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Abstract We use Modified Discrete Cosine Transform (MDCT) to analyze and synthesize
spatial parameters. MDCT in itself lacks phase information and energy conservation, which
are needed by spatial parameters representation. Completing MDCTwith Modified Discrete
Sine Transform (MDST) into “MDCT-j*MDST” overcomes this and enables the
representation in a form similar to that of DFT. And due to overlap-add in time domain,
a MDST spectrum can be built perfectly from MDCT spectra of neighboring frames through
matrix-vector multiplication. The matrix is heavily diagonal and keeping only a small
number of its sub-diagonals is sufficient for approximation. When using MDCT based core
coder in spatial audio coding, like Advanced Audio Coding (AAC), we need no separate
transforming for spatial processing, cutting down significantly the computational
complexity. Subjective listening tests also show that MDCT domain spatial processing
has no quality impairment.
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1 Introduction

Stereo and multichannel audio coding based on spatial parameters leads to sharp reduction
in bitrate, this coding scheme, called Spatial Audio Coding (SAC), first emerged in
Binaural Cue Coding (BCC) [4–6, 19, 21–25], then was enhanced and specialized in
Parametric Stereo (PS) [2, 13, 28, 51, 52] and MPEG Surround (MPS) [10, 12, 14, 15, 17,
29–31, 33, 46, 49, 50], both of which have been standardized in MPEG-4 recently. In case
of PS, almost half of the bitrate is saved—a little overhead of the spatial parameters added
to a mono audio versus “left + right” as in MPEG-1 Layer III (MP3) and MPEG-2
Advanced Audio Coding (AAC) [9, 32]—with little quality impairment [13]. And MPEG
Surround has only more startling bitrate saving for multichannel audios [12, 29, 30].

The workhorse of SAC is analysis and synthesis of the spatial parameters in stereo and
multichannel audio signals, including Interchannel Level Difference (ILD), Interchannel
Time Difference (ITD), and Interchannel Coherence (IC) [7, 27, 53]. Recording an audio
signal with more than one channel is in fact discrete spatial domain sampling, which
provides sound source localization and size cues, concreting to the above spatial
parameters. Binaural hearing studies also find that we have the physiological facilities
sensing the parameters [11, 35, 43, 45], alongside sensing amplitude and frequency. Instead
of individual channels, we can represent the signal as a downmixed channel for all the time-
frequency information and a sequence of the parameters for the spatial information. And the
latter is in much lower quantity. It is shown that 8 kbps is sufficient for perceptually
transparent coding of stereo spatial parameters [13], but not until above 64 kbps for an
individual channel [8]. This turns out to be a more economic way of audio coding.

Location and size are well defined only for an individual sound source during a short time
period, so are the ILD, ITD, and IC. Separating sound sources is a very hard problem, it is
circumvented by applying short-time time-to-frequency (T/F) transform and taking signal
components within each time-frequency zone as a virtual source. DFT and Quadrature Mirror
Filterbank (QMF) [13, 52] are two most usual T/F tools for this purpose. PS and MPS achieve
good results using them [12, 13, 30]. But both the transforms introduce significant
computational load [52] and algorithmic delay [2]. Figure 1 shows the normal practice of
SAC: transforming all channels, extracting the spatial parameters, then downmixing to one
core channel and transforming it back to time. We can see Fig. 1 that both forward band
backward transforms must be performed and buffers are needed for these block operations.

However, if the core encoding uses directly the downmixed T/F spectra, no F/T and
accompanied buffering are needed. Both PS and MPS choose AAC as their core encoder,
working in Modified Discrete Cosine Transform (MDCT) [37–39, 42, 44, 47, 48] domain,
for its quality and establishment. Practically it is impossible to force AAC to use other
transforms. Instead we may force spatial analysis and synthesis to use MDCT. But MDCT
is a real transform. Phase information is not as explicit as in DFT or QMF—ITD cannot be
readily evaluated; energy is not conserved—ILD cannot be readily evaluated too.
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Fig. 1 SAC encoding structure, stereo case
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Phase and energy conservation will come back if we combineMDCTwithModified Discrete
Sine Transform (MDST). They form aModified Discrete Fourier Transform (MDFT) [26, 36] in
the way of “MDCT-j*MDST”, which is also named Modulated Complex Lapped Transform
(MCLT) [40, 41]. But it will be more pleasing if we can avoid explicit MDST computation.
MDCT does provide this possibility. Both MDCT and MDST are invertible. Therefore, either
can be deduced from the other, by transforming back to time and applying the other transform.
So finding MDST from MDCT is theoretically viable, but practically viable only if it involves
less computation than inverse MDCT (IMDCT) with forward MDST.

In this paper, we first derive the spatial parameters in MDFT domain in Section 2. Then we
develop a low complexity approximation of MDST from MDCT in Section 3. Section 4
discusses how to apply MDCT domain spatial analysis and synthesis in SAC. Section 5 gives
testing results of a stereo coder using the proposed method. We conclude the paper in Section 6.

2 MDFT domain representation

2.1 Time domain spatial parameters

A sound wave travels from source to microphones or ears through different paths. We can
model it as a linear time-invariant process with sound source signal S(t), path impulse
response hl(t) and hr(t), interference signals nl(t) and nr(t) which are noises and/or other
sound source signals, and received signals xl(t) and xr(t) (Fig. 2), or

xlðtÞ ¼ SðtÞ*hlðtÞ þ nlðtÞ
xrðtÞ ¼ SðtÞ*hrðtÞ þ nrðtÞ
�

; ð1Þ

where “*” indicates convolution. In spatial hearing, hl(t) and hr(t) are called Head Related
Impulse Response (HRIR) [3], relying on the source location. Normally HRIR is an
irregular curve with a time span less than 2 ms. But what is more relevant to sound source
localization is their difference, Head Related Difference Impulse Response (HRDIR)
hΔðtÞ ¼ hrðtÞ � h�1

l ðtÞ, since we cannot know S(t) directly. HRDIR is mainly a result of
relative level and time differences, or ILD and ITD. Ignoring the interference signals, they
can be represented through the observed signals xl(t) and xr(t) as

ILD ¼ 10 log10
R
x2l tð Þdt=R x2r tð Þdt� �

ITD ¼ argmax
t

R
xl tð Þxr t þ tð Þdt� � :

8<
: ð2:aÞ
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Fig. 2 Sound waves traveling as filtering
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Then ILD is the energy ratio, and ITD is the time shift of the maximum inner product.
Interference signals de-correlate the observed signals. Then IC takes the normalized
correlation to measure the disruption of the noises,

IC ¼ max
t

R
xlðtÞxr t þ tð ÞdtR

x2l ðtÞdt
� �1=2 R

x2r ðtÞdt
� �1=2

( )
ð2:bÞ

For discrete time signals, we need only substitute the integral with summing.

2.2 Frequency domain representation

For energy conserving complex transforms such as DFT, ILD is readily represented as
spectral energy ratio, ITD the group delay, and IC the real part of normalized spectral
correlation. But MDCT in itself lacks those advantages. Let x(n), n ¼ 0; 1; . . . ; 2N � 1 be a
2N-point time signal. Its MDCT spectrum is

X ðkÞ ¼ x; ckh i ¼
X2N�1

n¼0

xðnÞ cos p
N

nþ 1

2
þ N

2

� �
k þ 1

2

� �� 	
; ð3:aÞ

where X(k) is the kth MDCT spectral line, k ¼ 0; 1; . . . ;N � 1, and ck(n) the kth MDCT
basis vector. Note (3.a) is a mapping of 2N-real time points to N-real MDCT lines. This is
the root of the trouble—energy cannot be conserved and no phase information is available.
Its conjugate transform, MDST, provides just what MDCT lacks. MDST is defined as

Y ðkÞ ¼ x; skh i ¼
X2N�1

n¼0

xðnÞ sin p
N

nþ 1

2
þ N

2

� �
k þ 1

2

� �� 	
; ð3:bÞ

in which Y(k) is kth MDST spectral line, and sk(n) the kth MDST basis vector. Taking
MDCT as real part and MDST as imaginary part, we have MDFT as

ZðkÞ ¼ X ðkÞ � jY ðkÞ ¼
X2N�1

n¼0

xðnÞe�j pN nþ1
2þN

2ð Þ kþ1
2ð Þ: ð3:cÞ

This is also Shifted Discrete Fourier Transform (SDFT) [54]—conserving energy except
for a constant scaling (Appendix A), and converting time shift d into phase shift
�pd k þ 1=2ð Þ=N (Appendix B). Then in MDFT domain, the equivalent of (2.a) is

ILD ¼ 10 log10

P
ZlðkÞk k2P
ZrðkÞk k2

ITD ¼ d

dk
arg ZlðkÞZr*ðkÞð Þf g ;

8>><
>>: ð4:aÞ

where Zl(k) and Zr(k) are MDFT spectra for the received time signals xl(n) and xr(n), the
right side of the ITD equation means group delay for the interested MDFT spectrum range
or the slope of the regression line. The equivalent of (2.b) is

IC ¼
P

ZlðkÞZ�
r ðkÞ



 


P

ZlðkÞk k2
� �1=2 P

ZrðkÞk k2
� �1=2 : ð4:bÞ
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In practice, summation in (4.a) and (4.b) is over a subband of a perceptually partitioned
band table [13, 25]. And due to the duplex theory, ITD below 1.5 kHz is replaced by the
more sensitive average phase difference [25]. For robust estimation, ITD is even replaced
by Interchannel Phase Difference (IPD) for all subbands [13].

2.3 Representation in windowed transform

Windowing is a usual procedure for MDCT in audio coding. It scales time signals by a
window function. The most often used one is the sine window [37] wsðnÞ ¼
sin p nþ 0:5ð Þ= 2Nð Þ½ �; n ¼ 0; 1; . . . ; 2N � 1 (Fig. 3). To have similar spatial representation
as (4.a) and (4.b), windowed MDFT must preserve DFT-like temporal-spectral correspon-
dence—energy conserving and time shift becomes linear phase shift. Intuitively, MDST
should have the same window function. But this will ruin the correspondence.

We shall see that MDST with the cosine function wcðnÞ ¼ cos p nþ 0:5ð Þ= 2Nð Þ½ �; n ¼
0; 1; . . . ; 2N � 1 (Fig. 3) does satisfy those requirements. Let X ðkÞ ¼ wsx; ckh i be the sine-
windowed MDCT spectrum, and Y ðkÞ ¼ wcx; skh i be the cosine-windowed MDST
spectrum. The new MDFT is defined as

ZðkÞ ¼
Z�ð0Þ �jZ�ð0Þ; k ¼ 0

�Zþ k � 1ð Þ �jZ�ðkÞ; k ¼ 1; :::;N � 1
�Zþ N � 1ð Þ �jZþ N � 1ð Þ; k ¼ N

8<
: ð5:aÞ

where Z�ðkÞ ¼ Y ðkÞ � X ðkÞ andZþðkÞ ¼ Y ðkÞ þ X ðkÞ. A very interesting property of (5.a)
is that it is equivalent to DFT with a linear phase shift (Appendix C), or

ZðkÞ ¼ e�jϕðkÞ X2N�1

n¼0

xðnÞe�j pNnk

ϕðkÞ ¼ p
N
k

1

2
þ N

2

� �
þ p

4
:

8>>><
>>>:

ð5:bÞ

This way all time-frequency relations of DFT automatically go to the MDFT. Then (4.a)
and (4.b) still apply.

NN

wc n

ws n

Fig. 3 Window functions ws(n) and wc(n) for MDCT and MDST respectively. The shape of wc(n), odd
symmetric about the center, is contrary to intuition on window functions, but essential for DFT-like temporal-
spectral correspondence
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3 Approximation in MDCT domain

3.1 Deriving MDST from MDCT

AAC performs only MDCT during encoding. So the obvious way to obtain MDFT
spectra then ILD, ITD, and IC is to use a separate MDST on incoming audio signals.
But it is possible to derive MDST from MDCT. MDCT is invertible, as a row of 50%
over-lapped block transform (Fig. 4), its property of Time Domain Aliasing Cancellation
(TDAC) [47, 48] enables perfectly reconstructing time points from the same number of
MDCT spectral lines. Thus we can find MDST spectra by transforming back to time
domain and then to MDST domain. This roundtrip is meaningful only during decoding,
where audio time samples are to be found out. During encoding, audio time samples are
readily available.

But this roundtrip may have a shortcut, without transforming back and forth. MDCT
basis vector ck(n) has a special structure: odd-symmetric on the first half, time span
0; 1; . . . ;N � 1; and even-symmetric on the second half, time span N ;N þ 1; . . . ; 2N � 1.
MDST basis vector sk(n) has a similar structure, but even-symmetric on the first half, and
odd-symmetric on the second half. In Fig. 4, MDCT on frame i−1 and MDCT on frame i+1,
due to the 50% overlap ratio, just provide the even part of the first half and odd part of the
second half of frame i respectively, sufficient for MDST on that frame.

3.2 The near-diagonal conversion matrix

We shall see the conversion matrix of frame i−1 MDCT spectrum Xi−1 and frame i+1
MDCT spectrum Xi+1 to frame i MDST spectrum Yi is near-diagonal for typical N used in
audio coding. Thus the conversion matrix can be approximated by a small number of sub-
diagonals, instead of the full one. This reduces the computational complexity from O(N2) to
O(mN), where m is the number of sub-diagonals for approximation. It is in this sense that
the near-diagonal conversion matrix is just the short cut.

We first partition the 2N-dimensional basis vectors ck and sk evenly into N-dimensional
column sub-vectors as ckð ÞT ¼ c0k

� �T
c1k
� �T� �

, and skð ÞT ¼ c s0k
� �T

s1k
� �T� �

, where k ¼
0; 1; . . . ;N � 1. The superscript “0” indicates the first half sub-vectors, “1” indicates the
second half sub-vectors, and “T” for transpose. Then we have four N×N matrices

C0 ¼ c00 c01 . . . c0N�1

� �
; C1 ¼ c10 c11 . . . c1N�1

� �
S0 ¼ s00 s01 . . . s0N�1

� �
; S1 ¼ s10 s11 . . . s1N�1

� �
8<
: : ð6Þ

The definition of MDCT in (3.a) implies that each column vector c0k of C0 is odd-
symmetric while each column vector c1k of C1 is even symmetric. Also MDCT basis vectors

 i-
 i

i+

Fig. 4 MDCT with 50% overlap. TDAC ensures perfect reconstruction without redundancy
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c0; c1; . . . ; cN�1 are orthogonal. Then in matrix form, the symmetry and orthogonality of C0

and C1 are

JC0 ¼ �C0; JC1 ¼ C1

CT
0C0 þ CT

1C1 ¼ NI;C1C
T
0 ¼ C0C

T
1 ¼ 0 :;

(
ð7:aÞ

where J is the N×N anti-diagonal matrix having only 1 on its anti-diagonal, and I is the
N×N identity matrix. The definition of MDST in (3.b) impliess0k and s1k can be obtained
from c1k and c0k with sign changing, or

S0 ¼ �C1P; S1 ¼ C0P; ð7:bÞ
where P is the N×N sign changing matrix with only þ1;�1;þ1;�1; . . . :; on its diagonal.

Note N-dimensional column vectors xi0 and xi1 the first half and second half of the frame
i. They can be reconstructed perfectly from the three MDCT spectra Xi−1, Xi, and Xi+1 for
frame i−1, i, and i+1 respectively, by the following matrix multiplication,

xi0
xi1

 !
¼ 1

N
C1X

i�1 þ C0X
i

C1X
i þ C0X

iþ1

� �
: ð8Þ

It can be verified from (7.a) that ST0C0 ¼ ST1C1 ¼ 0 (Appendix D). Then substituting (8)
into the MDST definition in matrix form, we have Yi as the following,

Y i ¼ ST0 ST1
� � xi0

xi1

 !

¼ 1

N
ST0C1X

i�1 þ ST0C0 þ ST1C1

� �
X i þ ST1C0X

iþ1
� �

¼ 1

N
ST1C0 � ST0C1

� �
X i
� þ 1

N
ST1C0 þ ST0C1

� �
X i
þ

ð9Þ

where X i
� ¼ X iþ1 � X i�1ð Þ=2, and X i

þ ¼ X iþ1 þ X i�1ð Þ=2. Since Xi is annihilated, the
MDST spectrum Yi for frame i can be built perfectly from neighboring MDCT spectra Xi−1

and Xi+1 or equivalently X i
� and X i

þ.
Each column vector ofC0, C1, S0, and S1 is part of a cosine or sine sequence with different

frequencies. As N increases, these vectors tend to be orthogonal, and the matrices ST0C1 and
ST1C0 become more diagonal then, there is however more diagonality to explore when
considering their sum and difference. Through (7.b) and (7.a), we have the difference matrix

1

N
ST1C0 � ST0C1

� � ¼ 1

N
PT CT

0C0 þ CT
1C1

� � ¼ PT; ð10:aÞ

which has only (−1)k entries on the diagonal; and noting q ¼ p= 2Nð Þ, the sum matrix T

Tð Þk;l ¼
1

N
ST1C0 þ ST0C1

� �
k;l

¼

Refjkþl�1g
N sin½q k � lð Þ� ; k � l ¼ odd

Refjk�lþ2g
N sin½q k þ l þ 1ð Þ� ; k � l ¼ even

:

8>>>><
>>>>:

ð10:bÞ

whose entry (T)k,l vanishes quickly away from the diagonal (Fig. 5).
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The near-diagonality of T provides a computationally effective way to derive
approximately MDST from MDCT through (9). Omitting orders and signs, we can find
from (10.b) that each row or column of T shares the same set of N/2 terms
1= N sin q 2sþ 1ð Þ½ �ð Þ; s ¼ 0; 1; . . . ;N=2� 1, and each unique term appears exactly twice.
Let Tm be the matrix having in common with T the most significant 2mN entries, all the rest
zero. Then nonzero entries of Tm have their absolute values no less than
1= N sin q 2m� 1ð Þ½ �ð Þ and center heavily around the diagonal. We substitute T with Tm in
(9). And with (10.a), (9) is approximated in a FIR-like fashion as

Y iðkÞ � �1ð ÞkX i
�ðkÞ þ

XN�1

l¼0

Tmð Þk;lX i
þðlÞ

¼ �1ð ÞkX i
�ðkÞ þ �1ð Þk

Xm�1

s¼�m

X i
þ ind k � 2s� 1ð Þð Þ

�1ð ÞsN sin q 2sþ 1ð Þ½ �

ð11Þ

where ind(•) is a spectral line index mapping function, indðlÞ ¼ �l � 1, if l < 0;
indðlÞ ¼ 2N � l � 1, if l > N � 1; and ind(l)=l else. This way we avoid explicit matrix-
vector multiplication.

3.3 Windowed MDCT-MDST conversion

We deal with here the windowing scenario mentioned in the part C of Section 2. Note W0

and W1 two N×N diagonal matrices whose diagonals are the sine window function ws(n)
spanning from 0 to N−1 and N to 2N−1 respectively. They satisfy the general requirements
for TDAC on MDCT with windowing,

W0W0 þW1W1 ¼ I
W1 ¼ JW0J :

�
ð12Þ

By the sine-cosine duality, the matrices of the cosine window function wc(n) are W1 and
−W0 for n ¼ 0; . . . ;N � 1 and n ¼ N ; . . . ; 2N � 1 respectively. Then (8) becomes

xi0
xi1

 !
¼ 2

N

W1C1X
i�1 þW0C0X

i

W1C1X
i þW0C0X

iþ1

 !
; ð13Þ

Fig. 5 Tð Þk;l



 


 of the sum matrix T ¼ ST0 C1 þ ST1 C0

� �
=N . Only entries about the diagonal are significant
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and with ST0W1W0C0 ¼ ST1W0W1C1 ¼ 0, ST0W1W1C1 ¼ ST0C1=2, and ST1W0W0C0 ¼
ST1C0=2 (Appendix D) deduced from (7.a) and (14), (9) becomes

Y i ¼ ST0 ST1
� � W1 0

0�W0

� �
xi0
xi1

� �

¼ 2

N
ST0W1W0C0 � ST1W0W1C1

� �
X i

þ 2

N
ST0W1W1C1X

i�1 � 2

N
ST1W0W0C0X

iþ1

¼ 1

N
ST0C1X

i�1 � 1

N
ST1C0X

iþ1

¼ 1

N
ST1C0 � ST0C1

� �
X i
� þ 1

N
ST1C0 þ ST0C1

� �
X i
þ

ð14Þ

where X i
� ¼ �X iþ1 � X i�1ð Þ=2 and X i

þ ¼ �X iþ1 þ X i�1ð Þ=2. Therefore, (10.a) and (12)
still apply only with different definitions for X i

� and X i
þ.

In [16], a method was proposed to estimate MDST from MDCT based on trigonometry
manipulation. However it is restricted to the non-windowed and sine-windowed case. Our
method is more general, all window functions satisfying (12) applies.

To clarify the algorithm in the last two subsections, we list steps to compute MDST
spectrum from MDCT spectrum in Table 1.

3.4 Approximation error analysis

The Mean Square Error (MSE) of this approximation can be estimated from the square sum
of the singular values of T−Tm. It is equal to the trace of T� Tmð ÞT T� Tmð Þ or the energy
sum of all column vectors of T−Tm. But from (7.a), we can find that T is orthogonal and
energy of each column vector of T is 1 (Appendix E). Therefore the MSE is also equal to
the relative MSE or the ratio of MSE to the energy of TX i

þ. By the element pattern of T as
discussed above, this relative MSE can be found by analyzing any single column vector of
T. From the orthogonality of T, we have the equality

q2

sin2q
þ . . .þ q2

sin2 q 2m� 1ð Þ½ � þ . . .þ q2

sin2 q N � 1ð Þ½ � ¼
p2

8
: ð15Þ

The first m terms in (12) appear in both T and Tm, and the rest terms relates to the MSE.
As N increases, θ=π/(2N) decreases and its mth term q2=sin2 q 2m� 1ð Þ½ � ! 1= 2m� 1ð Þ2
decreasing monotonically. But the sum of the infinite sequence 1=12; 1=32; . . . ;
1= 2m� 1ð Þ2; . . . is also π2/8. Therefore, given any " 2 0; 1ð Þ, we have a positive integer
m such that the sum of the first m terms of the infinite sequence is larger than 1� "ð Þp2=8,
and then the sum of the first m terms of (12) is also larger than 1� "ð Þp2=8. Thus we can
find m independent of N satisfying a given relative MSE upper limit ε, or

MSEðmÞ ¼ 1� q2

sin2q
þ . . .þ q2

sin2 q 2m� 1ð Þ½ �

� �
8

p2

< 1� 1

12
þ . . .þ 1

2m� 1ð Þ2
 !

8

p2
< " :

ð16Þ

For example, if requiring relative MSE less than 0.1, m = 2 is sufficient for all N.
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There are two terms in (9). The above error analysis is only for the second term while the first
one involves only sign changes. When the two terms annihilate each other and the resulting Y i

is zero or very small, any small error in the second term transfers to very large relative error.
Fortunately, it is a very rare case that time signal x0i is odd-symmetric and x

1
i is even-symmetric.

For real audio signals, their relative MSEs are normally smaller given m (Fig. 6).

(a)  N=128 (b)  N=1024

Fig. 6 Relative MSE of approximating MDST from MDCT. The conversion matrix T is substituted by Tm

which shares its most significant 2mN entries with the rest 0. The vertical bars indicate maximum, mean, and
minimum relative MSE over 12 audio sequences of different types, 48,000 points each. a N=128, b N=1024

Table 1 MDST spectrum computation
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4 Spatial encoding and decoding

We have developed the necessary tools for spatial analysis and synthesis using MDCT
spectrum. Without the structural burden of separate complex transforms, spatial coding
modules will integrate more closely into core coders, provided that they use the same
transform. One of the most used core coders AAC, based on MDCT, enables this
possibility.

Figure 7(a) shows our proposed encoding structure. Incoming audio signals go though
MDCT on every channel. From (11) we can find their MDST spectra. By (5.a) and (5.b),
MDFT spectra are constructed. Then ILD, ITD, and IC are given by (4.a) and (4.b). This
process involves no explicit MDST transforming or separate complex transforming. PS
encoder based on FFT, uses two FFT, one IFFT, and one MDCT for core coding [13]. In
stereo case, the proposed scheme only uses two MDCT. Suppose the frame length is N.
Since there are always 50% overlap between adjacent frames in both cases, the length of
FFT/IFFT and MDCT are 2N. The time inputs are real samples, so FFT/IFFT can be
efficiently computed through N-point complex FFT. Also MDCT can be efficiently
computed through N/2-point complex-FFT (CFFT). So the proposed coder saves about 5/7
of the transform complexity (Table 2). This is similar at decoder end. Since MDST
spectrum can be computed using low-order FIR filtering from MDCT spectrum, for this
computational overhead is low compared to the transform itself. But a main source of
complexity of spatial coding is transforming [52]. It significantly cuts down CPU cycles.

Decoding is roughly an inverse process of encoding, which is shown in Fig. 7(b). A core
AAC decoder only needs to output reconstructed MDCT spectra, on which MDST spectra
are built by (11) and then MDFT spectra by (5.a) and (5.b). A decorrelation procedure [13,
18, 20] generates counterpart MDFT spectra, having similar envelops but different fine

Table 2 Transform complexity comparison

2N-FFT 2N-IFFT 2N-MDCT 2N-IMDCT complexity

FFT-based encoder 2 times 1 time 1 time 0 time ~7 N/2-CFFT

FFT-based decoder 1 time 2 times 0 time 1 time ~7 N/2-CFFT

MDCT-based decoder 0 time 0 time 2 times 0 time ~2 N/2-CFFT

MDCT-based decoder 0 time 0 times 0 time 2 times ~2 N/2-CFFT

(a) Encoding (b) Decoding 

Fig. 7 Spatial stereo coding using only MDCT. The encoder has only forward transforms, and the decoder
has only backward transforms. MDCT spectra are shared by core coding and spatial coding. a Encoding, b
Decoding
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structures both in time and frequency domain. With a pair of a decoded MDFT spectrum
and its decorrelated version, we can build two MDFT spectra through linear combination
and phase adjustment matching the given ILDs, ITDs, and ICs on all bands. Time signals
follow readily from MDCT part of the reconstructed MDFT through IMDCT and overlap-
and-add (Fig. 4). Apart from MDCT and MDFT, it is very similar to PS. The goal is not
waveform recovery but time-frequency information and spatial information recovery to the
extent of human hearing perception.

5 Performance

To test the viability of MDCT domain spatial analysis and synthesis, we implement a stereo
audio coder, it is based on a “PS + AAC” stereo coder EAAC+ from 3GPP [1], a state-of-
the-art low bitrate audio coder used in 3G mobile audio services. The main modification is
to replace QMF in PS by MDFT. Other modifications are applied only if necessary.
Specifically, we use same number of subbands with as close as possible bandwidth between
MDFT and QMF. The spatial parameters are quantized using the same quantization tables
as EAAC+, resulting in close parameter bit consumption on each subband. However, the
average parameter bitrate is essentially the same. The decorrelation module uses the same
algorithm, but there are major code level modifications the discrepancy between QMF and
MDFT.

The test is to find the subjective quality impairment of our coder at bitrate below
36 kbps [1], which is the sweet spot for stereo coding using the PS scheme. The original
EAAC+ is also tested for reference and comparison. Other popular audio coders such as

Table 3 Testing sequences description

Type File Name Description

Speech es01.wav Vocal (Suzan Vega)

es02.wav German speech

es03.wav English speech

Single Instrument si01.wav harpsichord

si01.wav castanets

si01.wav pitch pipe

Simple Sound Mixture sm01.wav bagpipes

sm01.wav glockenspiel

sm01.wav plucked strings

Complex Sound Mixture sc01.wav trumpet solo and orchestra

sc01.wav orchestral piece

sc01.wav contemporary pop music

Fig. 8 MUSHRAM (ITU-R BS1534-1) test scores, mean and 95% confidence interval. The 0–100 score
ranges is interpreted as bad (0–20), poor (20–40), fair (40–60), good (60–80), and excellent (80–100). Bitrate
used is 16 kbps in (a), 21 kbps in (b), and 28 kbps in (c), each split into four categories according to the four
sequence types. The overall test results are shown in (d). Here m is the order of MDST approximation

b
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MP3, MPEG-2 AAC, and WMA do not use PS but code stereo signals essentially as
separate channels, typically operating at much higher bitrates (96–128 kbps). So they are
not used in this test.

There are 12 stereo sequences used in this test, each 10~20 s long, 48 kHz sampled, and
16-bit PCM width, all from MPEG standard audio test library. The signal types are listed in
Table 3.

The test method complies ITU-R BS.1534-1 standards [34], or “MUlti Stimulus test
with Hidden Reference and Anchor (MUSHRA)”. It is specifically designed for
intermediate audio quality evaluation requiring relatively small listening panel size. We
enrolled 15 subjects. Each was asked to evaluate the randomly ordered test sequences
with regard to their corresponding reference sequences, on a scale from 0 (worst)—100
(best). The reference sequences are those listed in Table 3, without any processing. The
test sequences are those processed by our coder in two configurations: m=5 and m=10,
and EAAC+, as well as hidden references, 3.5 kHz and 7 kHz low-pass filtered anchors.
The last three are used to screen out invalid scores. Test results classified according to
signal types are given in Fig. 8(a), (b) and (c) for 3 bitrates 16 kbps, 21 kbps, and 28 kbps
respectively. Figure 8(d) gives the overall results. Scores are shown as mean and 95%
confidence interval.

The test indicates that our coder has same quality as EAAC+ statistically. This
confirms that the replacing of QMF by MDFT in PS does not have negative impact
on overall audio quality. More interestingly, even the MDST approximation errors
decrease from 0.023 using m=5 to 0.011 using m=10, the mean scores sees no quality
increasing. This agrees our observation that spatial parameter quantization errors in PS are
much larger than those introduced by MDST approximation. All those errors become
irrelevant to human hearing if they are below the just noticeable differences or hearing
thresholds of the spatial parameters. This is the design principle of the spatial parameter
quantization tables. And output time signals are built only by MDCT, which is not
directly related to MDST error. We can expect beyond a certain value, higher m will not
bring higher quality.

6 Conclusions

We give two types of MDCT-MDST combination for MDFT, non-windowed and
windowed, sharing the same temporal-spectral correspondence as FFT. It enables spatial
parameters analysis and synthesis in MDFT domain. We also find that instead of direct
transforming, MDST spectrum can be converted from neighboring MDCT spectra. And the
conversion matrix is heavily diagonal so a small number of its sub-diagonals are sufficient
for approximating MDST in spatial coding. Our spatial stereo coder using approximated
MDFT shows statistically equal audio quality as PS, but saving half transforms at both the
encoding and decoding ends.

This coding scheme makes spatial coding more a tool inside the core AAC coder than
outside it. But synthesizing spatial parameters for the current MDCT spectrum uses
indirectly the next MDCT spectrum, adding a frame of delay. If avoiding this, spatial
coding will have no additional delay other than those introduced in AAC coding.
Besides, the finding that sine-windowed MDFT is in fact FFT with a linear phase shift
will also make separate T/F tools for psychoacoustics analysis and spectral processing
unnecessary—the real part of the sine-windowed MDFT is exactly the sine-windowed
MDCT.
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Appendix

A. MDFT energy conservation

As in (3.a) and (3.b), c0; . . . ; cN�1 and s0; . . . ; sN�1 are 2N-dimensional basis vectors for
MDCT and MDST respectively. The inner products between them are

ck ; clh i ¼ Nd k � lð Þ; k; l ¼ 0; . . . ;N � 1
sk ; slh i ¼ Nd k � lð Þ; k; l ¼ 0; . . . ;N � 1
ck ; slh i ¼ 0; k; l ¼ 0; . . . ;N � 1

8<
: ; ðA:1Þ

where δ(•) is the unit impulse function. They compose an orthogonal basis for 2N-
dimensional real vector space. Then for a time signal xðnÞ; n ¼ 0; . . . ; 2N � 1, and its
MDCT spectrum X(k) and MDST spectrum Y ðkÞ; k ¼ 0; :::; 2N � 1, their energy satisfies

N x; xh i

¼ 1

N

XN�1

k¼0

X ðkÞck þ Y ðkÞskð Þ;
XN�1

k¼0

X ðkÞck þ Y ðkÞskð Þ
* +

¼ X ;Xh i þ Y ; Yh i ¼ X þ jY ;X þ jYh i :

ðA:2Þ

This verifies that MDFT spectral energy is N times of temporal energy.

B. MDFT time shift and phase shift

From MDFT definition in (3.c), we have when time signal x(n) has a shift d and satisfies
x n� 2Nð Þ ¼ �xðnÞ, its MDFT spectrum as

~
ZðkÞ ¼

X2N�1

n¼0

x n� dð Þ exp �j
p
N

nþ 1

2
þ N

2

� �
k þ 1

2

� �� 	

¼
X2N�1�d

n¼�d

xðnÞ exp �j
p
N

nþ d þ 1

2
þ N

2

� �
k þ 1

2

� �� 	

¼
X2N�1�d

n¼0

xðnÞ exp �j
p
N

nþ d þ 1

2
þ N

2

� �
k þ 1

2

� �� 	

�
X2N�1

n¼2N�d

x n� 2Nð Þ exp �j
p
N

nþ d þ 1

2
þ N

2

� �
k þ 1

2

� �� 	

¼ ZðkÞ exp �j
p
N
d k þ 1

2

� �� 	

ðA:3Þ

where Z(k) is MDFT spectrum of x(n) without shift. The condition x n� 2Nð Þ ¼ �xðnÞ
parallels DFT’s requirement of periodicity but with a negative sign. For real signals and
d<<2N, (A.4) is an approximation.
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C. Windowed MDFT

Note X(k) and Y(k) are sine-windowed MDCT spectrum and cosine-windowed MDST
spectrum respectively. Then we have

ZþðkÞ ¼ Y ðkÞ þ X ðkÞ¼
X2N�1

n¼0

xðnÞ cos p
2N

nþ 1

2

� �� 	
sin

p
N

nþ 1

2
þ N

2

� �
k þ 1

2

� �� 	

þ
X2N�1

n¼0

xðnÞ sin p
2N

nþ 1

2

� �� 	
cos

p
N

nþ 1

2
þ N

2

� �
k þ 1

2

� �� 	

¼ �
X2N�1

n¼0

xðnÞ cos p
N
n k þ 1ð Þ þ p

N
k þ 1ð Þ 1

2
þ N

2

� �
þ p

4

� 	

ðA:4Þ

and

Z�ðkÞ ¼ Y ðkÞ � X ðkÞ

¼
X2N�1

n¼0

xðnÞ cos p
2N

nþ 1

2

� �� 	
sin

p
N

nþ 1

2
þ N

2

� �
k þ 1

2
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�
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2N
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ðA:5Þ

Take (A.4) and (A.5) as real part and imaginary part respectively,

�Zþ k � 1ð Þ � jZ�ðkÞ

¼
X2N�1
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xðnÞ cos p
N
nk þ p

N
k
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ðA:6Þ

which is 2N-point DFT with a phase shift. Moreover with Zþ �1ð Þ ¼ �Z�ð0Þ
and Z�ðNÞ ¼ Zþ N � 1ð Þ, (A.6) leads to (5.a).

D. Properties of MDCT and MDST transform matrices

From (6), we can see each column vector of C0 and S1 are odd-symmetric, and each column
vector of C1 and S0 are even-symmetric. With the help of anti-diagonal matrix J having
only 1 on its anti-diagonal, the symmetries are equivalent to JC0 ¼ �C0; JS1 ¼
�S1 and JC1 ¼ C1; JS0 ¼ S0 respectively. From this and JTJ ¼ JJ ¼ I, we have

ST0C0 ¼ ST0J
TJC0 ¼ JS0ð ÞT JC0ð Þ ¼ �ST0C0; ðA:7Þ
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which implies ST0C0 ¼ 0. And for the same reason, ST1C1 ¼ 0. For the windowed case,
from the second equation of (14) W1=JW0J and that W0 and W1 are diagonal matrices
then W0W1=W1W0, we have

ST0W1W0C0 ¼ ST0J
TJW1JJW0JJC0

¼ JS0ð ÞT JW1Jð Þ JW0Jð Þ JC0ð Þ

¼ �ST0W0W1C0¼ �ST0W1W0C0

ðA:8Þ

which implies ST0W1W0C0 ¼ 0. And for the same reason, ST1W0W1C1 ¼ 0. Also by
similar procedure as (A.8), we have ST0W1W1C1 ¼ ST0W0W0C1. From this and with the
help of the first equation of (14) W0W0 þW1W1 ¼ I, we can see

ST0W1W1C1 ¼ 1

2
ST0W0W0C1 þ ST0W1W1C1

� �
¼ 1

2
ST0 W0W0 þW1W1ð ÞC1

¼ 1

2
ST0C1 :

ðA:9Þ

And for the same reason, ST1W0W0C0 ¼ ST1C0=2.

E. Properties of the conversion matrix T

As in (7.b), P is a matrix having only þ1;�1;þ1;�1; . . . ; on its diagonal, implying
PPT = I. And with S0 ¼ � C1P; S1 ¼ C0P in (7.b), we have S1S

T
1 ¼ C0C

T
0 ;

S0S
T
0 ¼ C1C

T
1 ; S0S

T
1 ¼ �C1C

T
0 ; S1S

T
0 ¼ �C0C

T
1 . With the help of CT

0C0 þ CT
1C1 ¼

NI and C1C
T
0 ¼ C0C

T
1 ¼ 0 in (7.a), the conversion matrix defined in (10.b) is orthogonal,

or

TTT ¼ 1
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ST1C0 þ ST0C1

� �
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ðA:10Þ
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