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Abstract
We examine the applicability of mobile software codes to perform networking

tasks inwireless andmobile computing environments.We contend that the advent

of wireless technologies during the past decade has turned computer networks

increasingly complex to manage. In particular, factors such as context awareness

and user mobility are now crucial in the design of communications protocols used

by portable devices with moderate to severe bandwidth and battery power limita-

tions. Unlike hard-coded communication protocols that fulfill a specific need,

mobile software agents can be deployed to deal with a range of tasks and can be

designed to efficiently adapt to diverse circumstances. We present our latest

advancements in the areas of mobile ad hoc networking and wireless sensor

networks using mobile agents (MAs). We also elaborate on the importance of

engineering an efficient migration strategy as the single most distinctive
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proceeding that an MA performs to operate efficiently. In addition, we describe

theWiseman system for scripting MAs that can perform networking tasks in both

homogeneous and heterogeneous wireless network environments. Monitoring,

tracking, and E-healthcare applications are discussed and evaluated at length.
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1. Introduction

Many definitions have been offered throughout the literature to describe mobile

agents (MAs). Essentially, a software agent differentiates itself from a regular

computer program by having the ability to observe and estimate the current state

of the environment where it executes, deciding how to act based on this information

and then performing a corresponding action [1]. In addition to this, an MA has the

distinctive feature of being able to arrange for its forwarding from one device to

another. Conversely, regular programs do not incorporate any feedback mechanism

when making a decision and do not possess the mobility feature. There are many

types of MAs, but they are generally categorized as being at the opposite side of the

communications mechanisms plane, in which shared memory is the simplest

scheme, as illustrated in Fig. 1. Message passing is the oldest and most employed

data communications mechanism, whereby a network device encapsulates informa-

tion in a tight fashion before transmitting it. However, devices can also forward

either interpretable programs or executable binary codes that encapsulate instruc-

tions for local or remote execution. We are particularly interested in the applicability

of interpretable programs that are parsed and executed by virtual machines imple-

mented by networked devices.
1.1 Foundations of Mobile Agent Systems

Early discussions in this area argued that there are no MA applications, but rather

applications that benefit from the use of MAs [2], which has proven a sensible

statement after more than a decade of research into the subject. Similarly, MAs can

be regarded as the enabling technology for a networking application. In general,

security issues have proven to be the most discouraging factor toward a wider
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FIG. 1. Data communications mechanisms.
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adoption of MA technology [3–5]. In other words, opening the doors to seemingly

benign, interpretable programs make networked devices susceptible to a number of

malicious attacks. As a result, we observe that certain types of networks have

benefited more than others from implementing MA-based applications in real

systems. In general, closed networks provide a secure environment to deploy MA

technology and benefit from its unique features. Thus, not only the application type

but also the network environment plays an important role for deciding how an MA-

based solution should realize one or more tasks. Figure 2 illustrates the implemen-

tation types that software agents can take.

The most important characteristic of the MA approach and software agents in

general is that it allows programmability, thus enabling an MA-based system to

change its operation on demand to adapt the circumstances determined by the

underlying environment. For example, a network with sufficient bandwidth can

support the deployment of many MAs collaborating to achieve a number of tasks.

Nevertheless, a sudden bandwidth shortage as sensed by these agents could activate

a low-usage mode of operation, whereby only a few agents perform only the most

crucial tasks. It follows that the MAs’ policies can be either static or variable. By the

same token, the most important benefit introduced by the mobility feature of a

software agent is that it enables better bandwidth usage by moving the processing

element to the location where the data to be analyzed resides. For example, moving a

500 KB program to process 100 MB of data at a remote location is more bandwidth
Multiple agents working together
and applying preset actions

Multiple agents working
together and adapting

their operations as 
needed

An agent whose decision
policy may change in

response to the current
environment conditions

Multiple agents working
independently on the 
same task
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external input and
executes preset actions

An autonomous agent that 
adapts its decision policy

as needed

Adaptive Self-sufficient
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Intelligent
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FIG. 2. Implementation types of software agents.
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efficient than carrying out the reverse procedure. However, it is also clear that

implementing an efficient migration policy is crucial in achieving this bandwidth-

saving goal.

Thus far, we have pinpointed some key aspects that are relevant to deploying

MAs: flexibility to implement diverse applications, adaptability to deal with unfore-

seen situations, efficient migration mechanisms to improve performance, an

application-dependent strategy, and preference for closed-network deployment. It

is straightforward to see that MAs are best suited for highly specialized applications

in access-restricted networks that are subject to unexpected, variable conditions, and

resource constraints. As a result, we turn our attention to exploring the applicability

of MAs to support diverse tasks in wireless and mobile networks. These types of

networks possess some or all the peculiarities just mentioned. In particular, we direct

the focus of our investigations to wireless sensor networks (WSN) and ad hoc
networks created by portable devices. However, to better understand the relevance

of investigating MA applicability in these networks, we present a concise discussion

on the advantages and disadvantages of MA technology, followed by a brief

historical perspective with concerning previous research efforts involving MA

technology, its shortcomings, the current state of affairs, and what we can expect

to see in the near future.

1.2 Advantages and Disadvantages of Using MAs

The benefits and drawbacks of the MA approach were extensively discussed in

the initial years of its research. In general, there are some advantages that are

attributable to all agent types, whereas others are more specific. For instance,

compactness is oftentimes referred to as an inherent MA characteristic, though

this is not always the case. For instance, an MA coded to perform a complex

brokering task requires that a significant amount of functionality be implemented

into it to deal with a wide variety of possible situations for the transactions it

supports. However, MAs used for active networking tasks (e.g., routing) can be

significantly more compact because they are targeted at specific tasks with well-

known outcomes. Another advantage regularly associated to using agents is band-

width savings, which can be achieved if an efficient agent migration policy is

employed. However, it is possible that the bandwidth overhead incurred by moving

a relatively large agent could offset the one incurred by using a simple message-

passing scheme, depending on the application. Still, the bandwidth-savings potential

remains by far one of the most compelling reasons for using agents [6].

Figure 3 exemplifies the bandwidth savings-feature by showing both a traditional

and an MA-based approach for collecting data in a WSN. In the first case, the

occurrence of an event as sensed by individual WSN nodes initiates the
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corresponding client–server interactions to send raw data to the WSN gateway or

sink for subsequent analysis. In this approach, each client–server session incurs one

data flow from source to destination, leading to higher bandwidth utilization.

Moreover, this method places a higher burden in the nodes closer to the WSN

gateway because their links observe heavy data traffic as compared to the wireless

links located farther away from the gateway. Conversely, the mobile agent system

(MAS) approach dispatches an agent to the WSN’s region of interest (ROI) where

the event was observed. Once there, the MA processes data and sends back to the

WSN gateway either a concise assessment of the situation or a digest of the analyzed

data. This has the benefit of incurring a single traffic flow, in contrast to the client–

server approach that observes multiple flows.

In addition to enabling bandwidth savings, MAs can also help reduce processing

delay. Revisiting the example shown in Fig. 3, the actual data pooling process

triggered by an event in a WSN region might require multiple interactions between

the WSN gateway and the nodes involved. This obeys to the possibility of having a

relatively large amount of data that have to be progressively transferred if, say, the

first data block yields no conclusive results and one block or more need to be pooled

from the corresponding devices until a result is found. Conversely, in the MA

approach, the codes that actually process data migrate to the devices that triggered

the event, and the analysis is realized in situ, so that no messages or data need to be

sent back and forth from the devices to the WSN gateway. In addition, if a result is

not found, the MA can migrate to another node to immediately begin analyzing more

data, whereas using the message-passing approach entails initiating a new session

between the WSN gateway and another device, followed by the respective data
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transfer process. It is clear that the MA approach incurs less delay during its

migration process than consecutively forwarding raw data segments. Resilience is

yet another advantage that an MA-based solution can incorporate in environments

whose behavior is unstable or highly uncertain. For instance, whereas a message-

passing scheme incurs significant signaling to recover from failures during an

ongoing data transfer session under adverse circumstances (e.g., in the presence of

a noisy-channel, or frequent disconnections), an MA-based solution could have the

agent monitor the channel conditions until the circumstances are favorable to

migrate back to the WSN sink with the desired information.

The previous discussion provides some compelling reasons in favor of using MAs

to solve distinct networking tasks. In fact, it is easy to see that these advantages are

highly appealing for the case of wireless and mobile networks. However, there are

important counterarguments against MA technology. For instance, bandwidth sav-

ings can only be achieved if the size of one or more MAs performing a task is

sufficiently compact to offset the bandwidth otherwise incurred by employing the

message-passing mechanism. This might be hard to achieve if the MA is coded to

provide added resilience, thereby sacrificing compactness as per the extra codes that

implement this added feature. Another aspect that adds complexity to an MA-based

solution is the migration strategy employed to visit multiple nodes, either throughout

the network or in a portion thereof. An inefficient migration strategy incurs added

bandwidth because of the total number of times that one or more MAs hop to

accomplish a certain task. However, a carefully engineered migration strategy

would ostensibly be capable of achieving better results. It thus follows that large-

sized MAs implementing an inefficient migration strategy would result detrimental

to the overall system’s performance. In addition, the effectiveness with which an

MA solution provides resilience depends directly on the programmer’s ability to

anticipate and deal with situations that the MA could encounter. In the message-

passing mechanism, the respective communications protocol daemon running into

an unexpected situation could simply reschedule the data transfer process at a later

time if the current circumstances are unfavorable. Conversely, an MA could remain

stranded at a remote node, perhaps unable to return to the network’s gateway upon

encountering a situation that steered it into a deadlock state. An additional issue that

can be used to argue against MA technology is that of security. To this regard, it is

easy to see that an attacker could inject a malicious agent into a network to disrupt its

normal operation (e.g., as a typical computer network virus). Conversely, one or

more malicious device(s) could be used to disrupt an agent’s normal operation or to

embed a malicious code segment into it. As a result, using MAs can be deemed a

safer option in closed networks where access is controlled. Additionally, well-

known cryptographic methods, such as digital signatures, can be readily employed

to reduce to some extent the inherent security risks, though some performance
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degradations would be inevitable. However, this would be highly detrimental for

network tasks requiring near real-time response, or in networks formed by devices

with limited hardware resources, given that processing digital signatures entails

additional memory availability and processing capabilities that increases power

consumption.

1.3 A Historical Perspective of MASs

A myriad of MA-based solutions ranging from the network to the application

layer were proposed throughout the literature, mostly from the mid-1990s to the

early 2000s when the first investigations into MASs and their potential applicability

took place [7]. A great deal of research focused on the high-level application aspects

of this technology (e.g., [8]), whereas other efforts were aimed at a subject widely

known as active networking [9]. Several MASs were proposed, as per the wide range

of possible applications that MAs could support. The majority of these systems were

built to run on the Java virtual machine (JVM). In fact, some contemporary Java-

based platforms such as JXTA natively support code mobility in the form of MAs

[10]. In this section, we summarize the most important aspects of their deployment,

instead of engaging in a detailed review of individual MASs.

JVM-based MASs were highly popular for applications that required portability

and support to accomplish complex tasks. This provided a programming and execu-

tion platform with unmatched flexibility that enabled MAS deployment to support a

wide variety of applications [11,12]. Nonetheless, performance issues and security

vulnerabilities were important concerns in applications that employed MAS for

cellular phones and personal digital assistants sporting lightweight versions of the

JVM, as mentioned before [13]. In addition, their overall effectiveness was some-

times compromised by distinct versions and flavors of the JVM installed in personal

devices. This was not the problem of custom-built MAS, which provided a more

homogeneous platform for implementing agent-based applications. However, these

systems were less portable and were built for specific types of applications. It is also

worth noting that some MA investigations did not involve any particular MAS and

instead focused on other important aspects, such as migration strategy [14,15].

In fact, some early work advanced alternative MA schemes for wireless and mobile

networks management without actually promoting a particular system [16].

In addition, some agent research targeted web-based applications for enhanced

service discovery and composition (i.e., the combination of two or more services

to form one single application) [17], though subsequent years saw a significant

decrease in MA and MAS research activity. Nevertheless, enough interest remained

on the subject to motivate sporadic research efforts on distinct networking technol-

ogies. In our case, the benefits of employing MA technology in wireless networks
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applications are apparent because it has the potential to significantly reduce (1)

bandwidth consumption incurred by network management overhead and (2) overall

power consumption to help extend battery lifetime, as explained in Section 1.2.

One particular technology that exemplifies the benefits introduced by using MAS

is WSNs. In brief, using MAs in WSNs may facilitate application programmability

(also known as retasking) and collaborative signal and data processing. The MAS

approach has a good potential to decrease bandwidth use (and its associated battery

consumption), contrary to conventional WSN operations that rely heavily on the

client–server communications model. WSNs have been the focus of much attention

in the research community for nearly a decade [18–20], which is driven in part by a

large number of theoretical and practical challenges. WSNs are intended to support

specialized applications. However, it is tempting to try and employ a single WSN

deployment to implement multiple applications due to the high cost of acquiring

hundreds or even thousands of sensor nodes, if so necessitated by the application, or

to cover a wide geographical area as proposed in Refs. [21,22]. The problem with

this approach is that storing a multifunctional program to support diverse applica-

tions incurs significant memory utilization, which could be alleviated by employing

the MAS approach. The advantage of using MAS here is that it enables the

deployment of different types of agents to accomplish various tasks without the

need to reprogram the WSN’s nodes. It could be argued that the MAS approach is

not much different from a multifunctional program for WSN applications. However,

the multifunctional program approach will always be limited to the specific applica-

tions it has been built to support. However, the MAS approach provides the same

functional value of a virtual machine, thus allowing MA deployment for applica-

tions that might not have been considered. In other words, it enables adaptation to

unforeseen circumstances, which can be considered an inherent trait of environ-

ments monitored by WSN hardware.

Even though MASs were extensively studied by prominent researchers, to a

certain extent it failed to fulfill the high expectations that many had placed on it

[23]. Nowadays, MA research is still well positioned to enable contributions with a

significant value, particularly in an area commonly known as smart spaces that has
drawn considerable interest as of late [24–26]. This term is used by pervasive
computing researchers when referring to intelligent environments enabled by con-

sumer electronics and appliances with embedded devices whose behavior can vary

as a result of their context awareness capabilities. Smart space applications are in

turn enabled by ambient intelligence—a group of technologies assembled to provide

an automated, personalized service or experience to one or more persons [27–29].

To this end, advances in electronics miniaturization technology enable the deploy-

ment of sensors and data processing devices with limited capabilities to create

abstract representations of the surrounding environment, along with other devices
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that can be used to provide a personalized, context-aware service. In other words, a

smart space can be envisaged as a complex, interactive system that enacts one or

more actions by using one or more of the surrounding devices as outputs, in

accordance to a series of inputs provided by intelligently networked sensors. This

is a relatively new technology with both growing interest in the research community

and a vast potential for commercialization. However, a great deal of research needs

to be conducted before experimental devices implementing this technology leave the

industry and university labs to become consumer devices available to the general

public. It is not hard to see that a smart space is actually a hybrid system formed by

both hardware and software deployed in and around people in a distributed fashion.

Therefore, we envision using MA technology as a prime candidate supporting

complex, mobile Ambient Intelligence systems.
1.4 Applications of MAs in Wireless and

Mobile Networks

As mentioned before, this chapter describes our latest MA technology advances in

WSN and in mobile computing environments that employ radio frequency identifi-

cation (RFID) technology. In Section 2, we look into the design issues encountered

when engineering both MASs and applications in WSNs. We survey the particular

example of video sensor networks (VSNs) as a WSN application with unique traits

that can be favored by employing MAs. Interest in VSNs stems from the commercial

application of video surveillance in deployment settings where intrusions are

extremely rare, there is no supporting infrastructure (i.e., electricity), and there is

no personnel to monitor the operation of the system in a permanent basis [30,31].

As a result, MAs can be employed to provide an autonomous, low-power mode of

operation. We dissect the MAS design functionality into the following components:

architecture, MA itinerary planning, middleware system design, and agent coopera-

tion methodology. This classification spans low- and high-priority design issues and

assists in the creation of an MAS that can be useful in an ample range of applica-

tions. We argue that flexible trade-offs between energy and delay can be reached,

depending on the specific requirements set by the application.

In Section 3, we present the results of our investigation after putting theory into

practice through Wiseman: a middleware system developed for the deployment and

execution of compact MA scripts in WSNs. The architecture of Wiseman was

designed as a simplified version of a much older agent system originally devised

for the effective coordination of active networking processes (e.g., routing per-

formed by mobile programs, instead of using hard-coded protocols and algorithms).

To this end, we developed a simpler but effective interpreter of codes for embedding
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in WSN devices characterized by having severe hardware constraints. Here, we

detail the groundwork of our approach and its unique language constructs that

minimize its operating cost. Wiseman was coded in the NesC language to produce

a TinyOS ver. 1.x [32] binary image that spans 19KB of code and 3KB of SRAM.

In addition, we elaborate on the distinct agent migration methodologies that the

interpreter supports and present some performance evaluations regarding consumed

bandwidth and internode hopping delay.

In Section 4, we advance a novel idea that relies on RFID technology as an enabler

of diverse ambient intelligence applications. Given their small size and low cost

characteristics, RFID tags can be easily embedded into consumer electronics devices

in support of smart spaces. To this effect, RFID tags would readily enable the

immediate identification of persons and objects to rapidly retrieve prestored, smart

space configurations from a database and enact system personalization actions.

However, there are problems that need to be sorted out with regard to the personaliza-

tion of services and system configuration when person moves from one ambient

intelligence environment into another. One of the major impediments for achieving

this functionality is the way in which existing RFID systems function, which com-

plicates their straightforward adaptation into real-world dynamics so as to fulfill

application-specific requirements. We refer to this as identification-centric RFID

system (IRS), which stores and forwards simple ID values that are referenced during

a simple database lookup process to retrieve relevant information about the object that

carries the corresponding ID tag. To address this problem,we promote advancing IRS

into CRS—a code-centric RFID system, whereby actions are dynamically encoded

and stored in RFID tags that possess improved memory capabilities. We argue that

this innovative approach facilitates the operation of the implementing system to enact

actions on demand in environments comprised by distinct objects, and under varying

circumstances to achieve improved scalability. We present an E-healthcare manage-

ment application that exemplifies the potential of our proposed CRS approach, and its

importance in a smart space scenario. In Section 5, we conclude this chapter by

summarizing our experiences usingMA technology to solve distinct tasks in wireless

networks and discussing possible improvements and areas of future research.
2. Architecting MA Applications and
Systems for WSN

Recent innovations in the field of very large system integration (VLSI) facilitate

the mass production of sensor devices that can be networked to enable the imple-

mentation of many distributed applications, which we introduced as a WSN. To this



124 S. GONZÁLEZ-VALENZUELA ET AL.

Author's personal copy
effect, energy efficiency becomes one of the core design principles for all research

done in this area, given that these WSN devices are generally powered by batteries.

Moreover, many commercial WSN platforms are comprised by devices with severe

memory and processing power limitations. These and other circumstances motivate

research of flexible and improved schemes that allow WSNs to be reprogrammed

when a new data collection/dissemination methodology is needed. At the same time,

it is important to determine whether these new schemes are practicable from an

engineering point of view to ensure that neither performance nor data integrity is

compromised. Given that the primary role of WSNs is data collection, it follows that

environmental monitoring and people/object surveillance comprise a good portion

of their intended applications. In this section, we explore the intricacies that WSN

researchers and engineers encounter when architecting an MA-based solution aimed

at monitoring and surveillance applications. In particular, we study VSNs and target

tracking (TT) applications, both of which provide a prime example of how MA

technology can be employed.

2.1 Using WSNs for Image Retrieval

One of the most challenging tasks that can be observed in WSNs is image

retrieval. To this end, both heavy image preprocessing load and high bandwidth

usage have adverse consequences in the battery lifetime of sensor devices.

In addition to this, such amount of data has the potential to clog the wireless link

(s) when being forwarded to the VSN gateway for subsequent processing, as

discussed in Section 1. As a result, a number of approaches have been promoted

in the literature to retrieve images or video from WSNs [33, 34]. Some of the latest

advancements in this area include Cyclops [35] and SensEye [36], among others,

which are image processing testbeds especially developed for WSN use [37].

A quick survey of existing VSN schemes reveals that they rely on source coding

and multipath forwarding schemes to achieve their task. Because of the bandwidth

limitations encountered in commercial WSN platforms employing IEEE 802.15.4

radio technology that supports up to 250Kbits/s data rates, there will always be a

hard threshold for the amount of data that these and other schemes will be able to

transport from a sensor device to the gateway.

From the above discussion, we can see that MAs are well positioned as a plausible

solution to leverage the performance of VSNs [38]. To this end, we recently

proposed a solution whereby an agent is dispatched to the node that initially captures

an image that needs to be analyzed and executes a preprocessing algorithm to obtain

the picture’s ROI, as depicted in Fig. 4. There, we can observe that the MA carries

with it image segmentation and preanalysis codes to isolate a portion of the original

image and perform a preliminary assessment procedure before forwarding the image
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segment to the VSN’s gateway. As a result, an otherwise large volume of image data

originating at any region of the VSN can be significantly reduced to a much smaller,

manageable one. The main feature introduced by the MA approach here is that if the

conditions surrounding the monitored environment vary, then a new MA with an

alternative image segmentation algorithm can be dispatched to the corresponding

VSN devices to maintain the overall system’s efficiency.
2.2 Target Tracking in WSNs

TT normally refers to the process whereby two or more devices work in conjunc-

tion to estimate the location of an object. Although there are instances in which a

single device can be used to track an object, we are interested in the case where

multiple devices are employed to reduce uncertainty about the object’s position. A

traditional TT application focuses on the design and implementation of the

corresponding algorithms as a signal processing problem. To this regard, the

(distributed) system’s operation is expected to remain unchanged. However, if

the circumstances surrounding the object being tracked change, it is possible that

the performance of the current (static) approach could be compromised to the point

of becoming ineffective. However, an MA approach would enable system operators

to deploy distinct TT algorithms on demand to adapt to the prevailing
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circumstances. It could be argued that a simple remote method invocation (RMI)

mechanism meets the necessary requirements to implement this application, in

which sensor nodes in the tracking region would maintain communications with a

control unit outside of the WSN employed to orchestrate the task. However, it is

clear that this approach would incur additional delay during the communications

between the WSN control unit and the respective nodes.

Several solutions to the TT problem that employ MAs have been proposed in the

literature. In Ref. [39], moving targets are tracked by MAs by employing a simple

“trilateration” algorithm, and the result is periodically sent to a server that stores the

targets’ location. To achieve this, a node employs its own location measurement

information and combines it with the readings obtained by two of its direct neigh-

bors to produce a target location estimate. Figure 5A illustrates this approach, where

the three-circled areas specify the possible positions of the target object based on the

measurements taken by an equal number of MAs. One of these agents is referred to

as the “mother agent,” whereas the other two are referred to as “child agents” that are

controlled by the mother agent to work cooperatively to obtain a better estimate of

the target object’s location. Figure 5A also shows that the mother agent temporarily

stationed at node A dispatches the child agents to nodes B and C to help locate the

target object. The child agent at B ends operations when the received signal strength

at this node decays beyond a certain threshold, whereas node D receives a new child

agent, as depicted in Fig. 5B. Later, the mother agent itself decides to migrate to

node C to avoid losing track of the moving target. At this point, all child agents

terminate, and new ones are dispatched to nodes D and E, as shown in Fig. 5C. From
this example, it follows that multiple child agents can be deployed to track a moving

object, and that their number can vary depending on the number of WSN nodes

present in the monitored region. An alternative approach proposed in Ref. [40] also

promotes dispatching an MA to track a moving object, as shown in Fig. 6. Upon

migrating to a sensor node, the agent collects the necessary information to gradually
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FIG. 5. Geographical target tracking using trilateration.
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increase the accuracy with which an object is followed. When a certain threshold is

met and the tracked object has been successfully recognized, the MA halts the

tracking process and returns to the WSN gateway with the collected results.
2.3 Architecting Data Dissemination

Schemes in WSN Using MAs

We classify the MA-based architectures as being either hierarchical or flat in

accordance to the WSN’s configuration. In a hierarchical architecture, the nodes’

roles are different, whereas in a flat sensor network, the nodes’ roles are either equal

or very similar [41]. In this section, we will elaborate on each of these types of

architectures and describe their pros and cons depending on the actual WSN

application and configuration.
2.3.1 Hierarchical WSN Architecture
In general, the operation of an MA-based solution is simplified in hierarchical

WSN deployments, such as in the clustered topology proposed in Ref. [42] that

promotes intra- and intercluster hybrid methods. In the first case, every cluster head

dispatches an MA that migrates to all cluster members collecting and combining

data. Upon returning to its corresponding cluster-head, the MA sends the accrued

data results back to the WSN’s gateway for further processing. Conversely, the

intercluster approach does not perform any MA operations inside the cluster.

Instead, an MA follows an itinerary that takes it to all the cluster-heads, until the

WSN gateway is reached. We can see that the intracluster method is intuitively

favorable in cases where clusters are formed by many nodes, and the number of

cluster-heads is reasonably small. On the contrary, the intercluster method is more

efficient in clusters comprised by a smaller number of nodes. On the downside,

network maintenance in hierarchical WSNs may involve significant signaling
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overhead. Evidently, this problem can be solved by resorting to a flat WSN config-

uration that may be appropriate for a broad variety of sensor applications.
2.3.2 Flat WSN Architecture
In Ref. [43], researchers introduced the MA-based distributed sensor network

(MADSN) approach for using in both hierarchical and flat WSNs. Here, the WSN

gateway dispatches a certain number of MAs that gather data in a target region. For

this, it is assumed that source nodes are close to the WSN gateway; however, an MA

can traverse a number of hops before reaching the first source node, if needed. One

caveat is that dispatching MAs from the gateways to the source nodes can incur

significant bandwidth, thus defeating the benefits obtained by using MAs. To

address this side effect, we proposed a novel approach that we coin MA-based

WSN or MAWSN [44]. In our approach, a single “mother” MA is dispatched by the

WSN gateway to the target area and remains temporarily stationed at a designated

node therein waiting for a trigger event or command. This MA carries the codes that

perform the desired action within that region. When triggered, the mother MA

dispatches one or more “child” agents that carry out one or more tasks. Child agents

separately visit a set of data source nodes to collect and aggregate data. Then, the

accrued data is either sent back to the mother MA or directly to the WSN gateway.

Fresh batches of child MAs can be dispatched periodically by the mother MA in

accordance to the strategy being implemented. In addition, several child MAs can

also be concurrently launched by the mother MA to perform one or more tasks in

parallel to reduce latency. From our description of MAWSN’s operation, it follows

that using MAs enables the reduction of data traffic at three levels. In the first level,

unprocessed data can be reduced at the source node level as stipulated by child MAs,

so that only digested information is sent to the WSN gateway. In the second level,

data redundancy can be eliminated by having child MAs visit the source nodes that

produced the highly correlated data. Finally, a mother MA can further aggregate

data pooled by child MAs upon returning to the mother MA’s location.

2.4 Agent Migration Itinerary Planning

The migration itinerary of an MA is defined as the path followed when hoping

through the underlying network as it performs a given task. In our case, planning the

itinerary of an MA involves two main steps that can be realized either by the WSN

gateway or autonomously by the MA: (1) defining the subset of nodes to visit and

(2) defining the actual path to follow to preserve bandwidth. This last aspect can

have an important effect on the overall energy consumption of the WSN nodes

involved. This is a well- and long-known problem in computer networks known as
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the traveling salesman problem [45]. It has also been shown that finding an optimal

sequence for visiting the respective nodes of such a path is a nondeterministic task

that can be solved in polynomial time of the factorial of the number of nodes to visit;

that is, it is an NP-complete problem. If the visiting path is fixed, then the MA

migration itinerary is determined by the WSN gateway before dispatching the MA.

Conversely, if the visiting path is dynamic (variable), then the MA autonomously

decides what WSN nodes to visit, depending on the current network conditions or on

its task execution progress. However, it is also possible to implement a hybrid

approach, whereby a preliminary WSN node-visiting path is decided by the gate-

way, whereas last minute changes can also be performed appropriate by the MA as

deemed suitable. We now elaborate on the particularities of these approaches.
2.4.1 Planning a Static MA Itinerary
This approach relies on current global network information to derive a possible

migration path before an MA is dispatched. Two methods that address this problem

were presented in Ref. [46]: local closest first (LCF) and global closest first (GCF),

both of which assume that out of the nodes to be visited, the executing one is the

closest to the gateway. For this reason, LCF first searches for the node that is closest

to the current node, whereas GCF does so for the node closest to the gateway.

Alternative solutions also exist. For instance, a genetic algorithm is presented in Ref.

[47] to devise MA itineraries for WSNs, which assumes that each sensor node can be

visited only once to reduce the search space. This solution achieves global optimi-

zation, though it is a computationally heavy one whose actual suitability in resource-

constrained nodes is debatable.
2.4.2 Planning a Dynamic MA Itinerary
Our previous descriptions of static MA itinerary planning solutions reveal that

they may be unsuitable for WSNs that experience varying conditions if the global

information stored at the gateway becomes outdated in the presence of continuous

changes in the underlying environment. On the contrary, dynamic itinerary planning

enables MAs to determine which node to visit as it hops through its migration path.

To achieve this, trade-offs between the migration plan change costs and possible

efficiency degradations should be taken into account. For instance, researchers in

Ref. [40] promote a dynamic planning method that achieves progressive fusion

accuracy without incurring excessive costs. To this end, the dynamic itinerary

planning approach ensures that the visited sensor nodes (1) have enough battery

power energy, (2) require minimum energy consumption for the MAs migration, and

(3) yield significant information gain. As discussed before, one of the objectives of
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the MA should be visiting sensor nodes that reduce uncertainty to shorten the

migration path, reduce bandwidth usage, and decrease task completion delay.
2.4.3 Planning a Hybrid MA Itinerary
This approach selects a static set of sensor nodes that should be visited, leaving

the migration sequence open to changes. A hybrid itinerary planning scheme coined

as mobile agent-based directed diffusion (MADD) is proposed in Ref. [38]. In it,

exploratory packets are sent to the WSN’s gateway as soon as sources in a certain

region detect an event of interest. Then, the gateway defines a cost-effective

migration path for the MA as it visits a WSN node subset.

2.5 Middleware Layer Design

MASs are frequently implemented as middleware that bonds the underlying

operating system with high-level software components, which in our case has to

take into account significant limitations and technical challenges inherent to WSNs.

MAS middleware (MASM) provides a platform that enables MAs to realize applica-

tion-specific tasks and rapid application development inWSNs. However, a trade-off

arises by the need to produce a drastically simple system that consumes the least

possible amount of resources, without sacrificing functionalities that are key to

ensuring a successful WSN deployment. One way to achieve this is by creating a

custom programming language with the necessary high-level constructs that embody

repetitive sequences of low-level tasks that are routinely encountered. This approach

reduces agent codes’ size, simplifies the structure of theMA interpreter, and promotes

using local function libraries at the sensor nodes. As a result, programmers relieve

MAs from having to carry the codes to perform low-level tasks and reduce programs’

sizes. The degree to which this approach can actually be implemented depends on

several factors. For instance, ifWSN nodes are resource constrained, then the number

of library functions locally available might be limited too.

The previous discussion evidences the need to create custom MASMs whose

architecture depends on the applications they are intended to support, as well as on

the underlying hardware and the environment being monitored. An MASM could be

designed to support either coarse- (high-level) or fine-grained (low-level) MAs

employed for distributed task coordination or local data processing. For instance,

SensorWare [48] employs high-level language constructs, whereby a single expres-

sion realizes multiple low-level tasks in WSNs. Conversely, Agilla [49] resorts to

low-level codes that resemble assembly programming mnemonics. In general, fine-

grained constructs yield lengthier programs that control task execution in greater

detail, thereby requiring a more intricate MASM that consumes more memory at the



APPLICATIONS OF MOBILE AGENTS IN WIRELESS NETWORKS 131

Author's personal copy
local sensor nodes. However, an MASM architected under the coarse-grain approach

yields shorter MAs that resemble Macroprograms—condensed instructions mapped

to a lengthier sequence of detailed commands—that promote using the nodes’ local

function library. Consequently, the complexity of the MASM is reduced along with

the MA’s size. On the downside, this approach sacrifices detailed task control.
2.6 Multiple Agent Cooperation

MAs can be deployed to operate independently or collaboratively to realize one or

more tasks. In fact, previous research has shown that active agent collaboration can

decrease energy consumption in theWSNas awhole [39,48,49]. The reason for this is

that parallelism is exploited more efficiently by sharing information that other agents

can employ to reduce task execution delay and bandwidth due to repeated hoping

through the network during the data collection process. Thus, it follows that fewerMA

hops in itsmigration path leads to a reduced battery consumption rate in a shorter time

frame, as agents finish their task quicker. The type of information that agents

exchange can be simple or abstract. In addition, these data can be continuously

modified by other agents in a time-decoupled manner until a certain outcome is

found, which can be subsequently used in other decision processes, including, but

not restricted to, the course of the current WSN task. To this effect, the tuple-space

mechanism remainswidely popular, wherebyMAs communicate indirectly by saving

typified data at the respective WSN nodes, contrary to directing messages to each

other, as shown in the example of Fig. 7. Here, we see that Agent 1 visits Node n to

change the contents of a tuple-space entry, which is later updated by another MA. For

this communications mechanism to work, it is necessary that all agents know how to

access and store data in the corresponding tuple-space, so that no information is

corrupted. Therefore, the semanticmeaning of the tuple-space needs to be predefined.

It is straightforward to see that this approach favors applications with loose timing

requirements in which the significance of the information stored at the WSN nodes

deteriorates slowly in comparison to the occurrence rate of the events being
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FIG. 7. Multiple agent cooperation using tuple-spaces.
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monitored. Alternatively, direct agent communications might be the best solution

under a tight timing requirement, as in the case of applications that require real-time

information processing. An instance of this could be a WSN used for intrusion

detection based on partial image evaluation, as explained before. Here, the WSN

gateway could deploy agents that seek evidence of a certain event as captured by a

sensor camera. Upon finding the piece of evidence sought for, agents could directly

send signals indicating the current outcome, whichwould serve as an indication to the

other agents to either continue or halt the process. However, it is always possible to

employ more than one communications mechanism to accomplish a certain task.

2.7 Summary

An effective MAS design is crucial for overcoming the limitations found in

alternative methods to solve diverse WSNs problems, where bandwidth and batter

power conservation are fundamental. This section introduced important aspects that

are relevant to MAS deployment inWSNs. Applications, system architecture, migra-

tion itinerary planning, middleware design, and MA cooperation issues were dis-

cussed. We stressed the notion that important bandwidth savings can be achieved by

locally processing sensor data as specified by the codes carried by an MA. However,

performing efficient MASM design is imperative to support the intended WSN

application to solve a particular kind of problem. Thus, it is important that the

MASM includes custom features to provide enhanced efficiency. We also discussed

aspects directly related to MA cooperation and the corresponding communications

mechanisms, which are ultimately a direct influence of the intended objective to

achieve maximum performance. Consequently, the benefits that can be obtained by

applyingMA technology in aWSN, or even in other types of networks, also depend to

a good extent on the skill of the programmer that creates the respective codes. Finally,

there is an important qualitative aspect of usingMAS: they provide an effectivemeans

to deploying alternative solutions for dealing with unexpected problems or unfore-

seen situations, which are much harder to tackle when message-passing schemes are

used. In Section 3, we will present our original work in the area of MASMs, which

takes into account all the provisions and discussions that we have presented.
3. Programmable Tasking of WSN

3.1 Agents in WSN

In the previous section, we described the importance of providing WSNs with the

ability to be seamlessly retasked as required by the underlying conditions of the

environment being monitored. We mentioned the shortcomings encountered by
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employing classical message-passing schemes and vied for using the MASM

approach to solve this issue. In recent years, researchers designed and implemented

programmable-tasking schemes in WSNs by embedding virtual machines that

systematically process and forward highly compact codes between nodes. This

reduces packet transmissions and enables WSN nodes to effectively switch from

one mode of operation into another. Virtual machines entered the WSN realm

recently after WSNs became a popular research topic. The first systems proposed

were Maté [50], Impala [51], and Deluge [52] and were promptly followed by

SensorWare [48], SmartMessages [53], and Agilla [49]. Initial approaches were

specifically designed to work on devices with severe resource constraints, as

explained before, whereas the latter approaches introduced architectures for inter-

pretable codes with more functionalities than their predecessors.

Prior to these advances, extensive investigations had already taken place in the

late 1990s and early 2000s to gauge the advantages of deploying mobile codes in

WSNs, contrary to implementing traditional message-passing protocols [6].

An important finding was that MASs indeed are able to produce better performance

results than their conventional message-passing counterpart in WSNs, subject to the

migration strategy employed to reducing the distributed data processing delay.

In addition, execution and forwarding overhead, which depend to a good extent on

the MAS’ architecture, also play an important role. Consequently, we argue that

MASM design is crucial for efficiently supporting the agents’ operation. In other

words, whereas MASs for WSN need to incorporate the necessary mechanisms that

minimize bandwidth and power consumption, they warrant a design for dealing with

the peculiarities of each individual WSN application, contrary to creating general-

purpose solutions.
3.2 The Wiseman Approach

Unlike existing schemes that promote general-purpose approaches, we advance

an MASM that implements specific network-level features for simplifying

distributed task coordination in WSNs. Our proposed MASM, wireless sensors

employing mobile agents (Wiseman), is characterized by the following features:

(1) its architecture supports distinct migration strategies and provides a flexible code

execution flow; (2) it follows a text-based, code scripting scheme, whereby compact

MAs can be efficiently deployed to implement a number of actions, or to perform

WSN maintenance tasks as needed; and (3) it implements an execution model

whereby self-depleting text strings can be progressively eliminated to expedite

their processing time and reduce the incurred transmission bandwidth and forward-

ing delay.
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The ingenuity of embedded software engineers has been put to the test to create

MASM that is amenable to hardware-constrained WSN devices to achieve the

desired balance between system functionality and performance. To this end, there

are two paradigms that can be followed. One promotes a fine-grained approach,

whereby simple, mnemonic-like language constructs resembling assembly program-

ming codes are used to specify a detailed flow of operations that an MA will

perform (e.g., <CLR REG0>, <JMPTO 0x04>, etc.). The other paradigm follows

a macroprogramming scheme, whereby course-grained constructs describing com-

pound operations are employed to describe the order in which task will be executed

(e.g., <Run Task X>, <Run Task Y>, < IfSuccess END, Else Run Task Z>).

Evidently, there are both advantages and disadvantages to using one or the other.

For the first, the MAS interpreter would deal with more compact agents invoking

locally available libraries at the nodes (e.g., Run Task X/Y/Z) but would also encounter
limited execution thread flexibility. In the other approach, a detailed operation flow

sequence is possible at the expense of larger programs, even if a byte-code scheme is

implemented to reduce their size. Ultimately, MASM engineers need to define the

right degree of granularity required for implementingMAs, as dictated by the intended

WSN application(s). However, it is apparent that the prevailing conditions of WSN

hardware favor the implementation of coarse-grained approaches, combined with

limited fine-grained functionalities that allow MAs to test for certain conditions to

veer the flow of the current process as needed. In addition to this, a WSN is expected

to operate in the same manner for a certain period of time after it has been (re)tasked,

meaning that a number of subtasks execute repetitively until the WSN is repro-

grammed into a different operation mode. In fact, contemporaryWSN devices provide

some limited memory space intended for logging sensor data, which can be conceiv-

ably partitioned to store additional data-processing algorithms, or “dormant” MAs that

can be activated on demand. Regardless of this, the incentive behind employing MAs

weakens if the tasks they are meant to perform become deterministic in relation to the

WSN’s operations. However, WSNs deployed in environments where a higher degree

of uncertainty prevails benefit more from using MASM that enables flexible program-

mability, which enables them to adapt to unforeseen circumstances.

A caveat of the previous rationale is that, becauseWSN technology is still deemed

as being relatively recent, it becomes tempting to assume that contemporary

MASMs need to be designed from the ground up, and that older systems designs

are altogether inappropriate (e.g., those based on the JVM). However, we make note

of the existence of one particular system that dates back to the mid-1980s, whose

design was based on the premise of deploying mobile codes in a time where message

passing was a vastly predominant communications mechanism. The wave system

[54,55] promoted one of the earliest code mobility paradigms in wired computer

networks specifically conceived for the efficient coordination of distributed tasks [56].
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It could be argued that looking into the past for earlier technologies that could be

adapted to contemporary needs is counterintuitive. However, we note that limitations

found in earlier computer network systems (e.g., processing power and bandwidth)

still exist in some contemporary systems. This clearly is the case of WSNs formed by

devices possessing 8-bit microprocessors with 128 KB of RAM that communicate at

250 Kbits/s. Therefore, we considered worthwhile revisiting previously explored

concepts and technologies to understand how these issues were originally addressed,

and whether they could be adapted to solve current WSN issues (i.e., contrary to

attempting to reinvent a solution for a reasonably comparable problem). After a

careful analysis, we observed that the wave’s language constructs originally devised

for bandwidth-constrained network systems could be adapted for WSN use. Conse-

quently, Wiseman inherits many of the traits already seen in wave:

1. The MAs’ primary task is geared toward distributed process coordination of a

WSN by decoupling the data processing element, and instead promoting the

execution of local algorithms, as explained before.

2. The size of MAs’ scripts can be shortened by defining the language constructs

that adequately describe the process coordination methodology that a WSN

operator/engineer wishes to deploy.

3. As a result of the two previous aspects, Wiseman’s interpreter architecture can

be further simplified, yielding a smaller memory footprint that is amenable to

WSN hardware.

4. MA forwarding delays are reduced by transmitting compact MAs’ codes,

which also promotes bandwidth conservation.
3.3 Architecture and Code Processing Flow
of Wiseman MAs

Wiseman was designed to minimize program memory footprint. Therefore, it

implements only four components: an incoming MA queue, a parser, a processor,

and an MA dispatcher (see Fig. 8). In addition, the Engine and Session Warden

blocks are incorporated to assist the other components. The incoming queue tempo-

rarily stores agents after being received from the wireless interface and are subse-

quently parsed for immediate processing once the currently executing MA finishes.

It is also possible to inject agents that are stored in the node’s local library, as

explained before. In this case, an MA arriving from another node instructs the

interpreter to fetch a particular MA for immediate queuing and processing. (Because

of the processing limitations prevalent in WSN hardware, Wiseman is not designed

to execute in a multithreaded manner.) Once an MA is removed from the incoming

queue, the parser tokenizes individual MA codes by dividing them into two parts
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that we refer to as head and tail. The head is simply an indivisible code segment that

cannot be further split, which is sent to the processor for immediate execution. The

tail, however, is made of the rest of the MA’s codes, which are also tokenized for

subsequent processing, as needed. The processor almost always relies on the Engine

as a helper block that performs certain simple tasks, including the transformation

and/or adaptation of data.

The parser regains control of the MA’s processing task as soon as the head

finishes executing, at which point the tail is subsequently tokenized to obtain the

next indivisible segment that becomes the new head, whereas the remaining codes

become the new (shrunk) tail. At this point, the new head is passed onto the

processor for immediate execution as before. Figure 9 illustrates the MA execution

sequence of the Wiseman interpreter. We note that the processor may stop executing

an MA if (1) the current code segment’s outcome is unsuccessful, (2) the MA

requires being forwarded to another node as indicated by the current instruction,

or (3) an explicit MA termination is specified. The first case implies that the

remainder of the MA being executed must be discarded if the current condition

being evaluated results in a FALSE outcome. The second case implies that a hop

operation was found, and so the tail of the MA is immediately passed onto the
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dispatcher for its transmission to another WSN node. Finally, the third case is

usually incorporated by the MA programmer as a fail-safe provision to avoid further

propagation. Aspects pertaining to the Session Warden of the interpreter will be

detailed later in this section. Figure 8 illustrates Wiseman’s interpreter architecture.

3.4 Wiseman’s Instruction Set and
Language Constructs

Most of Wiseman’s language constructs are derived directly from wave, although

they have been further condensed to reduce program size and forwarding delay.

Unlike other MASM approaches for WSNs that resort to bytecode-type agents,

Wiseman agents are written as text scripts, making it flexible to dynamically

incorporate modifications to their program structure. Therefore, Wiseman MAs

can morph dynamically after they have been dispatched from the WSN’s gateway.

Wiseman’s language constructs are made of variables, rules, operators, and delimi-

ters, as explained next.
3.4.1 Variables
Wiseman requires that enough processor memory be reserved to store floating

point type variables, known as numeric. The memory content of this type of variable

is accessible through the letter N (e.g., N0, N4, etc.). Similarly, character variables
require that memory be reserved to store single characters that can be referenced by

the letter C (e.g., C3, C5, etc.). Access to these variable types is public, implying that

all MAs that reach the local node have read/write privileges on them. Unlike Agilla,

Wiseman does not implement the functionalities to perform operations on remote
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nodes’ variables. Therefore, local operations on numeric and character variables

have no effect on other nodes’ variables. However, it is straightforward in Wiseman

to spawn a simple MA that can hop to a neighboring node to update a local variable,

if needed. In addition to numeric variables, MAs may carry with them mobile
variables, whose purpose is analogous to that of private variables in object-oriented

programming, and so they are inaccessible to other MAs. The contents for each of

these variables is accessible through the letter M (e.g., M7, M8, etc.), which are

semantically similar to private variables in object-oriented programming. All nodes

reserve enough memory to store the contents of mobile variables when an MA is

fetched from the incoming queue for immediate execution. When an MA finishes

executing and is either dispatched or terminated, the reserved memory space is

overwritten to store mobile variables carried by another MA being brought into

execution. The WSN engineer must then ensure that the semantic meaning of all

three variable types is kept throughout the network. For instance, the contents of

variable N1 at nodem should have the same meaning as that of variable N1 at node n.
The clipboard variable is also provided by the interpreter to temporarily store data

for diverse operations, and its contents can be accessed through the letter B. Finally,
the interpreter defines three additional environmental variables that store data

regarding the executing environment. The first of these is a read-only variable that

holds the local node’s identification number (ID) (i.e., 1, 2, etc.) and is defined as the

identity variable I. The next is the predecessor variable P, which is populated with

the identity number of the node that an MA arrived from as it is loaded into

the parser for processing. The third and last of the environmental variables are

designated as the link variable L, which is similar to P but is used to store a virtual

label identifier of the link that the MA employed for hopping into the local node, as

discussed later in the text. It follows that the contents of both the predecessor and the

link variables are overwritten with every MA that enters the execution space, and

that each MA carries this information that is provided by the node that last dis-

patched it.
3.4.2 Operators
Wiseman implements a number of operators that are available to the programmer.

The first type is the arithmetic operator type (i.e., þ, �, *, /, and ¼) that is used to

update the contents of numeric and mobile variables. It follows that arithmetic

operations are not applicable to character variables. Other general-purpose operators

are also available to evaluate different conditions (i.e.,<,<¼,¼¼,¼>,>, and !¼).

However, Wiseman defines other system-specific operators that are unique to our

approach. The hop operator # is employed to indicate that an MA’s tail is to be

forwarded to a node with the ID specified on the right-hand side of the character
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(e.g., #5 indicates a hop to node 5). Alternatively, a virtual link identifier (i.e., a

label) can be employed to refer to a subset of neighboring nodes to which an MA can

be multicast. For example, a virtual link labeled as d can be assigned to odd-

numbered nodes in the node set [1 . . . 5] (i.e., 1, 3, 5), and a label e can be assigned

to even-numbered nodes (i.e., 2, 4). In such case, multicast hopping is instructed by

placing the corresponding label on the left-hand side of the operator (e.g., d#). Here,
the Wiseman interpreter automatically clones the agent to forward a copy to each

node in the corresponding subset. Then, agents resume executing at the code that

follows the hop operation immediately after reaching the destination node. This

simplistic form of strong mobility eliminates the need for forwarding a program

counter and execution state variables with the MA. Alternatively, the broadcast
operator @ can be used to forward a short agent to all neighboring nodes. Wiseman

also provides the query operator ? that allows an MA to check whether a given label

has already been defined at the local node by an agent that visited the node earlier in

the process (e.g., e?). As mentioned before, MAs can inject locally stored codes

retrieved from the local library by employing the code injection operator ^. To this

effect, the MA programmer must know in advance the identifier needed to reference

the respective agent’s codes. For example, the code ^7 fetches a local agent labeled
with the number 7 for immediate insertion into the incoming queue block and

subsequent execution. Similar to this is the execution operator $, through which an

MA invokes a local function or algorithm that is not in the form of an MA. One

operand is used to indicate which function is being called, and the other operand

represents a single parameter being passed to the functions, which appear in the left-

and right-hand side of the operator, respectively. To date, functionalities to switch

on/off LEDs are available, to retrieve temperature/light sensors readings, and to

retune the frequency channels of the local radio circuit. Finally, the halt operator ! is
employed to indicate explicit termination of the MA currently executing.
3.4.3 Rules
Wiseman implements three methods to control the execution flow of MAs’ codes.

The first and most often used is the repeat rule R. This rule is provided as a simple

loop, and so the interpreter executes the codes embraced by curly brackets cycli-

cally. To this end, the codes inside the repeat rule are copied and reinserted before

the whole construct (i.e., R{. . .} yields . . .;R{. . .}). Consequently, the codes within

the repeat rule execute until a certain condition evaluation fails. In addition to this,

the And/Or rules control an MA’s execution flow by verifying the outcome of the

delimited codes within square brackets. For example, an Or rule construct O
[<code1>;<code2>;<code3>] executes until the outcome of one of these seg-

ments yields a TRUE outcome. However, if the last code to be evaluated (e.g.,
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<code3>) yields a FALSE outcome, then the MA terminates. It follows that the

“And” rule operates under a similar premise, though all the delimited codes must

return TRUE if the agent is to continue executing.

3.5 Wiseman’s Agent Migration Methodologies
3.5.1 Explicit Path Hopping
One intrinsic feature of existing MASM approaches is that they all provide the

means for explicitly defining the migration path of MAs through the WSN. There

are two implications here. The first is that either the WSN gateway or a server/

coordinator beyond the gateway must have knowledge of the network’s topology for

defining the corresponding hopping sequence, and the second is that the node-

visiting sequence for the MA cannot/should not be revised once defined. Though

this migration method is the easiest to implement, it hinders the ability of an MA to

dynamically react to changes that occur rapidly or unpredictably in the WSN. As a

result, an MA might visit a node that is no longer a relevant part of a subset of nodes

that observed a certain event or, worse yet, an MA might be unable to follow the

initial migration plan. Therefore, this approach is most useful if it is anticipated that

the conditions of the underlying environment being monitored by the WSN will

remain stable [38]. The hop operator available in Wiseman enables explicit path

migration by specifically indicating the destination node on the right-hand side of

the operator. Therefore, a sequence of hop operators with their respective destination

creates the explicit sequence of nodes to visit (e.g., #3;...;#7;...;#4;...;#8;...). To this
effect, it becomes the responsibility of the WSN engineer to ensure that the MA will

perform the required task at each respective node.
3.5.2 Variable-Target Hopping
Wiseman provides the means to implement a migration scheme whereby the

MA’s path can be modified as needed after it has been dispatched from the gateway.

In this case, either mobile or numeric variables holding the identity of target node

can be specified on the right-hand side of the hop operator. Therefore, changing the

contents of the corresponding variable has a direct effect on the outcome of the hop

operation. For example, the operation #N4 specifies that an MA will hop to the node

the ID of which has been previously stored in N4. It follows that there must be a

separate process, either carried out by another MA or executed by a local function

that is in charge of updating the contents of N4. However, if the hop operation

employs a mobile variable (e.g., #M7), then it becomes the task of the corresponding

MA that carries this variable to update its contents accordingly as it migrates



APPLICATIONS OF MOBILE AGENTS IN WIRELESS NETWORKS 141

Author's personal copy
between WSN nodes. To this effect, either direct assignment or regular arithmetic

operations can be employed. For instance, if the variable N4 holds the number 2,

then the operation N4þ1 reassigns the number 3 to N4, and so #N4 would forward

the MA to node 3. An identical process applies to mobile variables used as operands.
3.5.3 Labeled Path Hopping
A disadvantage of the previous agent migration methods is that they are unable to

forward multiple copies of an MA to different nodes as specified in a single hop

operation so as to multicast the MA. Wiseman addresses this issue by assigning the

ID numbers of one or more nodes to a letter that becomes a label, as explained

previously. When the interpreter finds a character on the left-hand side of the hop

operation, it forwards a copy of the MA to each node that belongs to the subset

assigned to the corresponding label (e.g., a#). From this, we infer that (1) a separate

process is needed to label such virtual links and (2) the node subset assigned to a

specific label may differ from node to node. For instance, node 9 may have nodes 5
through 8 as neighbors, from which two labeled subsets need to be formed: one for

the even-numbered nodes and one for the odd-numbered nodes. To achieve this, the

codes L¼s;#6;#P;#8 and L¼g;#5;#P;#7 lead to the creation of the corresponding

labeled paths assigned to letters s and g, respectively, by employing the environ-

mental variables L and P. Then, any MA that subsequently traverses either of these

paths can employ the codes s# or g# to reach at once nodes 6 and 8, or 5 and 7,
respectively. From here, it can be inferred that MAs traversing these paths do not

need to know in advance the IDs of the nodes they will visit—the sole use of a label

suffices. Similarly, this hopping method can be implemented by explicitly defining

labels or by assigning labels to character variables (e.g., C1#).

3.6 Middleware Implementation of Wiseman

We now describe the most important aspects of the implementation of theWiseman

interpreter in actual WSN devices. After its initial coding and verification in the

OMNeTþþ discrete event simulator [57], Wiseman was ported to the NesC language

to create a binary image of the interpreter that runs on top of TinyOS ver. 1.x that we

installed and tested on theMicaz sensor platform [58]. TheMicaz sensor nodes remain

widely popular in academia to evaluate a number of WSN schemes ranging from the

MAC layer to the application layer, as they provide a perfect example of a resource-

limited wireless sensor node with merely 128 KB of program memory and 4 KB of

volatile SRAM memory. Wiseman’s implementation follows the architecture shown

in Fig. 8, whose program requires almost 2400 NesC lines that yield a 19-KB binary

image, and consumes around 3 KB of SRAM space for holdingMAs that span at most
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170 bytes. Given the lack of a transport layer in TinyOS ver. 1.x, Wiseman imple-

ments a simple scheme for MA segmentation and reassembly implemented by the

Session Warden module. To this end, MAs spanning more than the default 29-byte

user space available in TinyOS packets are segmented into smaller pieces that are

individually forwarded onto the next node as specified by a hop command. At the

destination, the segmented MA is sequentially reassembled before being injected into

the incoming agent queue. The header of a Wiseman agent has the following fields,

some of which can be used to recover from any possible error that may occur in the

wireless channel during an MA forwarding session:

1. Segment number: employed for identifying any given MA segment i out of a
total n, whose value is gradually incremented for each segment being sent.

2. Last segment: used to indicate that the current segment is the last of a total of n.
3. Source ID: used by the destination node to populate the environmental

variable P.
4. Session number: a pseudo-random number assigned to the current MA for-

warding process.

An MA forwarding session initiates when the sender issues a request-to-send
(RTS) packet to the destination node. This is done to ensure that this node is not

involved in active communications with another node and that it is ready for being

engaged with. If this is the case, the destination node sends a clear-to-send (CTS)

packet to acknowledge the RTS signal back to the source node. At this point, segment

numbers are employed in subsequent packets being transmitted so that any discrep-

ancy of the expected segment number in the current session is dealt with accordingly.

This is a well-known mechanism that is not natively implemented in TinyOS ver. 1.x

when forwarding packets, and so the programmer needs to implement it to ensure that

packets are correctly forwarded.When the last segment is successfully received, both

the sender and the receiver nodes reset their current session values in preparation for a

future forwarding session. Deadlocks are avoided by employing timeouts that trigger

the corresponding event after 300ms at the sender when no CTS acknowledgement is

received from the destination. Similarly, a maximum of three retransmissions are

attempted for any given MA segment. The maximum number of MAs that the

incoming/outgoing queues support in the current Wiseman implementation is 3 and

5, respectively, which is a limitation of the Micaz SRAMmemory space. However, a

TelosB mote that possesses 10 KB of SRAM memory can support more and larger

agents that can be held at the queues. It follows that a sensor mote will not issue a CTS

signal back to the sender if the incoming queue is full. We also note that no routing

service is implemented in theWSN. However, labeled paths can be readily created by

MAs to accomplish the same result.
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3.7 Case Study: Early Forest Fire Detection
3.7.1 Experiment’s Rationale
We conducted experiments that exemplify the usefulness of employing MAs in an

environment where the underlying conditions can change unexpectedly. In this case,

we emulate Wiseman’s support in a forest fire detection application, which has the

following characteristics:

a. The underlying conditions of the deployment setting may change rapidly and

unpredictably.

b. A WSN can be employed to assess the likelihood of one or more sectors of the

monitored area experiencing an uncontrolled fire.

c. Given the vast area of the deployment setting, the WSN’s will likely be

comprised of several hundreds of sensor nodes, depending on the desired

monitoring granularity.

d. Sensor node battery replacement and/or reprogramming would be highly

impractical. Therefore, a reprogrammable, energy-efficient design becomes a

top priority.

e. Only two sensor types are needed: one for humidity and one for temperature.

We focus on early fire prevention as the main WSN task, instead of fire tracking

[59], even though this and other applications relevant to the deployment setting type

can be readily implemented in Wiseman. Figure 10 illustrates an example of how a

WSN can be deployed in a large forest area partitioned into three sectors (i.e., A–C).
The early forest fire detection application is implemented in two steps. In the first step,

MAs are dispatched from the WSN’s gateway to collect temperature readings at the

sectors being monitored. To simplify the process, cluster-head nodes can be
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FIG. 10. A sample deployment setting for forest fire monitoring using Wiseman agents.
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predesignated to pool temperature readings from individual sensor nodes dispersed in

each sector. If an MA finds that temperature readings of one or more sensor nodes

exceed a preset threshold, then the second step of the monitoring process collects

humidity readings at the corresponding sector. If the MA deems that the humidity

readings are below a preset threshold, then a warning signal is sent back to the

monitoring center.

The previous rationale for this application indicates that MAs only have to

migrate through a predefined path under normal circumstances, as illustrated in

Fig. 10A. However, under adverse environmental circumstances, the secondary

assessment process might be necessary, which can follow one of three possible

approaches as shown in Fig. 10B and C:

1. Approach A: The MA returns to the WSN gateway immediately after the

anomaly is found, which in turn dispatches another MA employed for obtain-

ing humidity readings.

2. Approach B: A single MA is used for monitoring both temperature and

humidity readings, implying that the MA implements both codes that realize

two migration strategies.

3. Approach C: The MA operates as in the first approach; however, the secondary

MA is dispatched from the respective cluster-head that coordinates the moni-

toring processes of the sector that observed the corresponding temperature

anomaly, instead of from the gateway.
3.7.2 Case Study Setup
Our experiments implement four WSN topologies that emulate the deployment

scenario explained in the previous section. Due to the limited number of sensor

devices at hand, we programmed a few nodes to assume the role of cluster-heads,

while a few others were programmed as regular sensor nodes assigned to a fictitious

Sector 2, where the readings are made. In this sample setting, node 2 is the cluster-

head of the forest area monitored by humidity sensor nodes 6–9, as seen in Fig. 11.

The MA dispatched in experiments 1 and 2 migrates only through three cluster-

heads, whereas in experiments 3 and 4, five cluster-heads are used. However,

experiments 1 and 3 have four sensor nodes in the sensor node migration path,

and experiments 2 and 4 employ six sensor nodes as part of Sector 2.

Table I illustrates the MA codes that implement approaches A, B, and C explained

before for the forest monitoring application. The Micaz green LEDs are employed as

visual aids to verify when the corresponding MA travels through the labeled paths

(by means of the code “l$n” that toggles the corresponding LED—l for LED, and
n for green), and the clipboard variable B holds the value 45 as the fictitious
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FIG. 11. WSN topology setup for the evaluation of Wiseman agents in a forest fire application.

Table I

WISEMAN AGENTS THAT IMPLEMENT APPROACHES A–C

Scheme Agent Script

A 1 l$n;M0¼1;R{#M0;I!¼0;M0þ1;l$n;r$t;O[B>40;M1¼I];O[M0<6;M0¼0]}

2 l$d;#1;#2;#3;M0¼6;R{#M0;M0þ1;l$d;I!¼0;O[(I¼¼9;M0¼3);(I¼¼5;

M0¼0);!1]; r$h;O[B<20;M1¼I]}

B 1 a#;R{l$w;I!¼0;O[(I<4;r$t;B>40;M2<1;M2¼1;M0¼I;b#);(I>3;r$h;

B<20;M1¼I;!0);a#;b#]}

C 1 R{a#;l$w;I!¼0;O[(B>40;M0¼I;2^0);!1]}

2 b#;R{l$d;I!¼0;O[(I>5;r$h;B<20;M0¼I;!0);a#;b#]}
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threshold that is referenced to trigger the second stage of the process. A 59-byte-long

MA that implements approach A visits the cluster-head route formed by nodes 1–3,

as mentioned previously. It can be seen in that the variable-target migration method

is used here, which does not rely on virtual links. Thus, mobile variable M0 is

incremented by one (M0þ1) to reach the next destination node in the path made by

nodes with sequential ID numbers (#M0). After hopping to the next node and

toggling the LED, the MA obtains the latest temperature reading (r$t) and compares

it against the maximum allowed temperature threshold (B>40). If the temperature

reading exceeds the threshold, then the ID node is stored in mobile variable M1
(M1¼I), and it is delivered to the WSN gateway when the MA returns. To ensure
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that theMA reaches its final destination, variableM0 is set to 0 just before the end of the
migration itinerary. The second stage of the process initiates next by dispatching a

second 85-byte-long MA, whose itinerary is preset to traverse the sensor node path of

Sector 2. The secondMAenters the corresponding humidity-sensing route, and verifies

at each sensor node that the minimum humidity exceeds the predefined threshold.

Mobile variable M1 stores the ID of any node that returns a humidity reading below

normal, as per the codes r$h;O[B<20;M1¼I]. As mentioned before, approach B
promotes a virtual path scheme, wherebyMAs implementing the labeled-path hopping

method visit the corresponding sensor nodes in the temperature-reading route assigned

to the virtual path a, whereas letter b is assigned to the humidity-sensing route. The

corresponding MA that carries out approach B spans 79 bytes of Wiseman codes.

Finally, a 36-byte-longMA implements approachC byutilizing the local code injection

operator (^) to dispatch a 46-byte-long MA stored at the WSN nodes, which performs

the second stage of the monitoring process after a 2-s delay (2^0).
3.7.3 Case Study Results
We performed experiments to gauge Wiseman’s generic performance, as well as

its efficiency for the implementation of approaches A–C of the early forest fire

detection application. The performance metrics that we consider are task completion

delay and packet overhead. Table II shows the time it takes to run each Wiseman

operation as averaged over 1000 runs in the Micaz sensor nodes, where it is evident

that the hop operation incurs the shortest execution time, and the arithmetic opera-

tions incur the longest.

On the whole, average operation execution time lingers around 800 ms, which is

higher than Agilla because Wiseman parses and tokenizes codes in the form of text

strings. Nonetheless, the overall operation execution delay remains within accept-

able boundaries. Table III shows the delay incurred byWisemanMAs averaged over

the course of 100 runs.

For these results, the MA’s size in bytes is linearly increased to force a growing

number of MAC layer segments for each consecutive experiment. When referenced

in combination with the results presented in Table II, they yield a good approxima-

tion of the overall delay that the WSN operator can expect to see when deploying

applications supported by Wiseman agents. Table IV illustrates the numerically

calculated number of MAC packets containing the segmented MA for each of the

three migration types through 40 hops. The outcome of these experiments further

verifies that the labeled-path migration technique performs better than the other two.

However, the bandwidth cost of implementing explicit hop migration can rival

the one produced by labeled-path hopping if the number of hops that the MA

performs is low.



Table II

OPERATION COMPLETION DELAY FOR WISEMAN OPERATIONS AND OPERATORS

Operation Completion delay (ms)

Local broadcast (@) 543

Hop through label (a#) 603

Find label (a?) 613

No operation 732

Halt (!) 743

Hop to node (#1) 753

Insert local code (^) 823

Execute ($) 843

Numeric comparisons 873

Add, subtract (þ, �) 963

Assignment (¼) 973

Multiply, divide (*, /) 1160

Table III

WISEMAN AGENT MIGRATION DELAY

MAC layer packets Migration delay (s/hop)

1 0.235

2 0.250

3 0.264

4 0.278

5 0.294

Table IV

BANDWIDTH CONSUMPTION (NUMBER OF MAC LAYER PACKETS) OBSERVED FOR

EACH AGENT MIGRATION TYPE

Hops Fixed path Variable target Labeled path

2 2 4 2

10 12 20 10

20 45 40 20

30 103 60 30

40 166 80 40
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Table V

NUMBER OF MAC LAYER PACKETS INCURRED BY THE WISEMAN AGENTS IN EACH APPROACH

Approach Topology 1 Topology 2 Topology 3 Topology 4

A 161

[44(A1)þ117(A2)]

187

[44(A1)þ143(A2)]

209

[66(A1)þ143(A2)]

235

[66(A1)þ169(A2)]

B 135 165 165 195

C 99

[36(A1)þ63(A2)]

117

[36(A1)þ81(A2)]

126

[54(A1)þ72(A2)]

144

[54(A1)þ90(A2)]
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Finally, Table V illustrates the results of our experiments for approaches A–C.We

can see that Topology 1 yields the shortest task duration. In contrast, Topology 4

yields the longest one, being that this parameter is proportional to the itinerary’s path

length. In addition to this, approach A always yields the longest task duration

because two agents are employed to complete the task. However, approach C yields

the shortest task duration, which is directly attributed to employing a single MA that

injects another one locally (instead of dispatching it from the WSN gateway).
3.8 Summary

In this section, we have presented the design, implementation, and evaluation of

the Wiseman system for supporting WSN applications. The design of our proposed

system is based on a much earlier system targeted at supporting active networking in

early local area networks. Several modifications had to be incorporated to make

Wiseman amenable for WSN node deployment that is characterized by possessing

severe hardware and communications bandwidth limitations. Our experiments cor-

roborate that Wiseman can be effectively employed to support WSN applications,

and that the efficiency of the MAs employed depends to a good extent on the type of

migration technique employed. Specifically, we see that the explicit path migration

technique reduces MA design complexity at the expense of higher bandwidth usage

for the case of large WSNs, although good results can be obtained for the case of an

MA hopping through a relatively small number of nodes before returning to the

gateway. One important consideration when coding MAs that implement the

labeled-path migration approach is that if the underlying conditions of the monitored

environment change, then the semantic relationship expressed by the labeled paths

becomes stale. In that case, a separate label maintenance process would need to be

executed, thus incurring additional bandwidth. In this case, the gains introduced by
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the labeled-path hopping approach could be lost, whereas the variable-target hop-

ping scheme might become the most efficient.
4. Embedding Agents in RFID Tags

4.1 Introduction to RFID Technology

RFID has been a crucial enabling technology for a myriad of commercial and

industrial applications, including (but not restricted to): object tracking, inventory

control, asset administration, supply chain management, and even an emerging field

known as E-healthcare. RFID allows quick access to information assigned to an ID

stored in an RFID device, also known as a tag. A RFID tag possesses a radio-

frequency transmitter and an antenna to communicate with a special reader that

retrieves the tag’s ID number and uses it to retrieve the corresponding information

from a database. Then, a handling procedure for the bearer object can be determined.

This process presupposes a centralized scheme that controls the flow of events, and

the actions that need to be taken for every object that has its RFID tag read.

Consequently, multiple issues that are detrimental to the operation of the overall

system and to its overall efficiency also arise. We refer to this approach as the

Identification-centric RFID System, or IRS, whereby RFID tags store a simple

alphanumeric string that identifies the bearer object. Though this approach has

sufficed for a wide range of applications, one major problem is that updating the

database from which any associated data is retrieved is not a straightforward

process. This issue also raises a synchronization problem, in addition to possessing

two significant disadvantages. First, the database entry for the corresponding object

must be created and maintained prior to accessing it to retrieve any associated

action. Second, this approach is not feasible for situations that require rapid proces-

sing of an object or an event, such as in emergency situations. It is also the case that

the information stored in the corresponding database entry might become stale or

even unreachable in case of network/system failures, which results in unwanted

operation delays or interruptions.

In this section, we advance a CRS as an alternative solution to the problems found

in traditional IRS, as previously reported in Chen et al. [60]. CRS employs MAs that

are individually stored on demand in RFID tags in place of a regular alphanumeric

code. These agents can later enact specific service directives as they are interpreted

by the corresponding middleware system when the tag’s contents are read. Because

of recent memory enhancements in existing RFID tags (e.g., such as in the

MB89R118 model by Fujitsu that provides 2 KB of memory [61]), we argue that

the compactness of Wiseman agents makes them a good candidate for implementing
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CRS applications. It is straightforward to see that CRS enables implementing a

much more flexible scheme that promotes local decision making and process

handling in response to specific situations. Additionally, full CRS-based solutions

can be plausibly integrated with other technologies, such as WSNs, the IP backbone,

and cellular networks that form scalable systems for implementing a number of user-

driven applications. We believe that CRS has the potential to introduce the follow-

ing benefits:

a. It enables a scalable and robust system that eliminates the need to access

RFID-related information from a remote database.

b. It decreases system response time by implementing local processes.

c. It alleviates system complexity at the database side.

d. It introduces enhanced resilience to database and network failures.

In this section, we introduce the principles of our proposed MA-based system to

implement an effective CRS. We also provide an overview of traditional RFID

systems, and how they can evolve into CRS solutions. In addition, we provide a

detailed rationale behind CRS based on our proposed middleware design. Finally,

we describe and discuss preliminary results of an experimental testbed for CRS.
4.2 Review of Identification-Centric RFID Systems

As mentioned before, IRS applications are mostly designed to track or locate

objects as they are moved from one place to another. For instance, RFID tags can be

attached to chemical containers being transferred from one warehouse to another to

provide close monitoring of potentially harmful material. However, RFID technol-

ogy has become pervasive in supply chain management applications in which the

IRS approach suffices by enabling real-time tracking. The same is true in other

industrial sectors, such as manufacturing, warehouse storage, shipping and receiv-

ing, and purchase transactions. Figure 12 illustrates the product-tracking procedure
DistributionManufacturing

Product

RFID
reader

Electronic product code (EPC) network

Retail Recycling

FIG. 12. Supply chain process using a classical IRS system.
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through a whole supply chain process. We can see here that an RFID reader retrieves

the data stored in a product carrying an RFID upon leaving a manufacturing plant.

Then, the object’s electronic product code (EPC) information is stored in a database

server as soon as it is delivered to a distribution center or to a retailer. After the

product is purchased and/or consumed, the RFID tag’s information may be stored,

for example, in a recycling center’s database. In this scheme, the most important

components of an IRS are

1. Rule database: This module maintains a list of rules associated to RFID code

entries to which the corresponding actions can be readily mapped.

2. Processing module: This component is in charge of enacting actions/tasks

immediately after retrieving the corresponding information from the rule

database. Immediately following this, the processing module verifies that

any required condition is satisfied.

3. EPC network: This subsystem comprises an object naming service (ONS), an

EPC information service (EPCIS), and an EPC discovery service (EPCDS), all

of which interact to ensure the seamless flow of RFID-related information.

A closer inspection into the operation of the IRS scheme reveals important

shortcomings that need to be addressed:

a. The ID number that RFID tags hold does not provide any additional informa-

tion on what type of service or handling the bearer object requires.

b. The type of service or handling instructions that the bearer object requires

needs to be retrieved from a database, whose contents require manual

updating.

c. Network and database scalability problems appear when the processing system

is unable to handle a growing number of items carrying an RFID tag.

d. Database and/or network malfunctions negatively impact the system’s

performance.

In Section 4.3, we describe in detail the benefits introduced by the system that we

advance to overcome the shortcomings just described for IRS.
4.3 Code-Centric RFID System
4.3.1 System Rationale
The primary goal of an IRS deployment is to help locate goods or objects, as seen

in a typical supply chain scenario. Nonetheless, this approach has severe limitations

when the service requirements of goods/objects change with time and/or location, in

which case a dynamic approach that allows flexible object handling/servicing is
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needed. To address this issue, we advance the CRS, in which an MAS becomes the

centerpiece of the improved RFID system architecture. In it, the object’s handling/

servicing directives are specified by MAs embedded into RFID tags in place of

regular ID numbers. Our proposed CRS approach serves as a catalyst to harmoni-

ously combine the prevalent environment circumstances and user’s requirements.

When the conditions surrounding the bearer object change, so can the MA codes

embedded into the RFID tag as stored by the corresponding device that provides this

context awareness service.
4.3.2 System Architecture
Our proposed CRS is divided in two main parts: the RFID tag, and the code-

processing equipment that reads the tags contents (the MA) and executes the

necessary actions. To achieve this objective, we introduce an extended message

format used for storing information in RFID tags, as illustrated in Fig. 13. In essence,

this change stipulates that enough room needs to exist in the RFID tags’ memory to

store an MA encoded in plain text, in addition to other information embedded into

the RFID’s memory space. Our proposed CRS approach comprises five principal

components: a passive information manager, a middleware subsystem, a codes’

information manager, a context awareness subsystem, and a service response sys-

tem. The passive information manager is employed for retrieving the information

stored in the RFID tag, which can be forwarded to the EPC network to generate a

backup record. The retrieved MA is then sent to the code information manager, and

then onto the middleware subsystem that interprets the MA codes. The context

awareness subsystem provides the necessary environmental parameters and infor-

mation that the middleware subsystem needs to make decisions and execute the

appropriate actions. Finally, the commands that enact these actions are forwarded to

the service response system, which realizes the commanded tasks that the object

requires. The architecture of our proposed CRS is illustrated in Fig. 14.
RFID type code 

A

Data fields in IRS 

Priority type 

B

Data fields in CRS 

ID number Object description Reserved field 

Mobile agent codes

FIG. 13. Extended message format for CRS.
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While all the modules mentioned above are indispensible for its operation, we

note that the middleware subsystem is what gives CRS its distinctive feature. The

middleware subsystem is in charge of interpreting the agent’s commands that are

eventually enacted by the rest of the infrastructure. MAs may receive limited input

to make a decision, which is provided by the context awareness subsystem (e.g., in

the form of geographical position, or as environmental information—humidity,

temperature, etc.). However, other information relating to the overall system’s

internals can also be employed. Similarly, different action types can be enacted by

the corresponding infrastructure devices after processing the MA, such as interact-

ing with a video surveillance system, updating certain information in the tags of

other objects, issuing an alarm signal, etc. Consequently, our proposed system

becomes “code-centric.”
4.3.3 Updating Mobile Codes
We note the importance of providing the CRS with the means to update MAs on

demand, which ultimately makes it possible to provide enhanced quality of service

(QoS). To this end, we propose the implementation of three code updating methods:

passive, active, and hybrid:

a. Passive mode: In this method, the RFID tag has to be updated by a reader

device located somewhere in the deployment setting (e.g., along a conveyor in

an automatic assembly line). In such case, the handling operations on the

product have to be performed one at a time. When the operation associated

to the current code being executed finishes, the tags’ codes are updated in situ.
As more MA operations complete, it is expected that the size of the MA codes

will shrink as the codes that indicate object handling/servicing actions
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gradually deplete. For the case when the object needs multiple processing/

handling steps, the RFID tag would have to be replenished with new codes that

will be later read, interpreted, and enacted by other devices in a different

location (e.g., when the object passes through multiple assembly lines).

It follows that the MA’s size stored in the RFID tag varies during the bearer

object’s handling/servicing process.

b. Active mode: If the bearer is a person, then the MA’s codes possess the

necessary directives that indicate specialized treatment or service for him/

her. In this case, the user employs a portable device equipped with an RFID

reader that seamlessly updates the tag’s codes as instructed by a software

application. Therefore, the users’ interactions with the portable device may

lead to the RFID tag’s update without his/her knowledge.

c. Hybrid mode: This mode of operation combines both passive and active

updates. Therefore, a person might have his/her RFID tag updated by a

portable device through a software application, or an RFID reader might

update the codes after a service has been provided.

For objects and miscellaneous goods, it is expected that the embedded MA will

define the actions that need to be carried out, whether to the bearer, or to the

surrounding environment, as needed.
4.3.4 Design Issues for CRS
In this section, we introduce the necessary requirements for designing efficient

language constructs that can be employed to code an MA for use in CRS. The first

step is to determine all the actions that the CRS is intended to support, whether as a

service or as a handling. A second, but also important consideration is to determine

the memory space that the RFID tags will have. It is easy to see that an efficient

language construct design will have a direct impact on the second consideration.

An inadequate MA description language design will lead to large RFID tag memory

requirements that directly translate into more expensive tags. Therefore, a deploy-

ment that spans thousands or even millions of tags would see its associated costs

increased by a wide margin. However, RFID’s memory capacity and tag type (i.e.,

active or passive) have a direct impact on its physical size. Therefore, a memory cap

might have to be imposed for applications where size restrictions apply, which

would evidently pose a constraint for the engineers designing MA language con-

structs. For the case where RFID tags have more memory, action script constructs

with a fine granularity level can be implemented. Conversely, limited memory

availability requires that the language constructs’ granularity be coarser, as seen in

Fig. 15, which shall be meticulously devised. Moreover, from the perspective of the
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FIG. 15. Language design trade-off impact in RFID memory size.
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middleware’s design, more complex language constructs require greater processing

capabilities and memory space for the interpreter, whereas simpler constructs are

needed for hardware devices with limited capabilities.
4.4 An E-Healthcare Application Based on CRS
4.4.1 System Operation’s Rationale
In this section, we advance an E-healthcare application based on our proposed

CRS, as originally reported in Ref. [62]. In this approach, patients’ health conditions

are monitored at home, and information is collected and stored at a remote database

after being forwarded using a cellular network, a WiFi connection, etc., depending

on where the patient resides. To this end, any health-related anomalies not requiring

immediate attention are immediately logged into a database, as determined by the

patients’ ambulatory monitoring devices. At the same time, these conditions are

encoded and stored in an RFID tag that the patient carries. The advantage of this

scheme is that any critical health information always travels with the patient, which

can be retrieved at any location. For example, a patient with a chronic heart

condition might decide to take a vacation at a remote place, where his/her condition

suddenly worsens. When this happens, the patient’s ambulatory monitoring system

contacts his/her home healthcare provider, which in turn contacts the local health-

care provider where the patient is currently visiting. If necessary, the RFID’s tag

information can be encoded in a format that is employed by the remote healthcare

provider, which may include instructions on the type of treatment that the patient

needs. As a result, a remote healthcare practitioner would not have to establish

neither a verbal communication with the patient’s home doctor nor a database

connection with his/her healthcare provider’s computer to obtain this information.

Moreover, in case of emergency, medics administering care can readily obtain

critical information and the required actions from his RFID tag, which could also

encode actions to have the remote equipment directly contact the patient’s home

doctor. After arriving at a hospital, the local doctor can obtain the patient’s relevant
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health records and prescription drug history. Similarly, the doctor at the remote

location can have his own equipment to update the contents of the RFID tag. This

type of enhanced services would be very hard to achieve employing a classical IRS.

In addition to this, it is straightforward to see that this application enables a number

of enhanced services:

a. A patient facing a health emergency while away from home or a hospital can

still be able to receive adequate care by any medical practitioner that has an

RFID reader to retrieve critical information. For instance, a person walking by

a patient that has collapsed due to an emergency can use his/her cell phone as a

gateway, whereby an embedded RFID reader obtains the required information

and forwards it to the pertinent healthcare provider. It is here where we can see

the benefits of employing an MA that encodes the necessary commands that

instruct the RFID reader what to do with the information it just retrieved, such

as giving indications to an ambulance’s medics of how to deal with the patient.

b. Where feasible, the MA can instruct medical personnel to administer enhanced

healthcare services as covered by the patient’s medical insurance policy. For

instance, the patient might be assigned a private hospital room.

c. The flow of actions that need to be taken according to the situation and/or place

can be dictated by the MA, including how to contact the patient’s immediate

family in case of an emergency, or whether a life/death condition that requires

immediate action can be performed as long as the family has encoded a

preclearance code in the form of a digital signature that can be validated by

the corresponding system.
4.4.2 Infrastructure Architecture
The architecture of the proposed CRS-based E-healthcare system is illustrated in

Fig. 16, which employs existing telecommunications technologies and systems as

detailed next:

a. RFID Tag: As mentioned before, RFID tags can indicate the service level and

specific treatment priorities for the patient. In addition, the patient’s RFID tag

can be programmed to request access to certain areas of a hospital once inside.

For example, after being admitted, RFID readers carefully placed in the

hospital’s gates and corridors can help determine whether a patient is in the

correct place. This would help streamline the administration of the required

care and prevent errors. Consequently, the contents of a patient’s RFID tag can

be dynamically updated depending on the healthcare stage where he/she

currently is. Therefore, a direct database connection is not needed, in contrast

to IRS, given that the RFID tag already encodes an MA that instructs
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FIG. 16. An E-healthcare scheme based on a code-centric RFID system.
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automated gates to grant access in accordance to a previously embedded access

code or password.

b. WBAN: Physiological signals, such as temperature, heart rate, and muscle

tension, provide vital information that can be sensed, collected, and forwarded

by a WBAN to a remote healthcare facility for diagnosing the current health of

a patient. These signals are collected by small sensors adhered to the patient’s

skin as strategically placed throughout his/her body. These sensors create

wireless links to form a wireless body area network (WBAN) by means of

ultra low-power radio technology, such as the one specified by the IEEE

802.15.4 standard [63].

c. Gateway: Another element that is crucial for the effectiveness of the proposed

CRS-based, E-healthcare system is the communications gateway. This device

enables theWBAN to forward collected data to an off-site healthcare provider for

remote monitoring, condition assessment, and diagnosis by qualified medical

personnel. Different types of communications interfaces can be used here:

a cellular phone, a WiFi AP, or a WiMax modem. This implies that the commu-

nications gateway will probably be equipped with two radios: one for commu-

nications with the low-powerWBAN and the other for external communications,

possibly making it one of the most expensive devices that a user has to carry.

d. Database: In contrast to a classical IRS where a database is key to its operation

in a CRS, this element takes on the role of a backup system. As explained

previously, the database keeps medical records of patients and other pertinent

information that needs to be maintained. In addition, the database needs to be

always available for doctors to access directly, as needed. As mentioned

before, the contents or corresponding patient’s entry can be specifically

encoded and stored in patients’ RFID tags.
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4.5 Summary

In this section, we have advanced an innovative concept that we call Code-Centric

RFID System, or CRS. We discussed the potential benefits that our proposed CRS

scheme can introduce in a number of applications and deployment settings. Among

the most important contributions that CRS provides is: enhanced scalability,

distributed information storage and availability, automated processing of goods,

and enhanced access control schemes and service for people. We contend that

these contributions can be readily achieved by means of RFID tags that possess

larger memory to store a combination of carefully encoded information, along with

compact MAs that can be interpreted and processed by the corresponding subsys-

tems to enact specific actions. Whereas these type of RFID tags are already

commercially available, their high cost precludes their widespread use for handling

all kinds of goods. Therefore, the applications where CRS can be conceivably

employed are those concerning high-value objects, or people. We believe that

CRS would be a key enabler of enhanced IT systems currently being employed in

the provision of E-healthcare. As per existing forecasts made for the current aging

population, novel and improved systems need to be incorporated to help improve or

replace altogether aging technologies that will be unable to cope with future

requirements. Our proposed CRS solution employs MAs to provide unmatched

flexibility for enhanced services, as clearly exemplified in our E-healthcare

application.
5. Final Summary and Conclusion

We have provided an account of our latest advancements in MA technology

applied to wireless networks and mobile computing systems. In Section 1, we

introduced the reader to basic concepts and particularities of employing mobile

codes, and we discussed their potential advantages and disadvantages. We explained

that although this technology has the potential to introduce significant bandwidth

and process completion delay savings, the degree to which these features become a

reality depends on several factors, including the type of MAS employed, the

application, and the way in which agents are coded to solve the problem. To this

regard, the scheme applied can become inefficient if the number and/or size of MAs

deployed to solve a particular problem exceeds the one produced by employing

message passing or any other communications mechanism for that matter. There-

fore, a trade-off analysis might be necessary to ensure that the MA approach has a

good chance of yielding better performance than the current solution. We also
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provided a brief historical review of this technology and stressed the importance of

revisiting early MAS developed for computer networks that possessed severe band-

width and power processing constraints, as seen in contemporary WSNs.

In Section 2, we discussed important aspects for architecting MAS from the

perspective of WSNs. In particular, we discussed the advantages of employing

MAs for image retrieval and TT. Both of these WSN applications are prime

examples that show how MAs can be deployed in an attempt to achieve significant

bandwidth savings (in the case of image retrieval), or flexibility in the WSN

operations (in the case of TT applications). In the first case, one or more MAs can

be dispatched from a WSN gateway to examine image data at the location where it

was captured, instead of sending raw images for remote processing. For the second

case, the MA approach enables WSN operators to deploy distinct types of tracking

algorithms on demand to adapt to possible changes in the type or motion character-

istics of the object being tracked, thereby providing a much more flexible solution

than message passing. We also noted that the WSN might have to be virtually

partitioned in a hierarchical fashion to be serviced by multiple MAs when a

classical, flat approach results inconvenient. By the same token, we discussed the

advantages and disadvantages of employing static, dynamic, and hybrid MA migra-

tion itinerary schemes. Though static MA itineraries are more straightforward to

implement, they might be insufficient to cope with rapidly changing circumstances

as observed by WSN devices, thus raising the need to support dynamic itinerary

changes. Alternatively, a hybrid approach might be beneficial, at the expense of

increased complexity in the MAS’ architecture. Multiple MA cooperation was also

discussed, which is an essential trait that MAS designers have to take into account to

ensure that agents can operate effectively and efficiently.

In Section 3, we introduced our own MAS for enabling programmable tasking of

WSNs. Wiseman’s architecture was discussed, along with its instruction set and

unique language constructs and code processing flow features. The agent migration

methodologies that Wiseman supports were explained in detail, along with examples

and design premises for employing one scheme or another. Wiseman’s ability to

support distinct MA migration techniques is one of its most important features, as it

enables static, dynamic, and hybrid schemes. We implemented Wiseman as a proof-

of-concept prototype for commercially available WSN devices that possess severe

hardware limitations. To this end, we presented both generic performance evalua-

tions and case study results for an early forest fire detection application. In it, we

provided examples to show how this WSN application can be effectively imple-

mented through MA technology.

Finally, in Section 4, we advanced a scheme whereby MAs are embedded in RFID

Tags to streamline a number of processes and operations. First, we provided a

review of IRS that handle simple alphanumeric numbers employed for referencing
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database entries that store specific object handling instructions, if any. Then, we

introduced what we call the Code-centric RFID System, or CRS. Here, agents are

embedded in RFID tags possessing enhanced memory capabilities. This approach

enables systems to apply object handling instructions or service directives for people

carrying the tag. These actions are obtained directly from the agent, instead of a

database. In addition, agents can be updated on demand, and in situ without the need
to explicitly interact with any off-site system. Agent mobility occurs in two forms.

First, actual physical mobility is inherited from the tag’s movement with the carrier

object. Second, an agent retrieved from a RFID tag can be injected into a network

and can be forwarded to distinct system blocks to enact certain actions as specified

by its code. As an example of this, we elaborated on an E-Healthcare application that

employs our proposed CRS for providing enhanced services to ambulatory patients

as they travel. In the coming years, we foresee a renewed interest in MA technology

to deal with intricacies of resource-constrained systems where ambient intelligence

capabilities are a key requirement. To this end, personalization and customization

needs provide the clearest motivation for employing MAs that operate based on the

prevailing circumstances, and/or the parameters of the deployment setting.
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