
2516 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 7, JULY 2025

ChainPIM: A ReRAM-Based Processing-in-Memory
Accelerator for HGNNs via Chain Structure

Wenjing Xiao , Jianyu Wang, Dan Chen , Chenglong Shi, Xin Ling ,
Min Chen , Fellow, IEEE, and Thomas Wu

Abstract—Heterogeneous graph neural networks (HGNNs)
have recently demonstrated significant advantages of capturing
powerful structural and semantic information in heterogeneous
graphs. Different from homogeneous graph neural networks
directly aggregating information based on neighbors, HGNNs
aggregate information based on complex metapaths. ReRAM-
based processing-in-memory (PIM) architecture can reduce data
movement and compute matrix-vector multiplication (MVM) in
analog. It can be well used to accelerate HGNNs. However,
the complex metapath-based aggregation of HGNNs makes it
challenging to efficiently utilize the parallelism of ReRAM and
vertices data reuse. To this end, we propose ChainPIM, the first
ReRAM-based processing-in-memory accelerator for HGNNs
featuring high-computing parallelism and vertices data reuse.
Specifically, we introduce R-chain, which is based on a chain
structure to build related metapath instances together. We can
efficiently reuse vertices through R-chain and process different
R-chains in parallel. Then, we further design an efficient storage
format for storing R-chains, which reduces a lot of repeated
vertices storage. Finally, a specialized ReRAM-based architecture
is developed to pipeline different types of aggregations in HGNNs,
fully exploiting the huge potential of multilevel parallelism in
HGNNs. Our experiments show that ChainPIM achieves an
average memory space reduction of 47.86% and performance
improvement by 128.29× compared to NVIDIA Tesla V100 GPU.

Index Terms—Heterogeneous graph neural networks,
processing-in-memory, resistive random access memory.

Received 25 June 2024; revised 19 October 2024; accepted 3 January 2025.
Date of publication 13 January 2025; date of current version 20 June 2025.
This work was supported in part by the State Key Laboratory of Featured
Metal Materials and Life-Cycle Safety for Composite Structures under Grant
AA23073019; in part by the Guangxi Key Research and Development Plan
Project under Grant AB23049006; in part by the Zhejiang Provincial Natural
Science Foundation of China under Grant No.LY24F020014; and in part by
the National Research Foundation, Singapore, under its Competitive Research
Programme Award NRF-CRP23-2019-0003. This article was recommended
by Associate Editor A. Gamatie. (Corresponding author: Dan Chen.)

Wenjing Xiao is with the School of Computer, Electronics and Information
and the Guangxi Key Laboratory of Multimedia Communications and
Network Technology, Guangxi University, Nanning 530004, China (e-mail:
wenjingx@gxu.edu.cn).

Jianyu Wang, Chenglong Shi, and Xin Ling are with the School
of Computer, Electronics and Information, Guangxi University, Nanning
530004, China (e-mail: jianyuw@st.gxu.edu.cn; chenglongs@st.gxu.edu.cn;
lingxin@st.gxu.edu.cn).

Dan Chen is with the School of Computing, National University of
Singapore, Singapore 119077 (e-mail: danchen@nus.edu.sg.

Min Chen is with the School of Computer Science and Engineering, South
China University of Technology, Guangzhou 510006, China, and also with
Pazhou Laboratory, Guangzhou 510330, China (e-mail: minchen@ieee.org).

Thomas Wu is with the School of Electrical Engineering, Guangxi
University, Nanning 530004, China (e-mail: xwu@gxu.edu.cn).

Digital Object Identifier 10.1109/TCAD.2025.3528906

I. INTRODUCTION

GRAPH is a data structure that expresses complex
relationships between objects. Graph neural networks

(GNNs) map complex relationships between objects into a
high-dimensional feature space to fully learn their intrin-
sic dependencies [1], [2], [3], [4] and achieve significant
improvements in various applications, e.g., social network
prediction [5], [6] and recommendation system [7], [8]. Due
to the large number of irregular dependent accesses and the
potential for high parallelism in GNNs, numerous studies
have been proposed to accelerate them from the aspects of
model optimization, software-level optimization, and hard-
ware acceleration. In particular, recent works [9], [10], [11],
[12], [13] demonstrate that resistive random access memory
(ReRAM) is highly efficient for accelerating matrix-vector
multiplication (MVM) and enabling in-memory computation,
which reduces data movement by performing computations
where the data is stored. This makes ReRAM an excellent
platform for accelerating GNNs.

Existing works [3], [14], [15], [16] on accelerating GNNs
using ReRAM focus on the homogeneous graph, which consist
of only one type of vertices and edges. They follow the classic
message passing framework [17], with each vertex aggregating
information from its neighbors that directly connect to it based
on graph structure. The homogeneous graphs do not have com-
plex aggregating operations due to the limited types of vertices
and edges. However, in real-world scenarios, heterogeneous
graphs are more common, consisting of multiple types of ver-
tices and edges with rich semantic information. For example,
Fig. 1(a) shows the classic citation network of heterogeneous
graphs, containing several types of vertices, such as Paper (P),
Author (A), and Conference (C). And as shown in Fig. 1(b),

there are different relationships between them: Author
write→

Paper, Paper
cite→ Paper, and Paper

presented at→ Conference.
Furthermore, these relations can be composed to form high-
level semantic relations, represented as metapath. For instance,
P-C-P and P-A-P in Fig. 1(c) are two metapaths with different
semantic information. The former indicates that papers were
published in the same conference, and the latter indicates
papers published by one author. Given a metapath M of a het-
erogeneous graph, a metapath instance m is a vertex sequence
matched on the heterogeneous graph according to the defined
metapath M [18]. For example, P1-A4-P1 is an instance of
P-A-P, as shown in Fig. 1(c). Metapath-guided heterogeneous
graph neural networks (HGNNs) utilize metapaths to aggregate

1937-4151 c© 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on June 21,2025 at 03:07:38 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8231-2467
https://orcid.org/0000-0003-4158-5239
https://orcid.org/0009-0002-8905-3311
https://orcid.org/0000-0002-0960-4447
https://orcid.org/0000-0003-2645-9322

XIAO et al.: ChainPIM: A ReRAM-BASED PROCESSING-IN-MEMORY ACCELERATOR FOR HGNNS VIA CHAIN STRUCTURE 2517

(a) (b)

(c)

Fig. 1. Illustrative example of heterogeneous graphs. (a) Academic hetero-
geneous graph with vertex types author (A), paper (P), and conference (C).
(b) Relationships between different types of vertices. (c) General processing
flow of metapath-based HGNNs.

vertex information. They first aggregate vertex features within
each metapath’s scope to generate corresponding semantic
vectors that capture different types of relational information.
Then, these semantic vectors are fused to obtain the final
embedding feature. This learned embedding feature incorpo-
rates multirelational information across the entire graph and is
used for the final prediction task by the HGNN model. Unlike
homogeneous graphs that directly aggregate information based
on neighbors, heterogeneous networks perform more intricate
aggregations based on metapaths.

There are only few works focusing on accelerating HGNNs.
MetaNMP [19] investigates the problems of redundant com-
putation and high-memory footprint in HGNNs, and leverages
Near-Memory Processing to solve them. However, due to
its need for intricate control logic to achieve reusing com-
plex metapaths, this work suffers from serious scalability
limitations. Benefiting from the efficient storage and in-situ
computing capabilities of ReRAM, it significantly reduces the
complexity of control logic introduced by processing complex
data like heterogeneous graph data. But research on ReRAM-
based schemes has mostly focused on homogeneous graphs,
which are difficult to directly use to accelerate more complex
HGNNs efficiently. They do not take the following three
key aspects of HGNNs into account for a ReRAM-based
accelerator.

1) Instance-Level Parallelism: In addition to vertex and fea-
ture parallelism in traditional GNNs, metapath instances
can be processed and executed in parallel. Hence,
ReRAM can perform different metapath instances com-
putation simultaneously.

2) Metapath-Level Parallelism: Different metapaths are
independent of each other. Such independence means
that not only instances within the same metapath can
be performed in parallel, but also instances of different
metapaths can be executed simultaneously.

3) Vertex Data Reuse: Vertex data can be reused because
there exist multiple same vertices across different meta-
path instances. Reusable vertex data can be shared
directly in the crossbar for different metapath instances.

Considering above HGNN features is important for improving
HGNN execution efficiency on ReRAM-based processing-in-
memory architecture.

To this end, we propose the first ReRAM-based HGNNs
accelerator, named ChainPIM, a novel integrated architecture
to efficiently process HGNNs with high parallelism and
significant reuse of vertex data. ChainPIM features three
novel designs. We first construct chain structures from related
metapaths. Then we generate relationships among instances
involved in metapaths on the chain structure, named as
R-chain. Different R-chains can be processed in parallel, and
the metapath instance relations expressed by R-chain can help
us efficiently reuse the vertex data. Second, to achieve efficient
storage of R-chains, ChainPIM further develops an effective
yet novel storage format for R-chain, which utilizes the
instance relations expressed by R-chain to eliminate redundant
vertex storage. Third, ChainPIM introduces a ReRAM-based
hardware architecture with a multilevel aggregation process,
fully exploiting the potential of computational parallelism in
HGNNs by pipelining aggregation stages. Our main contribu-
tions of this article are as follows.

1) We introduce R-chain to build related metapath instances
together based on chain structure. It is not only to
explore parallelism but also to exploit vertex data reuse.

2) We develop an efficient storage format for R-chain,
which reduces a lot of repeated vertices storage.

3) We present the first ReRAM-based PIM architecture for
HGNNs, which pipelines different types of aggregations
in HGNNs to exploit the multilevel parallelism.

4) We evaluate our accelerator with representative HGNNs
models on extensive graph datasets. Experimental results
on ReRAM crossbar sized of 128 × 128 show that
ChainPIM achieves an average memory space reduction
of 47.86% and performance improvement by 128.29×
compared to NVIDIA Tesla V100 GPU.

II. BACKGROUND AND MOTIVATION

A. Heterogeneous Graph Neural Networks

Traditional homogeneous GNNs only handle input graphs
with one type of vertex and edge. However, real-world
graphs are usually heterogeneous, containing multiple types
of vertices and edges. To capture the complex structural and
semantic features in these graphs, scholars have proposed
heterogeneous GNNs [20], [21], [22] with strong capability
to model and learn high-dimensional relations. A heteroge-
neous graph consists of vertices, edges, and several mapping
functions, denoted as G = {V, E, T v, T e}. Among them, V
represents the set of vertices associated with a vertex type
mapping function ψ : V → T v, and E represents the set of
edges associated with an edge type mapping function ϕ: E →
T e. In metapath-based HGNNs, the metapath P is defined as

a fundamental path in the form of V1
R1→ V2

R3→ · · · Rl→ Vl+1,
abbreviated as V1V2, . . . ,Vl+1, which describes a composite

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on June 21,2025 at 03:07:38 UTC from IEEE Xplore. Restrictions apply.

2518 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 7, JULY 2025

(a) (b)

Fig. 2. Structure of (a) ReRAM cell and (b) ReRAM crossbar.

relation R = R1 ◦ R2 ◦ · · · ◦ Rl between the vertex type V1 and
Vl+1, where ◦ represents the composition operator.

Generally, heterogeneous graph neural networks, as a type
of GNN model, are used to learn representations of hetero-
geneous graphs. Let N P

v denote metapath-based neighbors of
vertex v, to express the set of vertices connecting with vertex
v through the metapath instance P. To this end, a layer of
HGNN computation on a vertex v can be formulated as

hP
v = Transforψ(v)

(
Reduce({Aggp(N r

v)})
)

(1)

where r ∈ N P
v and P ∈ Pv. The Pv denotes the set

of metapaths on vertex v and Aggp(·) is a neighborhood
aggregation function specific to the metapath type. Reduce(·)
is a function to combine (e.g., mean/sum) aggregation results
along the metapath instance, after aggregating information
intra and intermetapath. Transforψ(v)(·) is a transformation
function specific to vertex-type of v parameterized by θψ . The
above procedure in (1) is a general process of HGNNs.

In summary, the HGNN framework is structured into three
principal stages: 1) feature projection; 2) structural aggre-
gation; and 3) semantic aggregation, illustrated in Fig. 1(c).
Initially, to standardize the feature dimensions for both vertices
and edges, the feature projection stage adjusts all features
to a uniform dimensional space. Subsequently, the process
of structural aggregation is deployed to consolidate structural
data, which includes two distinct substages: 1) the aggregation
of features within a single instance (intrainstance aggregation)
and 2) the aggregation of features across different instances
within a single metapath (interinstance aggregation). Lastly,
in the semantic aggregation phase, HGNNs integrate features
from multiple metapaths to construct a comprehensive seman-
tic context.

B. ReRAM-Based Processing-in-Memory

Processing-in-memory (PIM) is a computational architec-
ture that enables memory cells to process data, thereby
overcoming the data movement bottleneck between the
processor and memory [23]. In particular, as a typi-
cal PIM architecture, Resistive Random Access Memory
(ReRAM) [24] is a type of nonvolatile memory that operates
by switching the resistance of a ReRAM cell. Fig. 2(a) depicts
a ReRAM cell with a metal-insulator-metal structure [15],
where high-resistance state and low-resistance state are used
to represent logic “1” and “0,” respectively. The ReRAM
crossbar architecture provides powerful parallel execution of

in-situ MVM operations [25], [26]. As shown in Fig. 2(b),
the matrix data Mi,j are programmed to conductance Gi,j in
advance, where i, j are the indices of row and column in M.
Then, each dimension of input vector Ni can be converted to
the analog voltage Vi by applying digital-to-analog converters
(DACs), where i is the dimension index of the input vector.
The cell (i, j) passes the current Vi · Gi,j to the bitline and the
cumulative currents flowing to the end of the same bitline can
be regarded as dot product operation Ij = ∑

i Vi · Gi,j, based
on Kirchoff’s Current Law. This result can be converted to
a digital value and is equivalent to the dot product operation
Oj = ∑

i Ni · Mi,j. By collecting every dimension of O on the
corresponding bitline, the MVM operation O = NM can be
efficiently performed using a crossbar array [27].

Based on the above features, ReRAM-based PIM is natu-
rally a suitable solution for HGNNs. There are three reasons
for this. First, ReRAM-based processing can execute MVM
operations with varying sizes in an efficient manner, adapting
to the process of HGNNs that involves multilevel, varying
sizes and numerous MVMs for aggregating features. Second,
the powerful parallelism of the ReRAM architecture can
fully exploit intrainstance, interinstance, and intermetapath
parallelism in HGNNs. Third, by leveraging PIM, ReRAM-
based processing can overcome the memory bottleneck of
HGNNs, as it enables data processing directly within the
ReRAM, significantly reducing the need for data movement
between the compute unit and memory.

C. Motivation

As described in Section II-A, HGNNs have more complex
processing stages compared to traditional homogeneous graph
neural networks, consisting of distinct feature projection,
structural aggregation, semantic aggregation, etc. Therefore,
we conduct a series of experiments to analyze the performance
characterization of HGNNs under existing ReRAM-based
architecture designed for traditional GNNs, which reveals the
inefficiency of HGNNs execution on existing ReRAM-based
architecture and highlights the need to design new ReRAM-
based architectures for HGNNs.

Observation 1: Only vertex and feature parallelism is
utilized. Traditional GNNs have vertex-level and feature-level
parallelism, hence existing ReRAM-based GNNs accelerators
focus on the vertex and feature-level parallelism [3]. However,
since aggregating information in HGNNs relies on metap-
aths, in addition to vertex-level and feature-level parallelism,
HGNNs have metapath-level and instance-level parallelism.
Fig. 3(a) provides a breakdown of the inference time for
HGNNs, revealing that structural and semantic aggregations
account for more than 90% of the total time. This indicates that
instance-level and metapath-level aggregations are the primary
time-consuming processes in HGNNs. Thus, improving the
execution efficiency during aggregation stages is crucial for
accelerating HGNN computation. Fig. 4(c) further shows the
importance of exploiting instance-level and metapath-level
parallelism. It can be seen that if we ignore these two levels
of parallelism with existing ReRAM-based architectures to
accelerate HGNNs directly, it will lead to inefficient and

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on June 21,2025 at 03:07:38 UTC from IEEE Xplore. Restrictions apply.

XIAO et al.: ChainPIM: A ReRAM-BASED PROCESSING-IN-MEMORY ACCELERATOR FOR HGNNS VIA CHAIN STRUCTURE 2519

(a) (b)

(c)

Fig. 3. (a) Breakdown of execution time and (b) ratio of repeated vertex
load in HGNN inference. (c) Experimental results of adding instance-level
and metapath-level parallelism.

(a) (b)

(c)

(d)

Fig. 4. Illustration of the main idea of ChainPIM. (a) Initial graph.
(b) Repeated vertex load. (c) Serial computation of metapath instances.
(d) Insight of ChainPIM.

suboptimal performance. To further explain, we take ①-②-①,
①-⑤-③, and ⑦-④-② three metapath instances as an example.
There are no dependencies among them. If their parallelism is
not exploited, executing them sequentially would take much
more overhead than executing them in parallel. Fig. 3(c) shows
the performance of adding instance-level and metapath-level
parallelism on five different datasets. Experimental results
illustrate the significant impact of both instance-level and
metapath-level parallelism on the acceleration of HGNNs,
demonstrating the potential of leveraging these parallelisms to
achieve optimal performance.

Observation 2: Partial extensibility in metapath instances
causes severe redundant accesses of vertices. We observe that

there are partial extensions between metapaths in HGNNs.
Specifically, a metapath is generated by adding new types
of vertices and heterogeneous edges over another metapath
to describe more complex semantic relations. Thus, the short
metapath instance are identical to the part of long metapath
instance. In this case, it results in the same vertices being
loaded into the ReRAM repeatedly. As shown in Fig. 4(b),
①-②,①-③ and ①-②-④ are loaded more than once, causing a
waste of hardware resource. Further, we analyze the repeated
loading across five different datasets on MAGNN (a typical
HGNN) [18] as depicted in Fig. 3(b). The experimental results
reveal that there is a high ratio of repeated loading on all
datasets. This significantly hampers performance, making it
crucial to eliminate these inefficiencies for ReRAM.

Based on the above observations, ChainPIM aims to fully
exploit the potential of parallelism in HGNNs and significantly
reuse the vertex data during the execution of HGNNs as
shown in Fig. 4(d). However, it can be seen that achieving
an efficient ReRAM-based PIM architecture for HGNNs still
presents many challenges. On the one hand, it is difficult
to efficiently capture the relationships of metapath instances.
Their relationships is critical to exploit parallelism of unrelated
instances. On the other hand, how to utilize reusable vertex
data of HGNNs in ReRAM architecture to reduce redundant
data load is another challenge. To this end, we propose the
first ReRAM-based HGNN accelerator, named ChainPIM, a
novel PIM architecture to efficiently accelerate HGNNs with
high parallelism and significant vertex data reuse.

III. OVERVIEW OF OUR SOLUTION

In this section, we first introduce the construction of
R-chain to support exploiting parallelism and vertices reuse
in ReRAM-based architecture. Then, we design an efficient
storage format for R-chain.

A. Construction of R-Chain

To exploit parallelism and vertices reuse in HGNNs, an
intuition is that metapath instances involving repetitive vertices
can be distributed together to reuse vertex data while unrelated
metapath instances can be processed in parallel. To achieve
this, ChainPIM organizes metapaths into distinct groups and
introduces a chain structure to capture relationships of metap-
aths in each group. Metapath instances in different groups can
be processed in parallel, and instances in the same group use
the chain structure to exploit vertices reuse. In this work, we
propose a novel method for creating groups.

We draw inspiration from Radix sort [28], which is a sorting
algorithm that distributes elements into buckets based on their
individual characters at key positions. Following a similar
method, we can asymptotically assign metapaths to different
groups based on their vertex type at the key position. After
obtaining groups, we construct chain structures of metapaths
in each group to exploit vertices reuse.

Specifically, given the set of metapaths, we first choose
the starting position of the metapath as the key position, and
metapaths that have the same vertex type at the key position
will be assigned to the same group. Then, we move the key

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on June 21,2025 at 03:07:38 UTC from IEEE Xplore. Restrictions apply.

2520 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 7, JULY 2025

(a)

(b)

Fig. 5. Construction of R-chain. (a) Organizing metapaths into distinct group.
(b) Generating relationships among metapath instances.

position forward to the next position, and metapaths in the
same group will be further assigned to different groups based
on the vertex type at the key position. Afterward, the key
position moves forward, and the groups will be divided again.
This process will be repeated several times, and we will get the
final groups. The more groups are divided, the more metapaths
can be executed in parallel. The number of repetitions of the
above process is defined as n. Take n equals to 2 as an example,
as shown in Fig. 5(a), given the original set of metapaths, we
let starting position as the key position, and the metapath will
be assigned to group A or B according to their vertex type
at the key position. Then, the key position moves forward to
the next position. Group A, B are further divided into group
AB, AC and BA, BC separately, and the metapaths are further
assigned to corresponding groups based on their vertex type at
the key position. Finally, we merge the same vertex type that
appears in the same position of different metapaths in each
group into one and obtain a chain structure. The repetition
factor n represents a tradeoff between parallelism and vertex
reuse. A larger n provides more parallelism while a smaller n
more effectively promotes vertex reuse.

Based on the chain structure in each group, we can generate
relationships among metapath instances, called R-chain, to
reuse vertex data for efficient execution of HGNNs. Fig. 5(b)
shows an example of how to obtain a R-chain based on chain
structure. Given a specific graph structure, we choose a vertex
① of A type as the target vertex. According to the chain
structure, the successor of A is B, so we first need to find the B
type neighbors of ①, i.e., ② and ③, and attach them to the ①.
Subsequently, since the successors of B are A and C, we then
find A and C neighbors of ② and ③, i.e., ①,④,⑤ and ①,⑥,⑤.
They are attached to ② and ③, respectively. This process is
repeated until the chain structure is perfectly matched. Finally,
we obtain the corresponding R-chain.

In a word, chain structure provides a simple and effective
guidance to generate R-chain in each group. Traversing and

(a)

(b) (c)

(d)

Fig. 6. Storage of instance. (a) Storaged metapath instances. (b) Traditional
storage of instances. (c) R-Chain based storage of instances. (d) Comparison
between traditional storage and R-Chain based storage.

executing along different R-chains at runtime enables the
parallelism of HGNNs in a natural way. Specifically, after
constructing R-chains, each becomes an autonomous task
that can be processed efficiently in parallel. This approach
facilitates parallel processing across different instances and
metapaths, thereby enhancing overall throughput.

B. Instances Storage Over R-Chain

Above constructed R-chains are to be prestored in the off-
chip memory to support parallel execution of HGNNs. In
subsection, to achieve efficient storage of R-chains, we design
an efficient storage format for them.

For the traditional method of storing metapath instances,
as shown in Fig. 6(b), each vertex consists of three parts of
vertex value, vertex type, and next vertex pointer, which are
int (4B), char (1B), and int (4B), respectively. Vertices in a
metapath are connected by the next vertex pointer, and if the
next vertex pointer of a certain vertex is null, it indicates
that this vertex is a tail vertex of this instance. To store
R-chains, a straightforward approach is to add connections
between instances in the traditional storage method. However,
this approach introduces redundant vertex storage and doesn’t
fully exploit the storage benefits that R-chain itself offers.
Therefore, we propose a more efficient storage format for R-
chain, as shown in Fig. 6(c). We add a metapath flag (1 bit)
and a shared pointer (4B) on each vertex storage. The metapath
flag marks the end of a metapath instance and is used to
identify short metapath instance. For example, vertex ② in
instance ①-②-① is not the end of the chain, but the metapath
flag of vertex ② will be set to “1” to indicates there is a
short metapath ①-②. The shared pointer is used to connect the
vertices that share the same prefix structure, for example, the
shared pointer of ① points to ④ because ①-②-① and ①-②-④
share the same prefix ①-②. The shared pointer of ③ points to

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on June 21,2025 at 03:07:38 UTC from IEEE Xplore. Restrictions apply.

XIAO et al.: ChainPIM: A ReRAM-BASED PROCESSING-IN-MEMORY ACCELERATOR FOR HGNNS VIA CHAIN STRUCTURE 2521

(a) (b) (c)

Fig. 7. ChainPIM architecture. (a) Overview of ChainPIM. (b) Structure of ChainPIM Tile. (c) Metapath Intra-instance Aggregation Engine.

⑦ because ①-②-⑤-③ and ①-②-⑤-⑦ share the same prefix ①-
②-⑤. Although the additional metapath flag and shared pointer
increase the memory consumption from 72 bits to 105 bits for
each vertex, our method still significantly reduces the overall
memory overhead compared to the traditional storage. This is
because traditional storage of instances stores all vertices of
each instance, involving a lot of repeated vertex storage. We
eliminate repeated vertex storage in our approach. As shown
in Fig. 6(d), our approach saves more than 30% memory
compared to the traditional storage of instances under the given
example in Fig. 6(a). Overall, our proposed storage approach
can efficiently store the R-chain for each group and also reduce
storage overheads.

IV. CHAINPIM ARCHITECTURE

In this section, we first introduce the overall architecture of
ChainPIM and its workflow. Then, we present a scheduling
strategy to make ChainPIM more efficient by improving vertex
reuse and eliminating redundancy.

A. Overview of ChainPIM Architecture

Fig. 7(a) presents the overall architecture of ChainPIM,
which is organized in a hierarchical manner. A ChainPIM
chip comprises a number of ReRAM tiles interconnected
through a mesh-based internal communication network. Each
tile includes multiple compute units (CUs). Additionally,
ChainPIM can also connect to large off-chip memory, which is
ideal for handling large graphs that are sequentially streamed
into the tiles via a memory controller. Furthermore, a R-chain
processor is laid out between off-chip memory and ChainPIM
chip, enabling the fast construction of R-chain without the
need for a host processor. We describe each component of
ChainPIM below.

Off-Chip Memory: Due to inherent material and archi-
tectural limitations, the memory capacity of computational
ReRAM crossbars is typically limited and unable to accom-
modate large graph datasets. Therefore, off-chip memory is
employed in ChainPIM and primarily used to store input and
output data of HGNNs. The input data includes metapaths,
graph structure information, R-chains, and vertex features.
Metapaths and graph structure information are used by R-chain
processor to generate R-chains. Then meta-scheduler uses R-
chains to manage task execution (Section IV-C) during the

execution of HGNNs. Additionally, vertex features are stored
in a dense matrix format to enable their fast load on ReRAM
crossbars without the format conversion overhead.

ChainPIM Tile: As shown in Fig. 7(b), a ReRAM tile
consists of a set of on-chip buffers and three types of
aggregation engines. The on-chip buffer is composed of three
distinct components: 1) an input buffer, which temporarily
holds weight data that feeds into the crossbar as an input; 2) a
crossbar buffer designed to cache vertex features prior to their
mapping into the crossbars; and 3) an output buffer, which
temporarily stores outputs produced by the Special Function
Units (SFU). Three types of aggregation engines are metapath
intrainstance aggregation engine (MIAE), intrametapath aggre-
gation engine (IAAE), and intermetapath aggregation engine
(IEAE). These engines are used for the three levels of aggre-
gations, respectively. Fig. 7(c) shows the microstructure of
MIAE. This engine comprises a prefetcher, a meta-scheduler,
on-chip buffers, multiple CUs and their corresponding SFUs.
The meta-scheduler manages the scheduling order of metapath
instances and sends them to the prefetcher. This scheduler
adopts our scheduling strategy (Section IV-C) to generate
scheduling orders, achieving high-data reuse and low-vertex
loading overhead. The prefetcher receives the optimized
scheduling order from the meta-scheduler and then prefetches
the corresponding metapath and vertex features in order. Since
the prefetching process is covered by the HGNN execution
stage, its overhead is negligible.

R-Chain Processor: R-chain processor works independently
of the ReRAM for constructing R-chains to be stored in the off-
chip memory. Instead of constructing all the R-chains before
aggregation, ChainPIM adopts a gradual generation manner.
This means pipelining the generation of R-chains in the R-chain
processor and the aggregation in ReRAM. R-chain processor
generates and stores enough R-chains for computations required
for ReRAM. Memory allocated for storing R-chains is released
after ReRAM completes corresponding computations, which
significantly reduces the memory footprint.

CUs: A CU consists of core computational logics and
peripheral circuits, such as digital-to-analog converter (DAC),
to support matrix-vector multiplication (MVM). Since the
main operations of the three-level aggregations in HGNNs
are MVMs, our ReRAM crossbar-based CU can aggregate
features of multiple vertices or instances simultaneously,
achieving efficient execution of HGNNs.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on June 21,2025 at 03:07:38 UTC from IEEE Xplore. Restrictions apply.

2522 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 7, JULY 2025

Fig. 8. Workflow of ChainPIM.

Memory Controller: The memory controller coordinates the
data transfers between the off-chip memory and the ChainPIM
chip. It ensures that input data is prefetched by the prefetcher
to on-chip buffers, thus hiding the memory access latency. To
boost efficiency, the final output results are batch-written back
to the off-chip memory. Furthermore, intermediate results gen-
erated by the three aggregation engines seamlessly propagate
across various levels of aggregation engines by leveraging the
on-chip network.

B. Workflow of ChainPIM

In essence, ChainPIM is a task-pipelined accelerator, where
the workflow of ChainPIM is shown in Fig. 8. Specifically,
given a vertex, based on graph data and metapath 1 , the
R-chain processor generates R-chains and stores them in the
off-chip memory 2 . These generated R-chains are used
to guide the aggregation process, enabling both interinstance
and intermetapath parallelism. After R-chains are generated,
the input data transfers from off-chip memory to the MIAE
3 . The weight parameters are loaded into input buffer as

an input vector, while the vertex features are loaded into
crossbar buffer as a matrix. Note that the loaded vertex features
are predetermined when the scheduler establishes the task
order. This design allows ChainPIM to utilize a prefetching
mechanism, effectively hiding the off-chip memory access
latency. Then, multiple CUs in MIAE perform matrix-vector
multiplication (MVM) operations to aggregate the metapath-
based neighbors of the given vertex and send the partial
results to SFU. The SFU consists of a shift-and-add unit
(S&A) and a scalar arithmetic and logic unit (sALU), which
are utilized to further process the partial results and send

them to output buffer. Once the aggregation of an instance
is completed, the intermediate results will be written to the
IAAE to calculate the aggregation result of the corresponding
metapath 4 . Subsequently, the aggregation results of all
metapaths associated with the given vertex are sent to the
IEAE to compute the embedding of the given vertex 5 .
Finally, the vertex embedding will be written back to the off-
chip memory 6 .

While the three engines operate in a pipelined manner, the
potential of imbalanced workload among them can degrade
the utilization of ReRAM crossbars, thereby reducing the
system throughput. To allocate proper number of crossbars to
MIAE, IAAE and IEAE, we adopt a sample-based method to
estimate the workload of each engine, and the workload ratio
is estimated by the following equation:

W1:W2:W3 =
M∑

i=1

�Li/Cr� · (w · Ii + r)

:
M∑

i=1

�Ii/Cr� · (w · Cr + r):�M/Cr� · (w · Cr + r) (2)

where Cr is the row size of crossbar, w and r represent
the number of cycles required per write and read operation,
respectively, Li is the length of metapath i, and M and Ii

are the number of metapaths and instances for metapath i,
respectively. We sample workload ratios of 100 vertices for
each metapath type and adopt their mean to determine the
number of crossbars allocated to MIAE, IAAE and IEAE. This
approach enables ChainPIM to adaptively coordinate varying
hardware specifications and workload patterns, achieving bal-
anced workload and high-hardware utilization at negligible
cost.

C. Locality-Aware Instance Scheduling

In this subsection, we discuss how ChainPIM reuses vertices
and then use a case study to further illustrate the vertices reuse
in the ReRAM architecture.

Based on R-chain, we take the locality into account and
adopt a locality-aware instance scheduling method. As shown
in Fig. 5(b), we utilize a depth-first search (DFS) on R-chain to
generate an instance scheduling order for target vertex ①. This
approach traverses and records each path from the target vertex
to the end vertices of metapath instances. This is reasonable
because adjacent paths share more prefix vertices and exhibit
greater locality. As illustrated by a simple example in Fig. 9,
given the original graph and corresponding metapath instances,
the metapath-ordered instance scheduling shown in Fig. 9(c)
loads the intermediate vertices ②,③,④ and ⑤ multiple times,
resulting in redundant loads (a total of 13 loads). Conversely,
our locality-aware scheduling approach shown in Fig. 9(d)
eliminates such redundancies, reducing the number of loads
to just 7 by leveraging our generated R-chain. In this way,
vertices data are fully reused.

Vertices Reuse in Crossbar: Fig. 10 shows how to reuse
vertices data in the ReRAM architecture. When we aggregate
metapath ①-③, the prefetcher (Section IV-A) in ChainPIM
will load their features by row, and each column represents a

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on June 21,2025 at 03:07:38 UTC from IEEE Xplore. Restrictions apply.

XIAO et al.: ChainPIM: A ReRAM-BASED PROCESSING-IN-MEMORY ACCELERATOR FOR HGNNS VIA CHAIN STRUCTURE 2523

(a) (b)

(c)

(d)

Fig. 9. Comparison of metapath-ordered instances scheduling and locality-
aware instances scheduling. (a) Original graph. (b) Metapath types and
instances. (c) Metapath-ordered instances scheduling (13 loads). (d) Locality-
aware instances scheduling (7 loads).

Fig. 10. Illustration of how crossbar-based processing reuses the vertex data.

dimension of the feature. Subsequently, the ReRAM crossbar
utilizes the target vertex ① and metapath type A-B to search
for the normalized weights (i.e., 0.3 and 0.7) and generates
a hit vector (i.e., 1-0-1-0-0), which are then passed to the
ChainPIM controller. Finally, the ChainPIM controller will
activate the row in the crossbar according to the hit vector,
feed the normalized weight as an input vector, and perform an
MVM operation, efficiently aggregating ①-③ within a single
cycle. When it comes to aggregating ①-③-②, crossbar-based
processing does not store the intermediate result of ①-③ for
reusing. It only reuses the vertex feature remaining in the
crossbar (i.e., ① and ③) and simply maps the feature of
② into the crossbar. Subsequently, ChainPIM searches the
corresponding normalized weights (i.e., 0.3, 0.2, and 0.5),
changes the hit vector and performs an MVM operation for
aggregating ①-③-②.

TABLE I
CHAINPIM CONFIGURATION

V. EVALUATION

A. Experimental Setup

Simulation: We develop a cycle-accurate simulation plat-
form for ChainPIM, integrating comprehensive models for
computation, timing, and energy consumption across all com-
ponents. The simulation framework features an assembly of
32 ReRAM tiles, each hosting 24 compute units (CUs).
Each CU includes 32 ReRAM crossbars. Each crossbar is
sized of 128×128 and utilizes TaOx 0T1R-type ReRAM
cells with read and write latencies of 29.31 and 50.88 ns,
respectively [29]. Additionally, to reduce sensing pressure
and potential error probabilities introduced by the resistance
variability of ReRAM elements, we choose a conservative
2-bit multilevel cell architecture [25]. We configure off-chip
memory as high-bandwidth memory (HBM) with a capacity of
128 GB and a bandwidth of 900 GB/s. Timing simulations for
memory accesses are conducted using Ramulator [30], where
the per-bit energy consumption adheres to specifications at 7
pJ [31]. The microarchitectural specifics within each tile are
systematically modeled using CACTI 7 [32], which assesses
the area, power, and access latency of all internal buffers.
Additionally, the scheduler and prefetcher of ChainPIM,
crafted in Verilog RTL, are synthesized utilizing the Synopsys
toolchain within the TSMC 40-nm technology framework. The
ADCs and DACs are configured at resolutions of 8 and 1
bit, respectively, and their area and energy evaluations are
based on [25]. The fundamental configuration of ChainPIM
is summarized in Table I, which includes the power and area
specifications for each component.

Methodology: We compare ChainPIM with four state-
of-the-art designs on typical platforms: 1) Baseline: Intel
Xeon Gold 5117 CPU; 2) the NVIDIA Tesla V100 GPU;
3) REFLIP [3], a ReRAM-based accelerator designed for
GCN; and 4) MetaNMP [19], a near-memory processing
accelerator for HGNNs. Hardware specifications of CPU and
GPU are shown in Table II. Additionally, the estimation of

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on June 21,2025 at 03:07:38 UTC from IEEE Xplore. Restrictions apply.

2524 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 7, JULY 2025

TABLE II
CPU AND GPU SPECIFICATIONS

TABLE III
DATASETS

CPU energy consumption is derived from the Intel product
specifications [33], while the energy usage of the GPU is
ascertained using the NVIDIA system management interface
(Nvidia-SMI) [34]. Note that we separate out the time of
metapath instance generation in MetaNMP, leaving only the
inference time for comparison.

Workloads: Table III shows details of the heterogeneous
graph datasets used in our experiment, including DBLP
(DP) [35], IMDB (IB) [18], LastFM (LF) [18], OGB-MAG
(OM) [36], and OAG (OG) [37] datasets. Additionally, we
consider three representative HGNNs.

1) MAGNN [18] aggregates vertices within the metapath
instance for structural information and metapaths associ-
ated with the target vertex for the semantic information.

2) HAN [38] only aggregates metapath-based neighbors
(i.e., the end vertex of the metapath instance) for struc-
tural information and performs semantic aggregation on
the results of structural aggregation to obtain the final
vertex embedding, employing vertex-level and semantic-
level attentions.

3) SHGNN [39] aggregates vertices within the tree struc-
ture for structural information and performs semantic
aggregation across different trees.

B. Performance

We first compare the performance of ChainPIM with dif-
ferent platforms. Then, we show benefits of the ChainPIM
in terms of energy efficiency. Fig. 11 shows the performance
of ChainPIM against CPU, GPU, REFLIP [3], and
MetaNMP [19]. The details are as follows.

ChainPIM Versus CPU: ChainPIM outperforms CPU by
1320× on average, due to its highly parallel in-situ MVM
operations in ReRAM crossbars and software-hardware co-
design to efficiently capture the relationships of metapaths
and aggregate metapath instances. Specifically, the benefits
obtained for HGNNs are highly related to models. As we
can see, ChainPIM has a higher-performance improvement in
MAGNN than HAN and SHGNN. This is because MAGNN
has more irregular and repeated vertex accesses. Therefore,
MAGNN shows a 1401× performance improvement on aver-
age.

ChainPIM Versus GPU: GPU is the most commonly
used platform to accelerate HGNNs. Compared with GPU,
ChainPIM is 128.29× faster on average. Although the GPU
features an extensive array of CUDA cores (5120) and high-
bandwidth memory (HBM), the irregular memory accesses
and data dependencies within HGNNs challenge the effective
exploitation of its vast parallelism capabilities. In contrast,
ChainPIM addresses the above issues effectively by fully
leveraging locality in metapaths and potential of multilevel
parallelism, thereby maximizing the benefits of in-situ MVM
operations in ReRAM crossbars. In particular, the benefits
for HGNNs are highly related to graph structure and meta-
paths. DBLP shows the highest-performance improvement of
164.61× on average, since its irregular memory accesses make
GPU hard to accelerate and there is greater locality in its meta-
paths to be exploited by our locality-aware scheduling. These
factors collectively contribute to the substantial performance
gains observed. In addition, ChainPIM utilizes processing-in-
memory to accelerate HGNNs, which naturally reduces data
movement.

ChainPIM Versus REFLIP: We compare ChainPIM with the
state-of-the-art ReRAM-based accelerator REFLIP specially
designed for GCN. Although ChainPIM and REFLIP both
employ ReRAM crossbar as the basic compute unit, ChainPIM
outperforms REFLIP by 15.35× on average. The reasons are
twofold. First, in addition to intervertex parallelism, ChainPIM
further exploits unique interinstance and intermetapath paral-
lelism of HGNNs. Second, ChainPIM additionally enhances
vertex reuse by employing the locality-aware instance schedul-
ing and more effectively improves hardware utilization through
the adaptive crossbar allocation across different engines.

ChainPIM Versus MetaNMP: We also compare ChainPIM
with the stae-of-the-art HGNNs accelerator MetaNMP.
MetaNMP uses near-memory processing architecture and cus-
tomized hardware for HGNNs. ChainPIM is 6.01× faster than
MetaNMP on average. There are three main reasons for this.
The first is that our crossbar-based processing performs the
MVM operation, providing more computational parallelism
than MetaNMP. Second, although near-memory processing
and processing-in-memory both aim to address the irregular

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on June 21,2025 at 03:07:38 UTC from IEEE Xplore. Restrictions apply.

XIAO et al.: ChainPIM: A ReRAM-BASED PROCESSING-IN-MEMORY ACCELERATOR FOR HGNNS VIA CHAIN STRUCTURE 2525

Fig. 11. Speedup of ChainPIM compared with CPU, GPU, REFLIP and MetaNMP. All results are normalized to CPU. OM and OG fail in running on GPU
due to out of memory.

Fig. 12. Energy efficiency of ChainPIM, CPU, GPU, REFLIP and MetaNMP. All results are normalized to CPU.

and frequent memory accesses, processing-in-memory is
better at reducing data movements, especially in HGNNs
where high-dimensional features are frequently loaded and
stored. Our R-chain based locality-aware scheduling extends
this advantage. Third, ChainPIM considers instance-level,
metapath-level, and vertex-level parallelism, thus fully exploit-
ing the potential of parallelism in HGNNs and achieving a
remarkable performance improvement.

C. Energy Efficiency

Fig. 12 shows the energy efficiency of ChainPIM com-
pared with CPU, GPU, and MetaNMP [19]. It can be seen
that ChainPIM consumes 1802× less energy than CPU and
331.75× less energy than GPU on average. This is due
to processing-in-memory employed in ChainPIM, which sig-
nificantly reduces data movement and performs low-energy
MVM operations. Moreover, ChainPIM saves energy by an
average of 18.49× compared to REFLIP. This is because
ChainPIM reduces a large amount of repeated vertex loading
through the locality-aware scheduling, thereby eliminating
unnecessary ReRAM write overhead. Additionally, ChainPIM
outperforms MetaNMP with 10.07× less energy consumption
on average. The underlying reasons for this are twofold.
First, computations in ChainPIM are performed where the
data is stored, while MetaNMP is performed near the place
where data is stored, indicating that ChainPIM has less data
movement. Second, ChainPIM performs low-energy MVM
operations efficiently, while MetaNMP performs computations
element by element by integrated compute logic.

D. Memory Consumption Efficiency

Metapath instances result in many vertices being stored
repeatedly, causing significant memory consumption.
Especially for the large graphs where metapath instances
increase exponentially, such as OGB-MAG [36], the memory
consumption required in the model is much greater than the

(a) (b)

(c) (d) (e)

Fig. 13. Memory consumption reduction ratio between ChainPIM and
MetaNMP. (a) IB. (b) LF. (c) DP. (d) OM. (e) OG.

graph itself due to the hundreds of millions of metapath
instances to store. Experimental results show that ChainPIM
reduces memory consumption by 47.86% on average, as
shown in Fig. 13. A reason behind this is that we design a new
storage format for R-chain to avoid storing a large number of
repeated vertices. In addition, with the pipelined parallelism
between the R-chain processor and ReRAM, the R-chain’s
storage space will be released in time after it is aggregated,
reducing the memory consumption.

Moreover, ChainPIM outperforms MetaNMP for most meta-
paths in IB, LF and DP. Although both systems generate
instances dynamically, ChainPIM additionally reduces the
repeated vertices. Notably, for metapaths in OM and OG,
ChainPIM is mildly inferior to MetaNMP. This is because
ChainPIM has more powerful parallelism and needs to store

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on June 21,2025 at 03:07:38 UTC from IEEE Xplore. Restrictions apply.

2526 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 7, JULY 2025

(a) (b)

Fig. 14. (a) Performance comparison between ChainPIM and ChainPIM-SL
and (b) loading-to-computing ratio.

(a) (b)

Fig. 15. (a) Execution times and (b) number of vertex data loads comparison
between W/LS and Wo/LS. All results are normalized to W/LS.

more instances for parallel vertices. Sacrificing a small
amount of memory to enhance performance proves to be
cost-effective. Besides, heterogeneous graph in real world is
typically dynamic, which changes slightly in a period of time.
In this scenario, ChainPIM requires minor modifications to
the R-chains each time, while MetaNMP has to regenerate
the instances, indicating that ChainPIM offers better efficiency
than MetaNMP when handling dynamic graph data.

E. Performance Breakdown of ChainPIM

1) Instances Storage Over R-Chain: In addition to reduce
memory consumption, our instances storage method also
provides the execution order of metapath instances in advance,
allowing the crossbars to prefetch the vertex features.
Fig. 14(a) demonstrates the performance of data prefetching.
ChainPIM-SL is a version of ChainPIM that does not have
the execution order of instances and loads vertex features
naively to the crossbars. ChainPIM outperforms ChainPIM-SL
by 2.59× on average and DP achieves the best-performance
improvement of 2.87×. The reason behind this is that instance
management stores the relationships between instances, allow-
ing for efficient data prefetching. In addition, the performance
achieved is highly correlated with the loading-to-computing
ratio, as shown in Fig. 14(b). DBLP has the highest-loading-
to-computing ratio and, therefore, delivers greater gains in data
prefetching.

2) Instance Scheduling Over R-Chain: Fig. 15(a) presents
the execution time of MAGNN inference for ChainPIM with
(W/LS) and without (Wo/LS) our locality-aware scheduling.
The normalized execution time is divided into computation
time (W/LS-Cp and Wo/LS-Cp) and data load time (W/LS-
Ld and Wo/LS-Ld). W/LS outperforms Wo/LS by 2.17×
on average. This is because vertex features are fully reused
in our locality-aware strategy, eliminating redundant vertex
feature loading. As shown in Fig. 15(b), the performance

Fig. 16. Performance improvement in instance-level and metapath-level
parallelism.

improvements achieved through the locality-aware scheduling
order are closely related to the metapath correlation and
the graph structure. LF has a relatively large number of
metapath instances, and its metapaths have a relatively greater
correlation. Therefore, the number of vertex data loads is
reduced by 3.74×, obtaining a performance improvement of
up to 2.76×.

3) Instance-Level and Metapath-Level Parallelism
Exploiting: ChainPIM fully exploits instance-level and
metapath-level parallelism. Fig. 16 shows the performance
improvement from instance-level parallelism and metapath-
level parallelism on five different datasets. We evaluate
the normalized execution time in different configurations:
1) no instance-level and metapath-level parallelism (no
parallel); 2) only employ instance-level parallelism (instance
parallel); and 3) employ both instance-level and metapath-level
parallelism (Inst+Meta parallel). Overall, instance-level and
metapath-level parallelism boost the performance by 3.89×
and 1.47× on average, respectively. The benefits obtained
from these parallelism are closely related to the number of
instances and metapaths. IB achieves the best-performance
improvement because it has a maximum number of metapaths.
Meanwhile, the number of instances corresponding to different
metapaths is almost the same in IB, which allows the well-
parallelized processing of metapaths to reduce execution time.
However, LF, OM, and OG show slight improvement in
metapath-level parallelism. The reason behind this is that the
number of instances across different metapaths is extremely
different, which leads to insignificant gains from metapath-
level parallelism. When a metapath with a high number of
instances is parallelized with a metapath with a low number
of instances, the final time depends on the metapath with a
high number of instances.

4) Sample-Based Crossbar Configuration: We investigate
the performance and the crossbar utilization improvement
from adaptively allocating the crossbar for different pipeline
engines on five datasets. And we evaluate them in two
configurations: 1) identical configuration that allocates the
same number of crossbars for each engine (ChainPIM-Id) and
2) adaptive configuration using the sample-based approach
proposed in Section IV-B (ChainPIM-Ad). As shown in
Fig. 17(a), ChainPIM-Ad outperforms ChainPIM-Id by 2.10×
on average. This is because the identical configuration of
the three engines does not account for the imbalanced work-
load among them, leading to significant crossbar waste and
degraded performance. In contrast, ChainPIM-Ad takes into

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on June 21,2025 at 03:07:38 UTC from IEEE Xplore. Restrictions apply.

XIAO et al.: ChainPIM: A ReRAM-BASED PROCESSING-IN-MEMORY ACCELERATOR FOR HGNNS VIA CHAIN STRUCTURE 2527

(a) (b)

Fig. 17. (a) Normalized execution times and (b) crossbar utilization between
ChainPIM-Ad and ChainPIM-Id. All results are normalized to ChainPIM-Id.

(a) (b)

Fig. 18. (a) Normalized execution times and (b) scaling efficiency for various
number of crossbars in CU.

Fig. 19. Scalability for various scales of datasets.

account the number of metapaths and instances, crossbar size,
etc., thereby enhancing hardware utilization through effective
parallelism. As shown in Fig. 17(b), ChainPIM-Ad improves
normalized crossbar utilization by 2.10× on average compared
to ChainPIM-Id. All datasets show improved performance,
except for IB, this dataset has a limited number of instances,
rendering the workload too small to be effective for our
ChainPIM architecture.

F. Scalability and Sensitivity Analysis

1) CU Size: We investigate the scalability for various
numbers of crossbars in CU as shown in Fig. 18(a). The
performance of ChainPIM exhibits good scalability as the
number of crossbars increases. Since most of the feature
dimensions are equal to or greater than 64, each CU is
configured with 8 crossbars in a row, making the parallelism
of crossbars fully exploited. However, the scaling efficiency
decreases as the number of crossbars increases, as shown in
Fig. 18(b). This is because as the number of crossbars further
increases, the bottleneck of ChainPIM shifts from parallelism
to communication. Therefore, we make a tradeoff between
parallel efficiency and communication efficiency by setting the
crossbars to 4×8.

2) Dataset Scales: We investigate the scalability of five
datasets with various scales of metapath instances, namely,
IB (0.009 GB), DB (1.83 GB), OG (83 GB), LF (111 GB),
and OM (153 GB). Fig. 19 shows the throughput results
of ChainPIM. Overall, the throughput of ChainPIM exhibits
excellent scalability as the scale of datasets increases, achiev-
ing even higher throughput in larger datasets. Additionally, LF

Fig. 20. (a) Normalized execution times and (b) crossbar utilization under
different write-to-cost ratios, 1:2, 1:5, and 1:8. All results are normalized to
1:2.

(a) (b)

Fig. 21. (a) Normalized execution times and (b) memory consumption under
different repetition factor n = 1, 2, 3. All results are normalized to n = 1.

achieves the best performance at 4.81 TOPS since it has a
relatively larger potential for vertex reuse and a lower-loading-
to-computing ratio, allowing more aggregation operations to
execute in less time. However, OM does not achieve the
higher performance expected because it has a relatively higher
number of short instances. Therefore, it leaves more rows of
the crossbar in idle, resulting in ordinary performance.

We investigate the effectiveness and scalability in adapting
to various read-to-write cost ratios, namely, 1:2, 1:5, and 1:8.
Fig. 20(a) shows normalized execution time under different
read-to-write ratios. The degradation in system performance
markedly less than the increase in write costs, indicating the
effectiveness of our adaptive hardware allocation method in
Section IV-B. Moreover, Fig. 20(b) illustrates the normalized
crossbar utilization under different read-to-write ratios. The
results indicate that ChainPIM maintains robust performance
even as the read-to-write cost ratio increased to 1:8, further
demonstrating the effectiveness and scalability of ChainPIM
in adapting to various read-to-write cost ratios.

3) Repetition Factor n: Fig. 21 shows the normalized
performance and memory consumption of ChainPIM under
different repetition factor n. Repetition factor n represents a
tradeoff between parallelism and vertex reuse. The number of
instances for a vertex is usually much larger than the number
of crossbars in PE, implying that parallelism of ReRAM is
fully exploited while vertex reuse is not. Therefore, n primarily
affects the reuse of vertices. As shown in Fig. 21(a), n = 1
is the best value for all the datasets. This is because small
n can fully exploit vertex reuse, thereby reducing a large
amount of vertex load. Large n results in low-vertex reuse
and ReRAM cannot offer sufficient parallel elements for large
n, leading to degraded performance. Besides, as shown in
Fig. 21(b), memory consumption demonstrates similar pattern
to performance. Setting n = 1 optimally reduces the repeated
vertices, thereby achieving minimal memory consumption.
Notably, OM and OG are not sensitive to n, this is because

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on June 21,2025 at 03:07:38 UTC from IEEE Xplore. Restrictions apply.

2528 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 7, JULY 2025

they have only 2 metapaths and their instances within different
metapaths have negligible shared vertices.

VI. CONCLUSION

In this article, we present ChainPIM, the first ReRAM-based
processing-in-memory accelerator for HGNNs. ChainPIM is
designed to significantly enhance the efficiency of HGNNs
through three key innovations. First, we use R-chain to
capture the parallelism and reuse relationship among metap-
ath instances, enabling fast generation of efficient execution
schemes. Second, an efficient storage method is designed
for R-chain to reduce redundant vertices storage significantly.
Third, we develop a specialized ReRAM-based architecture to
pipeline the different types of aggregations in HGNNs, fully
exploiting the multilevel parallelism. Experimental results
demonstrate that ChainPIM outperforms CPU, GPU, and state-
of-the-art accelerators for HGNNs in both performance and
energy efficiency.

REFERENCES

[1] Y. Wang et al., “GNNAdvisor: An adaptive and efficient runtime system
for GNN acceleration on GPUs,” in Proc. USENIX Symp. Oper. Syst.
Design Implement. (OSDI), 2021, pp. 515–531.

[2] M. Kwon, D. Gouk, S. Lee, and M. Jung, “Hardware/software co-
programmable framework for computational SSDs to accelerate deep
learning service on large-scale graphs,” in Proc. USENIX Conf. File
Storage Technol. (FAST), 2022, pp. 147–164.

[3] Y. Huang et al., “Accelerating graph convolutional networks using
crossbar-based processing-in-memory architectures,” in Proc. IEEE
Int. Symp. High Perform. Comput. Architecture (HPCA), 2022,
pp. 1029–1042.

[4] A. I. Arka, B. K. Joardar, J. R. Doppa, P. P. Pande, and K. Chakrabarty,
“DARe: DropLayer-aware manycore ReRAM architecture for training
graph neural networks,” in Proc. IEEE/ACM Int. Conf. Comput. Aided
Design (ICCAD), 2021, pp. 1–9.

[5] H. Wang, Z. Cui, R. Liu, L. Fang, and Y. Sha, “A multi-type transferable
method for missing link prediction in heterogeneous social networks,”
IEEE Trans. Knowl. Data Eng., vol. 35, no. 11, pp. 10981–10991, Nov.
2023.

[6] C. Chen and Y.-Y. Liu, “A survey on hyperlink prediction,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 35, no. 11, pp. 15034–15050, Nov. 2024.

[7] A. C. M. Mancino, A. Ferrara, S. Bufi, D. Malitesta, T. Di Noia,
and E. Di Sciascio, “KGTORe: Tailored recommendations through
knowledge-aware GNN models,” in Proc. 17th ACM Conf.
Recommender Syst., 2023, pp. 576–587. [Online]. Available: https://
doi.org/10.1145/3604915.3608804

[8] J. Liu, Y. Wang, Z. Lin, M. Chen, Y. Hao, and L. Hu, “Natural language
fine-tuning,” 2024, arXiv:2412.20382.

[9] Y.-L. Zheng, W.-Y. Yang, Y.-S. Chen, and D.-H. Han, “An energy-
efficient inference engine for a configurable ReRAM-based neural
network accelerator,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 42, no. 3, pp. 740–753, Mar. 2023.

[10] H. Li, Z. Li, Z. Bai, and T. Mitra, “ASADI: Accelerating sparse attention
using diagonal-based in-situ computing,” in Proc. IEEE Int. Symp. High-
Perform. Comput. Archit. (HPCA), 2024, pp. 774–787.

[11] L. Zheng et al., “PhGraph: A high-performance ReRAM-based acceler-
ator for hypergraph applications,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 43, no. 5, pp. 1318–1331, May 2024.

[12] H. Li et al., “ReSMA: Accelerating approximate string matching using
ReRAM-based content addressable memory,” in Proc. 59th ACM/IEEE
Design Autom. Conf., 2022, pp. 991–996.

[13] H. Li, H. Jin, L. Zheng, and X. Liao, “ReSQM: Accelerating database
operations using ReRAM-based content addressable memory,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 11,
pp. 4030–4041, Nov. 2020.

[14] D. Chen et al., “GraphFly: Efficient asynchronous streaming graphs
processing via dependency-flow,” in Proc. Int. Conf. High Perform.
Comput., Netw., Storage Anal., 2022, pp. 1–14.

[15] Y. Huang et al., “Ready: A ReRAM-based processing-in-memory
accelerator for dynamic graph convolutional networks,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 41, no. 11,
pp. 3567–3578, Nov. 2022.

[16] H. Jin et al., “Accelerating graph convolutional networks through
a PIM-accelerated approach,” IEEE Trans. Comput., vol. 72, no. 9,
pp. 2628–2640, Sep. 2023.

[17] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proc. Int. Conf.
Mach. Learn., 2017, pp. 1263–1272.

[18] X. Fu, J. Zhang, Z. Meng, and I. King, “MAGNN: Metapath aggregated
graph neural network for heterogeneous graph embedding,” in Proc. Web
Conf., 2020, pp. 2331–2341.

[19] D. Chen et al., “MetaNMP: Leveraging cartesian-like product to accel-
erate HGNNs with near-memory processing,” in Proc. 50th Annu. Int.
Symp. Comput. Archit., 2023, pp. 1–13.

[20] B. Hu, Z. Zhang, C. Shi, J. Zhou, X. Li, and Y. Qi, “Cash-out user
detection based on attributed heterogeneous information network with
a hierarchical attention mechanism,” in Proc. AAAI Conf. Artif. Intell.
(AAAI), 2019, pp. 946–953.

[21] X. Geng, H. Zhang, J. Bian, and T. Chua, “Learning image and user
features for recommendation in social networks,” in Proc. IEEE Int.
Conf. Comput. Vis. (ICCV), 2015, pp. 4274–4282.

[22] M. Yasunaga et al., “ScisummNet: A large annotated corpus and
content-impact models for scientific paper Summarization with cita-
tion networks,” in Proc. AAAI Conf. Artif. Intell. (AAAI), 2019,
pp. 7386–7393.

[23] D. Chen et al., “A general offloading approach for near-DRAM
processing-in-memory architectures,” in Proc. IEEE Int. Parallel Distrib.
Process. Symp. (IPDPS), 2022, pp. 246–257.

[24] P. Chi et al., “PRIME: A novel processing-in-memory architecture for
neural network computation in ReRAM-based main memory,” ACM
SIGARCH Comput. Archit. News, vol. 44, no. 3, pp. 27–39, 2016.

[25] A. Shafiee et al., “ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” ACM SIGARCH Comput.
Archit. News, vol. 44, no. 3, pp. 14–26, 2016.

[26] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “GraphR: Accelerating
graph processing using ReRAM,” in Proc. IEEE Int. Symp. High
Perform. Comput. Archit. (HPCA), 2018, pp. 531–543.

[27] M. Hu et al., “Dot-product engine for neuromorphic computing:
Programming 1T1M crossbar to accelerate matrix-vector multiplication,”
in Proc. 53rd Annu. Design Autom. Conf., 2016, pp. 1–6.

[28] D. E. Knuth, The Art of Computer Programming, vol. 3. London, U.K.:
Pearson Educ., 1997.

[29] D. Niu, C. Xu, N. Muralimanohar, N. P. Jouppi, and Y. Xie, “Design
of cross-point metal-oxide ReRAM emphasizing reliability and cost,”
in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), 2013,
pp. 17–23.

[30] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible
DRAM simulator,” IEEE Comput. Archit. Lett., vol. 15, no. 1, pp. 45–49,
Jan.–Jun. 2016.

[31] M. O’Connor, “Highlights of the high-bandwidth memory (HBM)
standard,” in Proc. Memory Forum Workshop, vol. 3, 2014, pp. 1–25.

[32] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee,
and V. Srinivas, “CACTI 7: New tools for interconnect exploration in
innovative off-chip memories,” ACM Trans. Archit. Code Optim., vol. 14,
no. 2, pp. 1–25, 2017.

[33] “Intel Xeon gold 5117 processor (19.25M cache, 2.00 GHz)
specifications,” Intel. 2024. [Online]. Available: https://www.intel.
com/content/www/us/en/products/sku/122460/intel-xeon-gold-5117-
processor-19-25m-cache-2-00-ghz/specifications.html

[34] “NVIDIA system management interface,” Nvidia, 2012. [Online].
Available: https://developer.nvidia.com/nvidia-system-management-
interface

[35] J. Gao, F. Liang, W. Fan, Y. Sun, and J. Han, “Graph-based consensus
maximization among multiple supervised and unsupervised models,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 22, 2009, pp. 1–13.

[36] W. Hu et al., “Open graph benchmark: Datasets for machine learning
on graphs,” in Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020,
pp. 22118–22133.

[37] A. Sinha et al., “An overview of microsoft academic service (MAS)
and applications,” in Proc. 24th Int. Conf. World Wide Web, 2015,
pp. 243–246.

[38] X. Wang et al., “Heterogeneous graph attention network,” in Proc. World
Wide Web Conf., 2019, pp. 2022–2032.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on June 21,2025 at 03:07:38 UTC from IEEE Xplore. Restrictions apply.

XIAO et al.: ChainPIM: A ReRAM-BASED PROCESSING-IN-MEMORY ACCELERATOR FOR HGNNS VIA CHAIN STRUCTURE 2529

[39] W. Xu, Y. Xia, W. Liu, J. Bian, J. Yin, and T.-Y. Liu,
“SHGNN: Structure-aware heterogeneous graph neural network,” 2021,
arXiv:2112.06244.

Wenjing Xiao received the Ph.D. degree from
the School of Computer Science and Technology,
Huazhong University of Science and Technology,
Wuhan, China, in 2023.

She is a Research Assistant Professor with the
School of Computer, Electronic and Information,
Guangxi University, Nanning, China. Her Google
Scholar Citations reached more than 450 with a
H-index of 13. Her research interests include effi-
cient artificial intelligence, edge intelligence, on
device artificial intelligence, Internet of Things, and

wireless network.

Jianyu Wang received the B.E. degree in mechan-
ical engineering from the School of Mechanical
Engineering, Jiangnan University, Wuxi, China, in
2022. He is currently pursuing the M.E. degree
with the School of Computer, Electronics and
Information, Guangxi University, Nanning, China.

His research interests include in-memory comput-
ing and graph neural networks.

Dan Chen received the Ph.D. degree from the
Huazhong University of Science and Technology,
Wuhan, China, in 2024.

He is currently the Research Fellow with the
National University of Singapore, Singapore. His
research interests focus on graph processing and
processing-in-memory.

Chenglong Shi received the B.E. degree in com-
puter science and technology from the School
of Information Engineering, Xuchang University,
Xuchang, China, in 2023. He is currently pursuing
the M.E. degree with the School of Computer,
Electronics and Information, Guangxi University,
Nanning, China.

His research interests include edge computing,
graph neural networks, and deep learning.

Xin Ling received the bachelor’s degree in chem-
ical engineering from the School of Chemistry
and Chemical Engineering, Guangxi University,
Nanning, China, in 2022, where he is currently pur-
suing the M.E. degree with the School of Computer,
Electronics and Information.

His research interests include edge computing,
Internet of Vehicles, and task offloading.

Min Chen (Fellow, IEEE) is a Full Professor with
the School of Computer Science and Engineering,
South China University of Technology, Guangzhou,
China. He is also the Director of Embedded
and Pervasive Computing (EPIC) Lab, Huazhong
University of Science and Technology, Wuhan,
China. His Google Scholar Citations reached more
than 45 800 with a H-index of 98. His top paper was
cited more than 4750 times.

Dr. Chen was selected as a Highly Cited
Researcher from 2018 to 2023. He received the IEEE

Communications Society Fred W. Ellersick Prize in 2017, the IEEE Jack
Neubauer Memorial Award in 2019, and the IEEE ComSoc APB Oustanding
Paper Award in 2022. He is the Founding Chair of IEEE Computer Society
Special Technical Communities on Big Data. He is a Fellow of IET.

Thomas Wu received the Ph.D. degree in electrical
engineering from the University of Pennsylvania,
Philadelphia, PA, USA, in 1999.

In 1999, he was an Assistant Professor with the
University of Central Florida, Orlando, FL, USA,
where he was promoted to an Associate Professor
in 2005 and a Professor in 2011. He also got his
tenure in 2005. He was an ASEE Summer Faculty
Fellow with Air Force Research Laboratory (AFRL)
in Summer of 2009 and 2010. He was also appointed
as the prestigious National Research Council Senior

Research Associate with AFRL from 2010 to 2012. He is currently a Professor
of Electrical Engineering with the School of Electrical Engineering, Guangxi
University, Nanning, China.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on June 21,2025 at 03:07:38 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

