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Abstract—Compared to conventional wireless sensor networks
(WSNs) that are operated based on the client-server computing
model, mobile agent (MA) systems provide new capabilities
for energy-efficient data dissemination by flexibly planning its
itinerary for facilitating agent based data collection and aggre-
gation. It has been known that finding the optimal itinerary is
NP-hard and is still an open area of research. In this paper,
we consider the impact of both data aggregation and energy-
efficiency in sensor networks itinerary selection, We propose an
itinerary energy minimum for first-source-selection(IEMF) algo-
rithm, as well as the itinerary energy minimum algorithm(IEMA),
the iterative version of IEMF. Our simulation experiments show
that IEMF provides higher energy efficiency and lower delay
compared to existing solutions, and IEMA outperforms IEMF
with some moderate increase in computation complexity.

I. I NTRODUCTION

The application-specific nature of tasking a wireless sensor
network (WSN) requires that sensor nodes have various ca-
pabilities for multiple applications. It would be impractical
to store in the local memory of embedded sensorsall the
programs needed to run every possible application, due to
the tight memory constraints. Amobile agent(MA) is a
special kind of software that migrates among network nodes
to carry out task(s) autonomously and intelligently in response
to changing conditions in the network environment, in order to
achieve the objectives of the agent dispatcher. The use of MAs
to dynamically deploy new applications in WSNs, has been
proven to be an effective method to address this challenge.

Recently there has been a growing interest on the design,
development, and deployment of MA systems for high-level
inference and surveillance in WSNs [1]–[8]. In [1], the agent
design in WSNs is decomposed into four components, i.e.,
architecture, itinerary planning, middleware system design
and agent cooperation. Among the four components, itinerary
planning determines the order of source nodes to be visited
during agent migration, which has a significant impact on
energy performance of the MA system. It has been shown that
finding an optimal itinerary is NP-hard. Therefore, heuristic al-
gorithms are generally used to compute competitive itineraries
with a sub-optimal performance.

In [2], two simple heuristics are proposed: (i) alocal
closest first(LCF) scheme that searches for the next node with
the shortest distance to the current node, and (ii) aglobal
closest first(GCF) scheme that searches for the next node
closest to the dispatcher. These two schemes only consider

the spatial distances between sensor nodes and thus, may not
be energy efficient in many cases. A genetic algorithm (GA)
[3] is proposed to exploit the global information of sensor
detection signal levels and link power consumption. In GA,
every node reports its status to the sink node, which may incur
considerable control overhead. It is neither scalable to network
size nor a lightweight solution that is suitable for sensor
nodes constrained in energy supply. The original LCF, GCF
[2] and GA schemes [3] are all based on the following two
assumptions: (i) a cluster-based network architecture, where
all nodes (e.g., sink and source nodes) can communicate with
each other in one hop; (ii) high redundancy among the sensory
data, which can be fused into a single data packet with a fixed
size. This implies that aperfect aggregation modelis used.
These assumptions limit the scope of the existing schemes.

In this paper, we focus on designing lightweight, energy effi-
cient itinerary planning algorithms without making the above
assumptions. We first propose anitinerary energy minimum
selection for first-source-selection(IEMF) algorithm, which
extends LCF by choosing the first source node to visit based
on estimated communication cost. In IEMF, the impact of both
data aggregation and energy efficiency are taken into account
to obtain an energy-efficient itinerary. The scheme is quite
general, in the sense that it adopts a universal aggregation
model, which facilitates the support for a wide range of
applications. In addition, IEMF does not rely on any specific
network architecture and is suitable for multi-hop WSNs. We
also observe that IEMF achieves energy efficient itineraries
without incurring additional control overhead, as compared
with existing lightweight approaches such as LCF and GCF.

Furthermore, we propose theitinerary energy minimum al-
gorithm(IEMA), which is an iterative version of IEMF. During
each iteration, IEMA selects an optimal source node as the
next source to visit among the remaining set of source nodes.
We show that with more iterations, the suboptimal itinerary
can be progressively improved, while the largest reduction
in average delay and energy consumption are achieves after
the first few iterations. We can thus trade off between energy
efficiency and computational complexity based on specific
application requirements.

The remainder of the paper is organized as follows. The
problem is stated in Section II. We present IEMF and IEMA
in Section III. Our simulation studies are reported in Section
IV. Section V concludes the paper.
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II. PROBLEM STATEMENT

A. Aggregation Model

Consider an MA dispatched by the sink node to collect
data fromn source nodes. LetSproc be the size of the MA
processing code,Shead the size of agent packet header, and
S0

ma the agent size when it is first dispatched by the sink
node. Then we haveS0

ma = Sproc + Shead. Let r ∈ [0, 1)
be thereduction ratio in sensory data by agent assisted local
processing andSdata be the size of raw data at a source
node. The reduced data payload collected by the agent at each
source, denoted asSrd, is Srd = (1− r) · Sdata. Let Sk

ma be
the agent size when it leaves thekth source (1 ≤ k ≤ n).
Since there is no data aggregation at the first source, we have
S1

ma = S0
ma + Srd.

Since the agent visits the second source node, it begins
to perform aggregation to reduce the redundancy between
the data collected in the source and the data it carries. Let
ρ ∈ [0, 1] denote theaggregation ratio, a measure of the
compression performance. The MA size after it leaves the
second source node isS2

ma = S0
ma +Srd +(1−ρ)Srd, and so

forth. For the sake of simplicity, we assume thatr, ρ andSdata

are identical at each source.1 After visiting the kth source
node, we have

Sk
ma = Sk−1

ma + (1− ρ)Srd

= S0
ma + [1 + (k − 1)(1− ρ)]Srd. (1)

After visiting all the n source nodes, the MA has a size
Sn

ma in the range
[
S0

ma + Srd, S
0
ma + nSrd

]
. The lower bound

S0
ma + Srd corresponds to a perfect aggregation model where

multiple packets are compressed in to a single one, while
the upper boundS0

ma + nSrd corresponds to the case of no
aggregation performed at the MA.

B. A Generic Itinerary Planning Algorithm

We state our assumption and define a generic itinerary
planning algorithm in this section. Specifically, we assume that
the set of source nodes to visit is predetermined. In addition,
the location information of the source nodes is also available
at the sink node [2], [3]. Under these assumptions, we actually
consider static itinerary planning [1], where an energy efficient
itinerary is chosen based on the location information of the
source nodes. Note that these are the general assumptions
made in all of itinerary planning algorithms discussed in this
paper.

Let n represents the number of source nodes andV (n) =
{Srci|Srci = the ith source,i ∈ [1, 2, .., n]} denote the set
of source nodes to be visited by an MA. Also lets and t
be the starting and ending point of the agent, respectively.
we define a generic static itinerary planning algorithm as a
function F [s, V (n), t]. Since the ending point is always the
sink node, we abbreviate the function asF [s, V (n)]. Although
usually s is set to the sink node, it can also be set to one

1The case of heterogeneousri, ρi andSdata,i at each source nodei can
be easily handled in a similar fashion.

FirstSrc
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FirstSrc
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Itinerary Segment Cost 
= Distance X AgentSize

Source Node
Sink Node

Fig. 1. Choosing different first source nodes results in different total costs.

of the source nodes when defining an iterative algorithm (see
Section III-D). Specifically, we define a generic static itinerary
planning algorithm with the following components:
• Next-source-selection Algorithm: denoted asf [s, V (n)].

Given a source listV (n) and a starting points, it selects
the best source node to visit next, denoted asSrcnext,
among then candidates source nodes.

• Static Itinerary Planning Algorithm: denoted as
F [s, V (n)]. Given V (n), s, and a next-source-
selection functionf [s, V (n)], it computes an itinerary
Vip(n) = {Src1

ip,Src2
ip,· · ·,Srcn

ip, based on a specific
itinerary planning criterion.

Consider LCF for example [2], wherelcf [s, V (n)] is
the LCF next-source-selection function and the output of
lcf [s, V (n)] is the best next source nodeSrclcf

next. Further-
more,LCF [s = t, V (n)] is the LCF function which returns
the entire itinerary, denoted asV lcf

ip (n).

III. T HE ENERGY EFFICIENT ITINERARY PLANNING

ALGORITHMS

A. Motivation

The simple example shown in Fig. 1 illustrates the motiva-
tion for IEMF. There are three nodes in the chain of the WSN,
the sink and two source nodes. Based on LCF, the node in
the middle will be visited first. Assuming the distance is one
between two adjacent nodes. Let the original agent size be 1,
and assume the agent size is increased by 1 after visiting each
of the sources. We can calculated theitinerary segment cost
by multiplying theitinerary segment distancewith thecurrent
agent size. The resulting total cost of LCF is 9. If the agent
visits the other source node first, the total cost is decreased
to 7. Thus LCF performance can be improved by carefully
choosing the first source node in the itinerary.

B. Estimated Communication Cost of a Candidate Itinerary

We first show how to estimate the communication cost of
a given itinerary{t → Vip(n) → t} = {t,{Src1

ip, Src2
ip,

· · ·, Srcn
ip}, t}, which means an agent starts from sinkt and

returns back tot after migration. Generally, the communication
energy consumption for receiving a data packet consists of
the receiving energy, the control energy, and the transmitting
energy. Letectrl be the energy spent on control messages
exchanged for a successful data transmission. Letmtx and
mrx be the energy consumption for receiving and transmitting
a data bit, respectively. Without loss of generality, we assume
that mtx, mrx and ectrl are identical at each node without
power control. LetSrx andStx be the size of a received packet
and that of a transmitted packet. The communication energy
consumption at a specific node can be denoted by

e(Srx, Stx) = mrx · Srx + mtx · Stx + ectrl. (2)
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Multiple hops may exist between two adjacent source nodes,
Srck−1

ip andSrck
ip. Let d(k−1, k) denote the distance between

the two source nodes. In a dense WSN, we can estimate the
hop count betweenSrck−1

ip andSrck
ip asHk

k−1 = dd(k−1,k)
R e,

whereR represents the maximum transmission range. When
the agent traverses intermediate sensor nodes, its size remains
the same; its size may be increased after visiting each of the
source nodes. LetEk

k−1(S
k−1
ma ) be the communication energy

consumed when the MA roams fromSrck−1
ip to Srck

ip with
sizeSk−1

ma . We estimate the communication energy cost as:

Ek
k−1(S

k−1
ma ) = mp · Sdata + e(0, Sk−1

ma )

+ Hk
k−1 · e(Sk−1

ma , Sk−1
ma ) + e(Sk−1

ma , 0), (3)

where mp · Sk−1
ma is the data processing energy atSrck−1

ip ;
e(0, Sk−1

ma ) is the energy forSrck−1
ip to transmit the agent;

Hk
k−1 · e(Sk−1

ma , Sk−1
ma ) is the energy consumption of interme-

diate sensor nodes betweenSrck−1
ip andSrck

ip; ande(Sk−1
ma , 0)

is the energy consumption forSrck
ip to receive the agent.

We divide the whole itinerary into three phases.
1) Code-conveying phase: the phase when the processing

code is conveyed to the target region, during which the
MA migrates from the sink to the first source node
Src1

ip. The communication energy consumption in this
phase is denoted byEconv, i.e., Econv = H(t, Src1

ip) ·
e(S0

ma, S0
ma).

2) Roaming phase: starting from the time when MA leaves
the first source nodeSrc1

ip to the time when it visits
the last source nodeSrcn

ip. The communication energy
consumption in this phase is denoted byEroam, as
Eroam =

∑n
k=2 ESrck−1

ip
→Srck

ip
(Sk−1

ma ).
3) Returning phase: starting from the time when MA

finishes visiting all the source nodes to the time when
it returns to the sink. The communication energy con-
sumption in this phase is denoted byEback, i.e.,Eback =
mp·Sdata+e(0, Sn

ma)+H(Srcn
ip, t)·e(Sn

ma, Sn
ma), where

mp ·Sdata is the data processing energy at the last source
nodeSrcn

ip; e(0, Sn
ma) is the energy forSrcn

ip to transmit
the agent; andH(Srcn

ip, t) · e(Sn
ma, Sn

ma) is the energy
consumption of intermediate sensor nodes between the
last source node and the sink node.

Finally, the estimated communication energy of a specific
itinerary{t → Vip(n) → t} is Eitinerary = Econv +Eroam +
Eback. We further define an itineraryI[s, Vip(n)] as a function
of starting points and the sorted source sequenceVip(n). It
starts froms, travels to each source node inVip(n) one after
the other, and ends at the sink node. The communication cost
of the itinerary is denoted byEI[s,Vip(n)]. The ending point is
always the sink node, whiles can be set to one of the source
nodes for computing the cost of a segment of the itinerary.

C. The IEMF Algorithm

Among then source nodes inV (n), different algorithms
select various source node asSrc1

ip. For example, LCF and
GCF select the one which is the closest to the sink asSrc1

ip [2],
while MADD selects the farthest source node asSrc1

ip [4].

While these prior work can be categorized as pure distance-
based selection, IEMF considers both aggregation ratio and
energy efficiency to select the source node asSrc1

ip which
yields the minimum itinerary cost.

Specifically, IEMF algorithm first select an arbitrary source
node Srci as the tentativeSrc1

ip. The remaining source set
is denoted asV i(n − 1). Next, Srci is set as the start point
and the LCF criterion is used to determine the itinerary for
the n − 1 source nodes inV i(n − 1). Executing function
LCF [Srci, V

i(n−1)], we can get the source visiting sequence
V lcf

ip (n− 1). Then, the entire itinerary sequence starting from
the sink can be obtained:{t → Srci → V lcf

ip (n − 1) → t}.
The estimated cost of this itinerary isEi

itinerary = E[t,V i
ip

(n)],

whereV i
ip(n) = {Srci, V

i(n− 1)}.
Choosing each source inV (n) as tentativeSrc1

ip in a round
robin fashion, we can getn different candidate itineraries and
their corresponding itinerary costs. Among then candidates,
IEMF selects the one that has the minimum itinerary cost.

D. The IEMA Algorithm

IEMF selects the first sourceSrc1
ip as the one whose cor-

responding itinerary yields the smallest communication cost
among then candidate itineraries. OnceSrc1

ip is determined,
the corresponding itinerary is actually determined using the
LCF criterion [2]. In this section, we propose an iterative ver-
sion of IEMF, termed theitinerary energy minimum algorithm
(IEMA). In addition to optimizeSrc1

ip, IEMA also optimizes
the remaining source nodes along the entire itinerary.

Let κ denote the number of iterations in IEMA. Since each
iteration optimizes one source-selection, we haveκ ∈ [1, n].
We denote IEMA(κ) as IEMA with κ iterations. Specifically,
LCF and IEMF are the two special cases of IEMA: LCF is
the 0 iterative version of IEMA, i.e., IEMA(0), and IEMF is
the 1 iteration version of IEMA, i.e., IEMA(1).

Given a specificκ, IEMA(κ) only optimizes thefirst κ
source nodes using the basic IEMF method. The remaining
n−κ source node will be simply sorted through LCF method.
Clearly κ provides a convenient trade-off between energy
savings and computational complexity.

IV. PERFORMANCEEVALUATION

A. Simulation Setting

We implement the proposed algorithms as well as the
three existing algorithms (LCF, GCF and GA) using OPNET
Modeler, and perform extensive simulations. We choose a
network where nodes are uniformly deployed within a 1000m
× 500m field. To verify the scaling property of DCF, we select
a large-scale network size with 800 nodes. We let the sink node
be located at the right side of the field and multiple source
nodes be randomly distributed in the network.

The sensor application module consists of a constant-bit-
rate source, which generates a sensed data report every 1 s
(1024 bits each). As in [10], we use IEEE 802.11 DCF as
the underlying MAC, and the radio transmission range (R)
is set to 60 m. The data rate of the wireless channel is 1
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TABLE I
SIMULATION PARAMETERS

Raw Data Reduction Ratio (r) 0.5
Aggregation Ratio (ρ) 0.5
MA Accessing Delay (τ ) 10 ms
Data Processing Rate (Vp) 50 Mbps
Size of Sensed (Raw) Data (Sdata) Default: 2048 bits
Size of Processing Code (Sproc) 1024 bits
The Number of Source Node (N ) Default: 9

Mb/s. All messages are 64 bits in length. For consistency, we
use the same energy consumption model as in [10], [11]. The
initial energy of each node is 5 Joules. The transmit, receive
and idle power consumptions are 0.66 W, 0.395 W, and 0.035
W, respectively. We count all types of energy consumptions
in the simulations, including transmission, receiving, idling,
overhearing, collisions and other unsuccessful transmissions,
MAC layer headers, retransmissions, and RTS/CTS/ACKs.

We consider the following two performance metrics: (i)
Average Report Delay: average delay from the time when MA
is dispatched by the sink to the time when the agent returns
to the sink. (ii) Average Communication Energy: the total
communication energy consumption, including transmitting,
receiving, retransmissions, overhearing and collision, over the
total number of distinct reports received at the sink.

In all the figures presented in this section, each data point is
the average of 45 simulation runs with different random seeds.
Under each random seed, all the source nodes are randomly
relocated. In all the figures, we plot the 95% confidence
interval for each data point.

B. Simulation Results

We first examine the impact of the number of iterationsκ
on the IEMA(κ) performance. We set the number of source
nodesn to 10, 20, 30 and 40, and obtain a set of results for
each case. For a givenn value, we randomly choose the set of
source nodes in each simulation with a different random seed.

In Fig. 2, we plot the average end-to-end delay for different
iteration numberκ, while in Fig. 2(b), we plot the average
communication cost for differentκ values. As expected, the
number of source nodesn has a big impact on the delay and
energy performance; both delay and energy consumption are
much larger for a largern value. This is because a largen
means more source nodes to visit. The MA size will be larger
and more transmissions will be made. Actuallyn is a good
indicator of the MA related traffic load. From the descriptions
of the algorithms, IEMA(0) is actually equivalent to LCF, and
IEMA(1) is equivalent to IEMF, as indicated in the figures.

We also find that all the curves are monotonically decreasing
with κ. However the largest reduction in both delay and energy
consumption are achieved in the first few iterations, while the
reductions in delay and energy become smaller and smaller
as κ gets large. Therefore, the simple algorithm IEMF can
achieve pretty good performance in many cases. Generally,
we can determine a suitableκ for given application QoS
requirements; there is no need to haven iterations in many
cases. In contrast, we find the GA algorithm [3] achieves
visible improvement only after about 100 iterations. Such

SrcSrcSrcSrc

Av
era

ge
 En

d-t
o-e

nd
 R

ep
ort

 D
ela

y (
s)

Iterative Number
(a) Average end-to-end delay

Av
era

ge
 C

om
m.

 En
erg

y (
J/R

ep
ort

)

Iterative Number

SrcSrcSrc Src
(b) Average communication energy

Fig. 2. The impact ofκ on: (a) average end-to-end delay; (b) average
communication energy.

fast convergence property of the proposed schemes are highly
desirable.

We next examine the impact of several design parameters on
the performance of the proposed algorithms, including sensor
data sizeSdata, data aggregation ratioρ, and the number of
source nodesn. We also compare the proposed schemes with
several representative schemes, including LCF [2], GCF [2],
and MADD [4].

Figs. 3(a) and 3(b) are obtained with 15 source nodes, and
by increasing the sensor data sizeSdata from 512 bits to
4096 bits. From the figures, it can be seen that IEMF and
IEMA (with 15 iterations) achieve smaller delay and lower
energy consumption than LCF, GCF, and MADD in most of
the cases. More interestingly, the gap between the curves, i.e.,
the performance improvements achieved by IEMF and IEMA
increases asSdata gets larger. The linear relationship between
energy consumption andSdata is largely due to the energy
consumption model adopted in the algorithm design= (see
Section III-B), while delay is linear withSdata because the
WSNs are generally lightly loaded.

In Figs. 3(c) and 3(d), we present the impact of the aggre-
gation ratioρ on the energy and delay performance, whereρ
is increased from 0.1 to 0.9, representing different redundancy
and compression schemes found in various applications. It can
be seen that both IEMF and IEMA achieve smaller delays
and energy consumption than LCF, GCF, and MADD in most
of the cases. We also find that the IEMF curves are very
close to the IEMA curves (i.e., the first iteration achieves the
largest performance improvement). Whenρ is increased close
to 1, i.e., a nearly perfect aggregation scheme is used, the
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Fig. 3. (a) & (b): the impact of sensed data sizeSdata. (c) & (d): the impact of Aggregation ratioρ.

agent size is only increased slightly when it migrates along its
itinerary. The room for optimization becomes smaller, and thus
the improvements of IEMA are relatively smaller compared to
the case of smallerρ’s.

We also observe considerable reductions in hop-count of the
itinerary achieved by the proposed algorithms over the three
existing algorithms. We omit the results due to lack of space.
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V. CONCLUSIONS

In this paper, we addressed the problem of optimized
itinerary planning for MAs in dense WSNs. Based on a general
data aggregation model, as well as relaxed assumptions, we
presented IEMF, an extension of LCF that achieves improved
energy performance by choosing the first source node to visit
according to estimate communication costs. We also presented
IEMA(κ), an iterative version of IEMF, where the selection
of the firstκ source nodes are optimized based on estimated
energy costs. We showed that the proposed schemes achieve
considerable improvements in both energy savings and delay

over existing schemes, while IEMA(κ) provides a trade-off
between energy cost and computational complexity. We will
consider the more challenging case of itinerary planning for
multiple MAs in our future work.
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