methods and the generated call set are
returned to the user. The goal of the former is to rank methods by their relevance to
a feature, whereas the goal of the latter is to assist the user in understanding why a
method is relevant to a feature. With respect to the required level of user interaction,
we assess the technique as ‘++’ in Fig. 8 because of the effort involved in creating
test scenarios, if they are not available.

Poshyvanyk et al. [27] combine the techniques proposed in Marcus et al. [24] and
Antoniol et al. [1] to use LSI (see Sec. 2.2) and execution-trace analysis to assist
in feature location. The analyzed program is represented by a set of text documents
describing software methods and a runnable program instrumented so that methods
executed on any scenario can be identified.

Given a query that is formulated by the user to identify a given feature and two
sets of scenarios – those that exercise the feature of interest and those that do not,

21

the system first ranks input program methods using LSI. Then, it executes input
scenarios, collects execution profiles and ranks each executed method based on the
frequency of its appearance in the traces that exercise the feature of interest versus
traces that do not. The final rank of each method is calculated as a weighted sum
of the above two ranks. The system outputs a ranked list of methods for the input
feature.

For the example in Fig. 1, element #1 is executed only in scenarios that exercise
automatic save file. Thus, its LSI score (0.6319, as calculated in Table 1) will be
increased, while the score of element #5 (0.2099, as calculated in Table 1) will be
decreased to reflect the fact that it is executed in both scenarios that exercise the
automatic save file feature and those that do not.

Similar to other dynamic approaches, this approach requires an extensive user
involvement for defining scenarios that exercise the feature of interest and those
that do not and, therefore, we assess the level of the necessary user interaction for
this technique as ‘+++’ in Fig. 8.

Liu et al. [22], similar to Poshyvanyk et al. [27], combine the use of LSI and
execution-trace analysis. However, this work proposes operating on a single trace
rather than on multiple traces that exercise / do not exercise the feature of interest.

Given a query that is formulated by the user to identify a feature of interest and
a single scenario capturing that feature, the system executes the input scenario and
ranks methods executed in the scenario using LSI with respect to the input query as
in [24]. A ranked list of executed methods is returned to the user. For our example
in Fig. 1, a scenario that executes the automatic save file feature invokes elements
#1, #3, #6 and #7. These elements are returned to the user together with their LSI
ranking, shown in Table 1.

Since the user is only required to provide a single scenario that exercises each
feature of interest and a natural language description of that feature, we assess the
level of the necessary user interaction for this technique as ‘+’ in Fig. 8.

Rohatgi et al. [33] present a technique that is based on dynamic program analy-
sis and static program dependence graph analysis. The technique operates on a class
level, where the analyzed program is represented by an instrumented executable and
a static program class dependency graph whose nodes are classes and whose edges
are dependency relationships among these classes such as method calls, generaliza-
tion and realization.

As input, the system obtains a set of scenarios that invoke the features of inter-
est. It executes all input scenarios, collects execution profiles on a class level and
uses impact analysis to score the relevance of the classes to the feature of interest:
classes that impact many others in the system are ranked low as these classes are
likely not feature-specific but rather “utility” classes implementing some core sys-
tem functionality. The technique outputs a set of classes produced by the dynamic
trace analysis, ranked by their relevance as calculated using impact analysis.

We assess the level of the necessary user interaction for this technique as ‘++’ in
Fig. 8 because it requires only a set of scenarios that invoke the features of interest
and not those that don’t.

22

Eaddy et al. [12] present the PDA technique called prune dependency analysis
which is based on the assumption that an element is relevant to a feature if it should
be removed or otherwise altered if the feature is removed from the program. The
program is represented as a program dependence graph whose nodes are classes
and methods, and whose edges are method invocations, containment relationships
between a class and its methods, or inheritance relationships between classes. The
system calculates the set of all elements affected by removing at least one element
from the seed input set. For the example in Fig. 1, removing element #2 requires
removing or altering element #4 that initiates a call to it in order to avoid compilation
errors. Thus, element #4 is related to the feature that involves execution of element
#2. Removing element #4 requires removing elements #7 and #8. The latter does
not trigger any additional removals.

Furthermore, the work suggests combining the proposed technique with exist-
ing dynamic- and IR-based feature location approaches to achieve better accuracy.
The dynamic feature location can use the approaches proposed in [42, 15] or others.
These either produce a ranked set of methods, as in Eisenberg et al. [15] or a un-
sorted list of relevant elements, as in Wilde et al. [42]. In the latter case, an elements
is assigned the score 1 if it is executed only by scenarios exercising the feature of
interest, or 0 otherwise. The IR-based feature location uses the approach of Zhao et
al. [44]: program elements are ranked with respect to feature descriptions (extracted
from requirements) using the vector space model. It calculates the cosine of the
distance between the corresponding vectors of terms, each of which first weighted
using the tf-idf metric.

For each software element, the resulting score is calculated by normalizing,
weighing and adding the similarity scores produced by the IR and the dynamic
techniques, as in Poshyvanyk et al. [27]. Then, similarly to Zhao et al. [44], the sys-
tem applies a threshold to identify highly relevant elements. These are used as input
to the prune dependency analysis which produces the set of additional relevant ele-
ments. The resulting set, ranked by the combination of scores produced by IR and
dynamic techniques, is returned to the user.

For our example in Fig. 1, elements #1 and #2 are ranked high by the vector
space model for the query “automatic save file”. Since element #1 is executed only
by scenarios that exercise the automatic save file feature, it is also ranked high by
a dynamic analysis-based technique. Prune dependency analysis uses these two as
the input seed set and adds elements #4, #7 and #8, so the result becomes {#1, #2,
#4, #7, #8}. Since the technique requires two sets of scenarios for each feature –
those that exercise it and those that do not, we assess the level of the necessary user
interaction for this technique as ‘+++’ (see Fig. 8).

Revelle et al. [29] propose improving the feature location accuracy by combining
IR, dynamic and web-mining analysis. Similarly to Liu et al. [22], the proposed
system obtains as input a single scenario that exercises the feature of interest and
a query that describes that feature. It runs the scenario and constructs a call graph
from the execution trace, which is a subgraph of the static call graph and contains
only the methods that were executed. Next, the system assigns each method of the
graph a score using one of the existing web-mining algorithms – either HITS (see

23

Sec. 2.4) or the PageRanked algorithm developed by Brin and Page [5], which is also
based on similar ideas of citation analysis. The system then either filters out low-
ranked methods (e.g., if the HITS authority score was used, as in Saul et al. [35]) or
high-ranked methods (e.g., if the HITS hub score was used, as high-ranked methods
represent common functions). The remaining set of elements is scored using LSI
(see Sec. 2.2) based on their relevance to the input query describing the feature. The
ranked list of these elements is returned to the user.

For the example in Fig. 1, elements #1, #3, #5 and #6 are invoked when the
scenario exercising the automatic save file feature is executed. Assuming these el-
ements are scored using HITS authority values, filtering out low-scored methods
removes element #1 from the list of potentially relevant elements as its authority
score is 0, as shown in Sec. 2.4. The remaining elements, #3, #5 and #6, are scored
using LSI with respect to the query “automatic save file” (these scores are given in
Table 1) and are returned to the user.

Similar to [22], since the user is only required to provide a single scenario for
each feature of interest and a natural language description of that feature, we assess
the level of the necessary user interaction for this technique as ‘+’ in Fig. 8.

5 Which Technique to Prefer?
As the survey shows, there is large variety in existing approaches and implementa-
tion strategies for feature location. We believe that trying to identify a single tech-
nique that is superior to the rest would be impractical. Clearly, there is no “silver
bullet”, and the performance of each technique largely depends on its applicability
to the analyzed input programs and the quality of the feature description (feature in-
tension) provided by the user. In this section, we discuss considerations and provide
explicit guidelines for practitioners who need to choose a particular feature location
technique to apply.

The chosen technique should first and foremost be suitable to the program be-
ing analyzed: specifically, if the studied program contains no documentation and no
meaningful identifier names, IR-based feature location techniques will be unable to
achieve high-quality results. Similarly, if the implementation of a feature is spread
across several program modules or is hooked into numerous extension points pro-
vided by the platform on which the program is built (e.g., invoking methods via
event queues), techniques based on program dependency analysis will either be un-
able to find all elements that relate to the implementation of the feature or will find
too many unrelated elements. When program execution scenarios are unavailable or
it is cumbersome to produce scenarios that execute a specific set of features (e.g.,
because the feature of interest is not a functional feature that is “visible” at the user
level), dynamic feature location techniques will not be applicable. Fig. 9 assesses
the surveyed feature location techniques based on the above selection criteria.

For our example in Fig. 1 and 2, program elements have meaningful names (“file”
vs. “f” or “property” vs. “prp”). Thus, it is reasonable to choose one of the tech-
niques that rely on that quality, as marked in the corresponding column of Fig. 9.
Since the implementation of the Freemind software is asynchronous and relies on

24

Technique Strongly Coupled

Implementation
Meaninful Names Change Histories Execution Scenarios

Chen et al. [8]

(CLDS)


Walkinshaw at al. [41] 

Shepherd et al. [38] (Find-concept) 

Zhao et al. [44] (SNIAFL) () 

Robillard et al. [31] 

Trifu [40] ()

Robillard [30] (Suade) 

Saul et al. [35] 

Marcus et al. [23, 24] 

Poshyvanyk et al. [26] 

Shao et al. [36] () 

Hill et al. [18] (Dora)  

Chen et al. [7]

(CVSSearch)


Wilde et al. [42] (Sw. Reconnaissance) 

Wong et al. [43] 

Eisenbarth et al. [14] () 

Koschke et al. [20] () 

Asadi et al. [2]  

Eisenberg et al. [15] 

Poshyvanyk et al. [27]  

Liu et al. [22] (SITIR)  

Rohatgi et al. [33] 

Eaddy et al. [12] (Cerberus)   

Revelle et al. [29]  

P
la

in
G

u
id

e
dD

y
n

a
m

ic

P
la

in
G

u
id

e
d

S
ta

ti
c

Fig. 9 Criteria for selecting a feature location technique.

event queues to perform method invocation, techniques that analyze call graph de-
pendency might be less efficient. In addition, defining a scenario that triggers the au-
tomatic save file feature might not be trivial – there is no user operation that directly
invokes the automatic save (as opposed to the manual save) functionality. Therefore,
techniques that do not require program execution are a better choice which leads us
to the approaches in Shepherd et al. [38], Marcus et al. [23, 24] or Poshyvanyk et
al. [26].

With respect to the quality of a feature intent provided by the user, IR-based
techniques are usually most sensitive to the quality of their input – the query that
describes the feature of interest. The results produced by these techniques are often
as good as the query that they use. Input query definition and the user assistance
during that process are further discussed by [4, 9] and others. Techniques based on
comparing dynamic execution traces are also sensitive to the nature of their input –
if execution scenarios do not cover all aspects of the located feature, the accuracy of
the feature location will likely be low.

The approaches also differ in the required level of user interaction (see the last
column of Fig. 8). We assess the level of user interaction based on the effort that
the user has to invest in operating the technique. This includes the effort involved in
defining the input feature intension (e.g., a set of scenarios exercising the features
of interest), interactively following the location process (e.g., filtering intermedi-
ate results produced by the technique) and interpreting the produced results (e.g.,
mapping retrieved variables to the code statements that use them).

Since more highly automated techniques are easier to execute, their “barrier to
entry” – the effort required to produce the initial approximation of the result – is
lower and thus their adoption is easier. On the other hand, the techniques that require
more user interaction are usually able to produce better results because they harvest
this “human intelligence” for the feature location process.

25

Furthermore, automated techniques could be a better choice for the users that
seek an “initial approximation” of the results and are able to complete them man-
ually since they are familiar with the analyzed code. On the other hand, users that
cannot rely on their understanding of the analyzed code should probably choose a
technique that is more effective at producing relevant results, even though operating
such a technique requires a more intensive investment of time and effort.

6 Summary and Conclusions
In this chapter, we provided a detailed description of twenty-four feature location
techniques and discussed their properties. While all of the surveyed approaches
share the same goal – establishing traceability between a specific feature of inter-
est that is specified by the user and the artifacts that implement that feature, their
underlying design principles, their input, and the quality of the results which they
produce differ substantially. We discussed those in detail and identified criteria that
can be used when choosing a particular feature location technique in a practical set-
ting. We also illustrated the techniques on a common example in order to improve
the understandability of their underlying principles and implementation decisions.

Even though the area of feature location is mature, there is variety in existing
techniques, which is caused by the common desire to achieve high accuracy: auto-
matically find a high number of relevant elements (high recall) while maintaining a
low number of false-positive results (high precision). As discussed in Sec. 5, since
there is no optimal technique, each of the approaches proposes heuristics that are
applicable in a particular context, making the technique efficient in these settings.

Feature Location for SPLE. In the context of product line engineering, identifying
traceability between product line features and product artifacts that realize those fea-
tures is an essential step towards capturing, maintaining and evolving well-formed
product line systems. Traceability reconstruction is also an important step when
identifying product line architectures in existing implementations.

Each of the existing feature location techniques can be used for detecting features
of products that belong to a product family. Feature location is done while treating
these products as singular independent entities. Yet, considering families of related
products can provide additional input to the feature location process and thus im-
prove the accuracy of the techniques by considering product line commonalities and
variations.

When considering a specific feature that exists only in some products of the fam-
ily, comparing the code of a product that contains the feature to the code of the one
that does not can partition the code into two parts: unique to the product and shared.
This partitioning can help detect relevant elements with higher accuracy because it
limits the results to the elements of the unique part where the feature of interest is
located. For example, it can be used to filter out irrelevant elements (those that be-
long to the shared parts of the code) from the program execution trace analyzed by
Liu et al. [22].

The above partitioning can also improve scoring and traversal mechanisms em-
ployed by existing feature location techniques when searching for these relevant

26

elements. For example, it can be used for augmenting the score calculation formula
used by Hill et al. [18] so that the score of elements belonging to the shared parts
of the code is decreased while the score of those in the unique parts is increased,
as shown in [34]. This affects the call graph traversal process and the ability of the
algorithm to reach the desired elements, while avoiding passes that lead to false-
positive results. More complex partitioning, obtained by comparing multiple prod-
ucts to each other, can provide even better solutions.

In addition, it might be interesting to develop methods for incremental analysis
of product lines, where the traceability links obtained for one variant may be car-
ried over to the next variant. This will prevent unnecessary re-analysis and leverage
the effort and human intelligence invested in one product for more efficient feature
location in others. We explore this and other directions in our ongoing work.

References

[1] Antoniol G, Gueheneuc YG (2006) Feature Identification: An Epidemiological Metaphor.
IEEE TSE 32:627–641

[2] Asadi F, Di Penta M, Antoniol G, Guéhéneuc YG (2010) A Heuristic-Based Approach to
Identify Concepts in Execution Traces. In: Proc. of CSMR’10, pp 31–40

[3] Baeza-Yates RA, Ribeiro-Neto B (1999) Modern Information Retrieval. Addison-Wesley
Longman Publishing Co., Inc.

[4] Bai J, Song D, Bruza P, Nie JY, Cao G (2005) Query Expansion Using Term Relationships
in Language Models for Information Retrieval. In: Proc. of CIKM’05, pp 688–695

[5] Brin S, Page L (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In:
Proc. of WWW7, pp 107–117

[6] Brooks Jr FP (1987) No Silver Bullet Essence and Accidents of Software Engineering. IEEE
Computer 20:10–19

[7] Chen A, Chou E, Wong J, Yao AY, Zhang Q, Zhang S, Michail A (2001) CVSSearch: Search-
ing through Source Code using CVS Comments. In: Proc. of ICSM’01

[8] Chen K, Rajlich V (2000) Case Study of Feature Location Using Dependence Graph. In:
Proc. of IWPC’00, pp 241–249

[9] Cleary B, Exton C, Buckley J, English M (2009) An Empirical Analysis of Information
Retrieval Based Concept Location Techniques in Software Comprehension. J of Empirical
Soft Eng 14:93–130

[10] Clements PC, Northrop L (2001) Software Product Lines: Practices and Patterns. SEI Series
in Software Engineering, Addison-Wesley

[11] Dit B, Revelle M, Gethers M, Poshyvanyk D (2011) Feature Location in Source Code: A
Taxonomy and Survey. Journal of Software Maintenance and Evolution 23

[12] Eaddy M, Aho AV, Antoniol G, Guéhéneuc YG (2008) CERBERUS: Tracing Requirements
to Source Code Using Information Retrieval, Dynamic Analysis, and Program Analysis. In:
Proc. of ICPC’08, pp 53–62

[13] Edwards D, Simmons S, Wilde N (2006) An Approach to Feature Location in Distributed
Systems. J of Systems and Software 79:57–68

[14] Eisenbarth T, Koschke R, Simon D (2003) Locating Features in Source Code. IEEE TSE
29:210–224

[15] Eisenberg AD, De Volder K (2005) Dynamic Feature Traces: Finding Features in Unfamiliar
Code. In: Proc.of ICSM’05, pp 337–346

[16] Ganter B, Wille R (1999) Formal Concept Analysis: Mathematical Foundations. Springer
[17] Goldberg DE (1989) Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley Longman Publishing Co., Inc.

27

[18] Hill E, Pollock L, Vijay-Shanker K (2007) Exploring the Neighborhood with Dora to Expe-
dite Software Maintenance. In: Proc. of ASE’07, pp 14–23

[19] Kleinberg JM (1999) Authoritative Sources in a Hyperlinked Environment. Journal of the
ACM 46:604–632

[20] Koschke R, Quante J (2005) On Dynamic Feature Location. In: Proc. of ASE’05
[21] Landauer TK, Foltz PW, Laham D (1998) An Introduction to Latent Semantic Analysis.

Discourse Processes (25):259–284
[22] Liu D, Marcus A, Poshyvanyk D, Rajlich V (2007) Feature Location via Information Re-

trieval Based Filtering of a Single Scenario Execution Trace. In: Proc. of ASE’07
[23] Marcus A (2004) Semantic-Driven Program Analysis. In: Proc. of ICSM’04, pp 469–473
[24] Marcus A, Sergeyev A, Rajlich V, Maletic JI (2004) An Information Retrieval Approach to

Concept Location in Source Code. In: Proc. of WCRE’04, pp 214–223
[25] Pohl K, Guenter Boeckle F, van der Linden (2005) Software Product Line Engineering :

Foundations, Principles, and Techniques. Springer
[26] Poshyvanyk D, Marcus A (2007) Combining Formal Concept Analysis with Information

Retrieval for Concept Location in Source Code. In: Proc. of ICPC’07, pp 37–48
[27] Poshyvanyk D, Gueheneuc YG, Marcus A, Antoniol G, Rajlich V (2007) Feature Location

Using Probabilistic Ranking of Methods Based on Execution Scenarios and Information Re-
trieval. IEEE TSE 33:420–432

[28] Qin T, Zhang L, Zhou Z, Hao D, Sun J (2003) Discovering Use Cases from Source Code
using the Branch-Reserving Call Graph. In: Proc. of APSEC’03, pp 60–67

[29] Revelle M, Dit B, Poshyvanyk D (2010) Using Data Fusion and Web Mining to Support
Feature Location in Software. In: Proc. of ICPC’10, pp 14–23

[30] Robillard MP (2005) Automatic Generation of Suggestions for Program Investigation. In:
Proc. of ESEC/FSE-13, pp 11–20

[31] Robillard MP, Dagenais B (2008) Retrieving Task-Related Clusters from Change History. In:
Proc. of WCRE’08, pp 17–26

[32] Robillard MP, Shepherd D, Hill E, Vijay-Shanker K, Pollock L (2007) An Empirical Study
of the Concept Assignment Problem. Tech. Rep. SOCS -TR-2007.3, School of Computer
Science, McGill University

[33] Rohatgi A, Hamou-Lhadj A, Rilling J (2008) An Approach for Mapping Features to Code
Based on Static and Dynamic Analysis. In: Proc. of ICPC’08, pp 236–241

[34] Rubin J, Chechik M (2012) Locating Distinguishing Features Using Diff Sets
[35] Saul ZM, Filkov V, Devanbu P, Bird C (2007) Recommending Random Walks. In: Proc. of

FSE’07, pp 15–24
[36] Shao P, Smith RK (2009) Feature Location by IR Modules and Call Graph. In: Proc. of

ACM-SE 47, pp 70:1–70:4
[37] Shepherd D, Pollock L, Vijay-Shanker K (2006) Towards Supporting On-Demand Virtual

Remodularization Using Program Graphs. In: Proc. of AOSD’06, pp 3–14
[38] Shepherd D, Fry ZP, Hill E, Pollock L, Vijay-Shanker K (2007) Using Natural Language Pro-

gram Analysis to Locate and Understand Action-Oriented Concerns. In: Proc. of AOSD’07,
pp 212–224

[39] Tip F (1995) A Survey of Program Slicing Techniques. J Prog Lang 3(3)
[40] Trifu M (2009) Improving the Dataflow-Based Concern Identification Approach. In: Proc. of

CSMR’09, pp 109–118
[41] Walkinshaw N, Roper M, Wood M (2007) Feature Location and Extraction using Landmarks

and Barriers. In: Proc. of ICSM’07, pp 54–63
[42] Wilde N, Scully MC (1995) Software Reconnaissance: Mapping Program Features to Code.

J of Software Maintenance 7:49–62
[43] Wong WE, Horgan JR, Gokhale SS, Trivedi KS (1999) Locating Program Features using

Execution Slices. In: Proc. of ASSET’99, pp 194–203
[44] Zhao W, Zhang L, Liu Y, Sun J, Yang F (2006) SNIAFL: Towards a Static Noninteractive

Approach to Feature Location. ACM TOSEM 15:195–226

28

