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RT3C: Real-Time Crowd Counting in Multi-Scene
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Abstract—Recently, the advancements in edge computing have
boosted the deployment of video analysis systems based on deep
learning, which breaks the limitation of the constrained communi-
cation and computing resources of local devices. However, process-
ing multi-scene high-resolution video streams in crowd surveillance
remains a significant challenge since it is difficult to formulate
dynamic video content and communication environment to sup-
port offloading decisions. To bridge the gap between applications
and modeling, this paper presents a Real-Time Cloud-edge-device
Collaboration framework, which enables fast and accurate Crowd
counting (RT3C) on the real dataset. RT3C comprises key frame
detection, adaptive patch partition, patch encoder and decoder and
computation offloading decision, designed to divide key frames into
a minimum number of patches and determine the offloading loca-
tion of patches. A Real-Time Multi-Agent Actor-Critic (RTMAAC)
algorithm based on multi-agent reinforcement learning is proposed
to decide whether to compute patches with a lightweight model
on edge or a large model on cloud. Unlike traditional approaches
ignoring the contents, RTMAAC is a dynamic online decision
algorithm based on context of the network and video. Extensive
experiments demonstrate that RT3C effectively discriminates the
valid frames and optimizes offloading decisions in complex en-
vironments, outperforming other baseline algorithms on the two
crowd counting datasets. In summary, RT3C provides a promising
framework for multi-scene video streams, which can be extended
to other applications to realize video computation based on deep
models.

Manuscript received 22 June 2023; revised 16 January 2024; accepted 3
March 2024. Date of publication 18 March 2024; date of current version 8
August 2024. This work was supported in part by the National Natural Science
Foundation of China (NSFC) under Grant 62176101, Grant 62276109, Grant
62322205, Grant 62272177, Grant 62202410, and Grant 62311530344, in part
by the National Key Research and Development Program of China under Grant
2023YFB4503400, and in part by Shenzhen Science and Technology Program
under Grant JCYJ20220530143808019. The work of Dr. Miao was supported in
part by the Shenzhen Institute of Artificial Intelligence and Robotics for Society
(AIRS). (Corresponding author: Long Hu.)

Rui Wang is with the School of Computer Science and Technology, Huazhong
University of Science and Technology, Wuhan 430074, China (e-mail: rui-
wang2020@hust.edu.cn).

Yixue Hao and Long Hu are with the School of Computer Science and
Technology, Huazhong University of Science and Technology, Wuhan 430074,
China, and also with the Pazhou Laboratory, Guangzhou 510640, China (e-mail:
yixuehao@hust.edu.cn; hulong@hust.edu.cn).

Yiming Miao is with the Shenzhen Institute of Artiffcial Intelligence and
Robotics for Society (AIRS), School of Data Science, The Chinese University
of Hong Kong, Shenzhen, Guangdong 518172, China (e-mail: yimingmiao@
ieee.org).

Min Chen is with the School of Computer Science and Engineering, South
China University of Technology, Guangzhou 510640, China, and also with the
Pazhou Laboratory, Guangzhou 510640, China (e-mail: minchen@ieee.org).

Digital Object Identifier 10.1109/TSC.2024.3377156

Index Terms—Cloud-edge-device collaboration, crowd counting,
multi-agent deep reinforcement learning, multi-scene video
streams.

I. INTRODUCTION

D EEP learning has made great progress in computer vi-
sion, further promoting the rapid developments of crowd

management systems. Intelligent crowd monitoring involves
the real-time analysis of ultra-high-definition video streams to
realize crowd detection, behavior recognition, tracking, and
counting, which have the strict demands of the system delay
and computation performance [1].

There are many aspects to improve the computation and re-
sponse performance of the video analysis system such as making
computation on collection devices, optimizing transmission link
and computation model, and improving feedback and display
of results [2], [3], [4]. For example, there are many redundant
frames in a 30FPS video stream, and some works perform frame
filtering on the devices to reduce transmission costs based on the
video contents and the distinctive features such as edge, pixel,
and area [5]. Some works focus on the Region of Interest (RoI) in
the image by capturing the target area of the associated frames,
and then making computation offloading decisions according to
task and content priority with the limited bandwidth resource [6],
[7], [8], [9]. Unfortunately, although the target can be located
according to context, the newly appearing targets cannot be
captured, thereby reducing the detection performance. Besides,
considering the differences in inference ability of deep models
and target attributes, some works aim to use multi-models to
compute the RoI in the frame to execute inference [10], [11].
And there are also some computation offloading researches for
computation-intensive tasks, which formulates the offloading
decision-making issue in the dynamic network environment by
considering minimizing the resource consumption. These mod-
els are generally oriented to generalized computation-intensive
tasks, which are solved by heuristic algorithms [12], [13] and
deep learning methods [14], [15] represented by deep rein-
forcement learning. However, when these models are applied
to specific scenarios, there is still a gap between formulating
scenarios and solution schemes. For the typical crowd count-
ing task in monitoring, the researchers pay more attention to
designing models with high accuracy and seldom consider the
deployment of deep counting model combined with video con-
tent and network environment [16], [17]. Once the deep counting
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Fig. 1. Real-time monitoring system served for multi-scene video streams.
The intelligent control center decides the computation offloading locations of
the multi-scene video frames based on the context of the devices, edge and cloud.

models are used to execute inference tasks in the real-time video
system based on edge computing, they cannot efficiently handle
the massive data due to the dynamics of the communication and
video frames.

In addition, there are many cameras deployed in the key
area to undertake monitoring tasks. The previous researches
are mainly designed for single video streams for surveillance,
especially in crowd counting and object detection. When multi-
scene video streams are required to be monitored, it is more
difficult to utilize the resources and context to achieve efficient
computation. Based on the network environment and video
content, we aim to solve multi-scene crowd computation issues
served for video surveillance centers. As shown in Fig. 1, it
is a typical architecture for multi-scene video streams in the
real-time monitoring system. The high-definition cameras are
deployed in multiple scenes and are responsible for collecting
and uploading video to the intelligent control center. Due to the
weak computation capability and limited transmission resources
of local devices, some key frames are uploaded to the edge or
cloud to compute with deep models, and non-key frames are
computed in the local device. The control center decides the
offloading location of video frames based on the awareness of the
communication system and cognition of the frame context. The
results of device, edge and cloud are aggregated to the control
center to realize the frame analysis and presentation. There are
few works about modeling multi-scene video streams, especially
considering the network environment and video content with
limited computation resources and communication resources.

This paper aims to explore a cloud-edge-device collabora-
tive optimization scheme to handle the multi-video streams to
achieve real-time crowd monitoring. However, there is a gap
between the simulated environment and the real world due to the
dynamic communication system and multiple frames. Overall
there are the following challenges in the multi-scene real-time
crowd monitoring system: (1) The key frame and the RoI of the
key frame is not easy to recognize and locate on the local side
due to the limited resource of the local device and computation-
intensive deep models. (2) The computation offloading location

of the key frame is hard to decide due to the dynamics of network
environment, video contents, and deep models.

In this paper, we propose a Real-Time Crowd counting frame-
work based on the Cloud-Edge-Device Collaboration (RT3C) to
tackle the above-mentioned challenges. First, we propose a key
frame detection algorithm that judges whether the frame is a
key frame with more changes in the number of people than the
previous key frame. Then, to further reduce the consumption of
bandwidth resources, we build an adaptive patch partition algo-
rithm to divide the key frame into a minimum number of patches
according to the potential crowd distribution, and then use the
patch encoding algorithm to encode them. Last but not least, to
solve the computation offloading decision problem of key frames
of multiple video streams, we propose a Real-Time Multi-Agent
Actor-Critic (RTMAAC) based on Multi-Agent Reinforcement
Learning (MARL). By combining the context information and
network resources of each frame, RTMAAC determines whether
the patches of key frames are computed by the lightweight
model deployed on the edge or the large model deployed on
the cloud. The proposed RT3C provides a solution to realize the
offloading decision in the multi-scene video stream processing
based on edge computing for the computation-intensive deep
learning application beyond crowd counting in the complex
communication environment. To the best of our knowledge, it is
the first time to establish a parallel processing architecture based
on deep models for multi-scene video streams. The contributions
of this paper are summarized as follows:
� We propose a real-time video analysis system RT3C

via cloud-edge-device collaboration for multi-scene video
streams to realize performance-efficient deep computation-
intensive tasks.

� We formulate key frame detection, adaptive patch partition,
and patch encoding modules to reduce transmission and
computation of invalid regions and pixels.

� We design an online computation offloading decision algo-
rithm RTMAAC for patch computation, which takes into
account the dynamics of the network environment and
the performances of deep models to achieve a trade-off
between accuracy and delay.

� We evaluate RT3C on real-world crowd video datasets and
experimental results show that our system achieves the best
detection accuracy with the constraints of ultra-low latency
compared to other baseline methods.

The remainder of this paper is organized as follows: The
related work is discussed in Section II. The system overview of
RT3C is presented in Section III. The pre-processing for single-
scene video stream is illustrated in Section IV. The computation
offloading task for multi-scene video streams and the RTMAAC
algorithm is depicted in Section V. And the experiments are
shown in Section VI. Finally, we conclude our research and
prospects the future work in Section VII.

II. RELATED WORK

This section reviews the related work on video stream analy-
sis, the deep models of crowd counting, and the decision-making
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Fig. 2. System overview of RT3C. The four critical modules: (1) Key frame detection including feature extractor, key frame selector and crowd distribution
predictor. (2) Adaptive patch partition. (3) Encoder and decoder. (4) Computation offloading decision.

methods especially the reinforcement learning algorithm for
computation offloading tasks.

A. Real-Time Video Analysis

Many methods have been proposed to meet the demands of
latency and performance in the real-time video analysis systems
[11], [18], [19], [20], [21], [22]. ReMIX builds a flexible region
division framework for 4K video target detection to improve
accuracy and reduce the delay [8]. EdgeDuet realizes an au-
tomatic object detection system with RoI encoding by a local
detector and remote deep model [10]. Ekya presents an elastic
resource scheduler and provides a resource allocation scheme
on edge servers [23]. Reducto filters the frame on the local
device using low-level features [5]. VaBUS is a video analysis
framework based on edge-cloud collaboration by understanding
the foreground and background of the frame and performing
adaptive RoI encoding [7]. These systems are all designed to re-
duce computation delay and improve accuracy while they cannot
combine system environment and video context to make com-
prehensive computation decisions. RT3C is a cloud-edge-device
collaboration framework by considering the communication and
computation environment to realize the trade-off between delay
and accuracy for multi-scene video streams.

B. Deep Model for Crowd Counting and Detection

There are many deep models designed for crowd behavior
analysis, such as detection, tracking, and counting with multiple
deployment requirements [25], [26], [27]. The Yolo algorithm is
an end-to-end model, which realizes end-to-end target detection

and classification to satisfy the real-time requirements to process
video stream [28], [29], [30]. In terms of crowd tracking, in [24],
a head detector, the Headhunter framework is proposed to track
small heads in congested scenes. In [31], a crowd flow estimator
is formulated based on optimal transmission distance to make
real-time estimation of crowd count. In terms of crowd counting
in video streams, spatiotemporal information is used to track and
count crowds in consecutive frames [32], [33]. In addition, in
[34], the fusion feature of spatial information extracted by a 2D
network and temporal information extracted by a 1D network
is used to estimate the number of people in video streams. In
this paper, due to the demands of real-time detection, we use the
Yolov7-based lightweight model and large model [35], which
are deployed on the edge and cloud to detect and count people
in the scenes.

C. Computation Offloading

The computation offloading task is to decide the offloading
location and the number of offloading tasks in the heterogeneous
network environment for the computation-intensive tasks [36],
[37], [38], [39], [40], [41]. Aiming for the uncertainty of edge
nodes and the dynamics of computation tasks, a distributed
algorithm based on model-free deep reinforcement learning is
proposed to generate offloading decisions for each device [42].
In [43], an actor-critic framework-based offloading scheme for
intelligent computation is proposed, which is applied to Inter-
net of Things applications. In [44], multidimensional resource
management for UAV-assisted vehicle networks is studied, using
Multi-agent Deep Deterministic Policy Gradient (MADDPG) to
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Fig. 3. Fitting curve of change of crowd count Δnum and basic features including Δinterval, Δedge and Δpixel. The curves are fitted on the CroHD dataset
[24] which can be used for key frame detection according to the estimated count change.

make resource allocations for offloading tasks to meet hetero-
geneous requirements. In [14], a multi-task learning approach
based on neural network is proposed to jointly solve the compu-
tation offloading decision and computation resource allocation
in multi-access edge computing. In [15], a multi-agent online
learning algorithm is proposed to solve the optimal resource
allocation problem. Most of the researches simulated the of-
floading task as a unified expression without considering the
specific task content, quantity and accuracy, which have a great
influence on offloading decision. In this paper, we adopt an
online MARL algorithm to jointly optimize the crowd detection
accuracy and processing delay under ultra-low latency based on
edge computing.

III. RT3C: SYSTEM OVERVIEW

The overview of RT3C is shown in Fig. 2. The device receives
frames from fixed high-definition cameras in multiple scenes,
the feature extractor extracts the basic features of the image,
and the key frame selector determines whether the frame is
a key frame. If it is a non-key frame, the crowd distribution
predictor estimates the location and the number of people in
the current frame according to the previous key frame. If it is
a key frame, the adaptive patch partition module divides the
potential crowd area into a minimum number of patches with
a fixed partition size. The global state collector aggregates the
network environment and state information of the frames, and
hand them over to the computation offloading decision module
to determine the location where the patches of the key frame are
computed. The patches of key frames need to be encoded by the
encoder in the local device and decoded by the decoder on the
edge or cloud. Lightweight and large deep models are deployed
on edge and cloud respectively, and their inference abilities are
different. The patches enter into the computation queue step by
step, which are computed by the deep model once time to obtain
the results. Once the detection results of patches are obtained,
the purification operation is performed through the aggregation
module to eliminate the influence of overlapping areas among
the patches. When frames at a time slot in multiple scenes are
complete, the next frames are processed by the above steps. In
the next two sections, we discuss the details of each module
taking the crowd counting application as an example. By the
way, RT3C can be applied to other computation-intensive tasks
beyond crowd counting, such as target tracking, target detection,
etc.

IV. PRE-PROCESSING FOR SINGLE-SCENE VIDEO STREAM

In this section, we illustrate the critical modules including key
frame detection, adaptive patch partition and patch encoding in
RT3C for each single-scene stream.

A. Key Frame Detection

The key frame is defined according to the change of crowd
motion flow in the scene. If there is much change in the crowd
count between the current and the previous frame, it is a key
frame. Otherwise, it is a non-key frame. For the first frame, it is
set as a key frame required to be computed with the deep model.
There are three modules in the key frame detection, described
in the following.

Feature extractor: The basic frame features are frame interval,
edge and pixel. The frame interval refers to the number of the
frame sequence. The edge refers to the most obvious part of the
local intensity in the image. And the pixel refers to the pixel
value of the grayscale image.

Key frame selector: The labeled dataset is used to obtain
features and their corresponding count difference Δnum. After
making statistical analysis and experiments, the four-term poly-
nomial fits the changes of crowd count and basic features. The
difference of features is Δfeature, and the change of the number
of people is Δnum, then the relationship between Δfeature and
Δnum is:

Δfeature = ω0 + ω1Δnum + ω2Δ
2
num + ω3Δ

3
num

+ ω4Δ
4
num, (1)

where ω0, ω1, ω2, ω3 and ω4 are the fitting parameters of the
polynomial, which are trained on the labeled dataset. And the
Δfeature includes theΔinterval,Δedge andΔpixel. Fig. 3 shows
the training points and the four-term polynomial fitting curve of
each feature on the CroHD dataset [24]. The difference in the
number of people between frames is the difference in the feature
value between the frames using the Equation (1). Δ̄num is the
average count difference of the three features. When it is greater
than the count threshold ε, the current frame is the key frame,
otherwise it is a non-key frame, expressed as:

κ =

{
1, Δ̄num > ε,
0, otherwise,

(2)

where the threshold ε ∼ Ŷnum, Ŷnum is the estimated number
of people in the scene.
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Algorithm 1: Adaptive Patch Partition.

Crowd distribution predictor: The crowd distribution of the
current frame is estimated based on the previous results of the
key frame and the optical flow map [45]. First, a sparse optical
flow map of two consecutive frames is computed. If the pixel
where the face is located has moved much compared to the
key frame, the new face position is calculated based on the
optical flow map. Otherwise, the current position is equal to the
face position in the previous key frame. In this way, the crowd
distribution is estimated for non-key frames. When a frame is
judged as a non-key frame, its crowd position and count are
estimated locally based on historical information.

B. Adaptive Patch Partition

We propose an adaptive patch partition method based on the
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm [46], and the overall process is shown in
Fig. 4. First, in Fig. 4(a), the estimated crowd position is obtained

based on the crowd distribution predictor. It is defined that the
center point of the face is used to represent the person’s location.
Then, we select the potential crowd distribution area according to
Algorithm 1. First, all locations are clustered using the DBSCAN
algorithm. And then all abnormal points are clustered into one
cluster, and the result is shown in Fig. 4(b). For the outliers,
the DBSCAN algorithm is used to cluster them again, and the
outliers are discarded in this round directly. Meanwhile, the
clusters are merged where the normal points in the two rounds of
DBSCAN are located in Line 4. In this way, the abnormal crowds
are clustered into the normal crowd as much as possible. For the
remaining small number of outliers, it is believed that much
more transmission and computation cost is required but they
have less information, and discarding them has little effect on
the overall detection accuracy. This conclusion is validated in the
Section VI-B. Next, the boundary lines Γ of the area where the
points in each cluster are located are calculated. Then, in Lines
7–16, the first round of partition is performed on these regions.
In Line 8, the surrounding area is filled based on the fixed patch
size. The filling rule is to divide the image size by the patch size,
and the boundary area with the larger remaining region is filled.
Afterward, we merge the cropped patches and remove and unify
the boundary lines of the patches with inclusion and overlapping
regions. After completing the first round of region mergence, in
Lines 17–24, the second round of partition is performed. In Line
18, the patches are divided in an overlapping manner again based
on the estimated potential crowd distribution area. If there may
exist crowds in the patch, the boundary line of the patch is added
to the final patch set. Finally, the adaptive patch partition of the
RoI is completed for the key frame with the minimum number
of patches.

C. Patch Encoder and Decoder

To further reduce the transmission cost, JPEG is used to
encode each patch [47]. JPEG compresses the high-frequency in-
formation of the image and preserves the color information. Al-
though the quality of the image decreases, compressing the im-
age reduces the transmission cost without affecting the compu-
tation of the deep model. The encoder module is realized on the
local, and the decoder module is executed on the edge and cloud.

V. COMPUTATION OFFLOADING DECISION FOR MULTI-SCENE

VIDEO STREAMS BASED ON RTMAAC

In this section, the patch computation problem is modeled as
the computation offloading via cloud-edge-device collaboration.
We present the system model and the RTMAAC algorithm based
on MARL to realize online computation offloading decisions.
Table I shows the symbols.

A. System Model

In the RT3C, the local device receives video streams from N
scenes. The patches of key frames are transmitted to the edge or
cloud to be computed with the deep model. For non-key frames,
they are estimated on the local. All results are aggregated locally
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Fig. 4. Pipeline of adaptive patch partition. The original frame is processed by DBSCAN and the abnormal points are processed by DBSCAN again. And then
the adaptive partition is conducted on the RoI to obtain the patches such as P1, P2 and P3.

TABLE I
LIST OF NOTATIONS

and output for the crowd monitoring center. The communication
model, inference model and evaluation model are formulated.

Communication model: For a non-key frame, it is processed
on the local without an extra transmission. For the patches of
key frame, they are transmitted to the edge or cloud through the
wireless network and optical fiber network. It is assumed that
each video stream occupies a separate transmission channel, and
its bandwidth is constant during transmission. The upload rate
from the device to the edge is [48]:

r1 = W log2

(
1 +

p

σ2 · dι1

)
, (3)

where σ2 is the Gaussian noise, and ι is the distance loss
parameter of the power. The upload rate from the edge to the
cloud is r2. Therefore, for frame j in scene i, the transmission
delay of the kth patch from local to edge is:

TEtrans
i,j,k =

zi,j,k
r1

, (4)

where zi,j,k is the image size of the kth patch of frame j in scene
i. If the patch is offloaded to the cloud, the transmission delay
from the local to the cloud is:

TCtrans
i,j,k = TEtrans

i,j,k +
d2 − d1

r2
. (5)

DNN inference model: A lightweight model ΨEmodel is de-
ployed on the edge and a large modelΨCmodel is deployed on the
cloud. The computation time is obtained based on the FLOPs
of deep models and the performance of the running machine.
TEcom
i,j,k = F(δe, fe, zi,j,k) and TCcom

i,j,k = F(δc, f c, zi,j,k) are
two computation delays. F represents the computation delay
function in the real system, the δc and δe are the FLOPs of
the deep models, and f c and fe represent the computation
performance of the edge and cloud. TEcom

i,j,k and TCcom
i,j,k are

calculated by averaging the total inference time by performing
inference on publicly available datasets with the deep model.
Therefore, the delay is the sum of the communication delay and
the computation delay for the kth patch of frame j of scene i:

Ti,j(π) =

Ki,j∑
k=0

Ti,j,k(π) =

Ki,j∑
k=0

((1− πi,j,k) · (TEtrans
i,j,k

+ TEcom
i,j,k ) + πi,j,k · (TCtrans

i,j,k + TCcom
i,j,k )), (6)

where π ∈ {0, 1} is the offloading decision. When π = 0, the
kth patch of frame j of scene i is offloaded to the edge. When
π = 1, it is offloaded to the cloud. The total latency of frame j in
scene i is the sum of communication delays and the computation
delays of Ki,j patches.

Accuracy evaluation model: Average precision (AP) is used
to evaluate the detection accuracy of the face position in the
patch. After all the patches in the frame are computed by the
DNN model ΨEmodel and ΨCmodel deployed on the edge and
the cloud, the detection results are sent back to the local to make
aggregation. Non-maximum suppression is used to deal with
the problem of multiple estimated boxes for the same object in
overlapping regions to get the only detection result for a target
[49]. The network structure and the number of parameters decide
the inference ability of ΨEmodel and ΨCmodel. We adopt the AP
and MAE to measure the inference performance of these two
models. The AP of kth patch of the frame j in the scene i is:

Aap
i,j,k =

∫ 1

0

pi,j,k(r)dr, (7)

where pi,j,k(r) is the detection precision and recall curve of the
patch. The AEap

i,j,k and ACap
i,j,k are APs of kth patch of the frame j

in the scene i, which are calculated by lightweight model on the
edge and large deep model on the cloud. Therefore, the AP for
the kth patch of the frame j in the scene i based on offloading
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decision π is:

Aap
i,j(π) =

1

Ki,j

Ki,j∑
k=0

Aap
i,j,k(π)

=
1

Ki,j

Ki,j∑
k=0

((1− πi,j,k) ·AEap
i,j,k + πi,j,k ·ACap

i,j,k).

(8)

Besides, the number of people in the scene through the detection
result is estimated, so the Mean Absolute Error (MAE) showing
the count accuracy of kth patches:

Amae
i,j,k =| ŷi,j,k − yi,j,k |, (9)

where ŷi,j,k and yi,j,k are the predicted value and true value of
the crowd count in the patch. The AEmae

i,j,k and ACmae
i,j,k are MAEs

of kth patch of the frame j in the scene i, which are calculated by
lightweight model and large model. Therefore, the MAE based
on offloading decision π is:

Amae
i,j (π) =

Ki,j∑
k=0

Amae
i,j,k(π)

=

Ki,j∑
k=0

((1− πi,j,k) ·AEmae
i,j,k + πi,j,k ·ACmae

i,j,k ).

(10)

By combining theAap
i,j,k andAmae

i,j,k, the comprehensive accuracy
evaluation for the the DNN model ΨEmodel and ΨCmodel is
obtained.

B. Problem Formulation

Based on the above models, we formulate the overall op-
timization problem, aiming to maximize detection and count
accuracy and crowd estimation in multiple scenarios while min-
imizing system delay in the RT3C.

The data generated by scenes at a time slot is transmitted to the
intelligent control center locally to perform computation. The
optimization goal is to give an appropriate offloading strategy
π for patches of key frames in N scenes while minimizing the
delay and maximizing the accuracy:

min
π

N∑
i=1

(λ1Ti,j(π) + λ2A
ap
i,j(π) + λ3A

mae
i,j (π)),

s.t. π ∈ {0, 1},
N∑
i=1

Ki,j∑
k=1

(1− πi,j,k) ≤Medge
max ,

N∑
i=1

Ki,j∑
k=1

πi,j,k ≤Mcloud
max , (11)

whereMedge
max andMcloud

max are the maximum number of patches
that can be offloaded to edge and cloud. λ1, λ2 and λ3 are
weight parameters. There are some challenges to solving the
joint optimization problem: (1) Due to the differences in crowd

distribution and background in multiple scene frames, it is
difficult to make a common offloading decision without con-
sidering the frame information. (2) The offloading location of
each patch affects patch offloading in other scenarios and sub-
sequent patches due to limited computation resources. (3) The
real-time monitoring system requires a balance between delay
and accuracy to achieve optimization with quality of experience.

C. MDP Formulation

Deep reinforcement learning is a useful method to solve
optimization problems in dynamic environments. The prob-
lem is defined as a Markov decision process, expressed as
(S;A;P ;R). S is the state space, A is the action space, P is a
state-transition function expressed as P : S ×A× S ← R, R
is the reward function. The RT3C is regarded as the interac-
tion environment, and the video streams are the target subjects
monitored by the agents. The multi-agents make the offloading
decisions for the patches of the multi-scene frames based on
interaction and collaboration in the RT3C. Action triggers the
state transition, meanwhile affecting the subsequent offloading
decision. During the process, agents receive a reward to evaluate
actions. According to the optimization goal of RT3C, it can be
transformed as the Markov decision process and the state, action
and reward can be defined as follows.

State: For the state st in the S , t represents the time slot,
whose maximum value is the number of patches in these scenes.
st contains ten values: whether the frame to which the patch
belongs is a key frame, expressed as κt ∈ {0, 1}, if it is a key
frame, then κt = 1 otherwise κt = 0; whether all patches in
the frame have been offloaded is expressed as lt ∈ {0, 1}; the
number of heads in the region in the previous frame is ht; the
index of the current patch in all patches of the frame is k; the
number of patches offloaded to the edge and cloud in the frame
before t isnE

t andnC
t ; the computation delays for a patch on edge

and cloud are TEcom
t and TCcom

t ; the transmission delays for a
patch from local to edge and cloud are TEtrans

t and TCtrans
t .

Therefore, the state of the agent at time slot t is:

st={κt, lt, ht, k, n
E
t , n

C
t , T

Etrans
t , TEcom

t , TCtrans
t , TCcom

t }.
(12)

After the system makes an offloading decision for all patches at
t, the system enters the next state. The state is not terminated
until the patches of all the frames at the same time are completed.
When the next frames arrive, the system state is initialized and
a new episode state transition begins.

Action: The number of patches in each frame is different due
to the differences of crowd distribution. At time slot t, the agent
makes an computation offloading decision ai,j(t) of the patch
of frame j in the ith scene. And ai,j ∈ {0, 1} means the edge
and cloud. The offloading strategy in the current state is noted
as the π.

Reward: In a multi-scene crowd counting system, the opti-
mization goal is to obtain the accurate location of faces and the
number of crowds in the scene with less latency. In MARL, the
reward is strongly related to the convergence of the model and the
optimization target. The optimization-related reward function is
described in detail.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on March 07,2025 at 09:03:28 UTC from IEEE Xplore.  Restrictions apply. 



1746 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 4, JULY/AUGUST 2024

� Delay-constrained reward: If the frame is a non-key frame,
there is only computation delay. If it is a key frame, its
delay includes computation delay and transmission delay.
To meet the delay-sensitive requirements, for each agent i,
the reward of the kth patch in the jth frame is:

rdelayi,j,k = (1− κi,j) · (−TLcom
i,j,k ) + κi,j · (−Ti,j,k(π))

(13)

At t, if the t ≤ Ki,j , rdelayi,j,t = rdelayi,j,k , otherwise the sum of

transmission delay and computation delay is 0 and rdelayi,j,t =
0. For non-key frames, the number of patches Ki,j is set
to 1, and the frame is computed on the local side. The
local computation delay TLcom

i,j,k is measured on the public
dataset. Therefore, the total delay reward at t in the scene
is:

Rdelay
j,t =

N∑
i=0

rdelayi,j,t . (14)

� AP-constrained reward: For detection accuracy, after re-
ceiving the detection results of all frames, the AP reward
of the kth patch and the total reward at t in the scene is:

rapi,j,k = (1− κi,j) ·ALap
i,j,k + κi,j ·Aap

i,j,k(π), (15)

Rap
j,t =

N∑
i=0

(rapi,j,t − 1), (16)

whereALap
i,j,k is AP of patch processed on local. At time slot

t, if the t ≤ Ki,j , Aap
i,j,t = Aap

i,j,k, otherwise Aap
i,j,t = 1 to

eliminate the interference of the complete frame. Since the
larger AP represents better performance, it is transformed
from a maximization problem to a minimization problem
to realize joint optimization.

� MAE-constrained reward: For counting accuracy, the
MAE reward of the kth patch and the total reward at t
in the scene is:

rmae
i,j,k = (1− κi,j) · (−ALmae

i,j,k ) + κi,j · (−Amae
i,j,k(π)),

(17)

Rmae
j,t =

N∑
i=0

rmae
i,j,t , (18)

where the ALmae
i,j,k is the MAE of the patch processed

on local side. If the t ≤ Ki,j , Amae
i,j,t = Amae

i,j,k, otherwise
Amae

i,j,t = 0. Therefore, to make a computation offloading
decision by considering delay, detection and counting ac-
curacy, the total reward is:

Rtotal
j,t = λ1R

delay
j,t + λ2R

ap
j,t + λ3R

mae
j,t , (19)

where λ1, λ2 and λ3 are weight parameters, λ1 and λ3 are
negative, and λ2 are positive. For the jth frame, the cu-
mulative reward is Rtotal

j =
∑max(Ki,j)

t=0 Rtotal
j,t . We adopt

an actor-critic MARL method to solve the problem. Ac-
cording to the Soft Policy Iteration in [51], the repeated
application of soft policy evaluation and soft policy im-
provement to any π converges to the optimal policy π∗ for

allπ and (st, at) ∈ S ×A, assuming |A| <∞. Therefore,
this problem can be solved with an actor-critic MARL
algorithm to maximize the cumulative reward Rtotal

j,t .

D. RTMAAC Design

We propose an RTMAAC algorithm [50] based on MARL to
perform computation offloading, as shown in Fig. 5. The actor
networks θ make offloading decisions and the critic network φ
evaluates the action. First, the agent of each scene perceives the
state of the current patch and inputs them into the multi-agent
network, and each agent obtains the offloading location of the
corresponding patch at the current moment. These actions are
executed in the real-time monitoring system to obtain a reward.
Then the system steps into the next state. The current state,
action, reward and next state are sent to the experience replay
buffer. Meanwhile, the state-action is input to the critic network
for evaluation, which uses a multi-head attention mechanism
to realize the encoding of the state and action. The Q value is
obtained to optimize the critic network with Mean Square Error
(MSE). The RTMAAC algorithm is iteratively trained with a
gradient-based updating manner with action value and Q value
in the multi-scene video streams until the model converges. After
completing the training step, it executes online inference with
actor networks. The details are elaborated in the next.

Multi-agent network: Each agent makes the computation
offloading decision according to the current environment and
the patch state. The actor network includes a multi-layer per-
ception (MLP), receiving the state vector with a length of 10
and outputting the offloading location vector with a length of 2.
Meanwhile, the computation results are put into the experience
replay buffer together with the next state. When the samples are
accumulated enough in the initial period, the policy network is
trained based on:

∇θiJ(φ) = Es, a∼D[∇θiφ(ai(t)|si(t))
· ∇Qφ(si(t), ai(t))|ai(t)=φ(si(t))], (20)

where D is the historical information in the experience replay
buffer, including (st, at, rt, st+1). The update strategy of the
actor network θi is:

L(θi) = Est,at,rt,st+1
[(Qφ(si(t), ai(t))− y)2], (21)

where y = ri + γQφ′(si(t+ 1), ai(t+ 1)|ai(t+1)=φ(si(t))) and
ri is the reward value of the ith scene. The actor network is
updated with the Q value evaluated by the critic network for
the action ai(t). The target network is to improve the stability
in the process of model training. And the soft update is used to
improve the target network as θ′ = τθ + (1− τ)θ′.

Multi-head attention mechanism: In MARL, the state infor-
mation of each agent is shared for mutual cooperative percep-
tion and decision-making. To overcome the high-dimensional
state vectors and realize information sharing among agents,
the RTMAAC effectively encodes state vectors and learn the
relation between agents based on the attention mechanism. The
RTMAAC algorithm obtains the fixed length attention vector
avoiding the problem of the increase of the critic network with
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Fig. 5. Overview of the RTMAAC. The left is the multi-agent network and the critic network and the multi-agents interact with the environment to get a reward
and the action. The right is the multi-head attention mechanism to get the Q value to evaluate the actor [50].

increasing actors. For agent i, we can obtain Q value by relating
with other agents:

Qφ
i (s, a) = fi(Φi(si(t), ai(t)), wi), (22)

where fi is a two-layer MLP, and Φi is a one-layer MLP
embedding function. wi is the sum of the weights of agent i
and other agents, expressed as:

wi =
∑
î 
=i

αî · vî =
∑
î
=i

αîh(V Φî(sî, aî)), (23)

where vî is the embedding equation of the agent, which is
encoded by an embedding function and linearly transformed by
a shared matrix V , h is an element-wise leaky ReLU function.
αî is the attention weight mapped by the query-key pair, which
is obtained by calculating the similarity of the embedded vector:

αî ∝ exp(eTuW
T
k Wqei), (24)

where ei = Φi(si, ai), Wq is the query of ei, and Wk is the
key of eu. Each head has independent parameters (Wk,Wq, V ).
By concatenating the contributions of all heads into one vec-
tor, the weight combinations of different agents for each head
are obtained. In RT3C, multi-scene-oriented agents make more
comprehensive decisions by paying attention to the states and
actions of agents in other scenes.

Critic network: The update of the critic network is to minimize
the regression loss of collaboration, expressed as:

LQ(φ) =
M∑
i=1

E(s,a,r,s′)∼D[(Qφ
i (s, a)− yi)

2], (25)

yi = ri + γEa′∼πθ′ (s′)[Q
φ′
i (s′, a′)−β log(πθ′i(a

′
i(t) | s′i(t)))],

(26)

whereφ′ and θ′ are the parameters of the target critic network and
the target actor network. Qφ

i is the estimated action evaluation
of agent i, and β is the temperature parameter used to balance
entropy and reward. M is the number of samples. The policy
network is updated by:

∇θiJ (φθ) = Es∼D,a∼π [∇θi log(πθi(ai|si))
(−β log (πθi (ai | si)) +Qφ

i (S,A)− b (S, aî))], (27)

where b(S, aî) is the advantage function, expressed as:

b (S, aî) = Eai∼πi(si)

[
Qφ

i (s, (ai, aî))
]
. (28)

For the update of the target critic, the soft update is φ′ = τφ+
(1− τ)φ′. For the complexity of the RTMAAC algorithm. Let
ωa, ωedge, ωcloud denote the weight counts of the actor network,
the lightweight model on edge and the large model on cloud.
In the inference stage, the computation complexity of the local,
edge and cloud are denoted as O(n), O(ωedge) and O(ωcloud).
The O(n) is the basic linear operation, which is completed in
a linear number of operations. Taking the real model used in
this paper as an example, the number of parameters and FLOPs
of actors are 5.06K and 4.93K. The deep models on the edge
and cloud are 5.77M and 13.3G, and 34.89M and 104.1G. It
is concluded that the decision complexity and the computation
complexity with the counting models during the inference are
low to meet the requirements of the real applications.

VI. EXPERIMENTAL RESULTS

In this section, the experimental simulation platform and the
parameters and model settings are presented. We compare the
proposed pre-processing algorithms and computation offloading
algorithms in the RT3C with other baseline methods. And some
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sensitivity testings are performed to demonstrate the effect of
the proposed modules.

A. Experimental Setting

Simulation settings: An server with an NVIDIA Telsa V100
32GB GPU and four Intel(R) Xeon(R) Gold 6252 CPUs of
2.10 GHz is used as simulation platform. The simulation system
is Ubuntu 18.04.3 LTS, on which local node, edge node and
cloud node are deployed. In the experiments, we use Python
3.6.8 to establish the RT3C and Pytorch 1.7.1 as the framework
of the detection model and RTMAAC.

Experimental parameters: The 2, 3, and 4 video scenes with
the same number of frames are set to conduct experiments to
verify RT3C. The filtering threshold ε is 13. d1 and d2 are set to
0.3km and 3km. For the communication model, W is 2e6, p is
0.6w, ι is 3, σ is 1e− 9, and the transmission rate of optical fiber
network is 3e8. When the patch resolution size is 320× 320,
the computation delays on local, edge and cloud are 0.0005s,
0.0298665s and 0.0064217s. The computation delay of the other
patch resolutions is the multiple of the delay of 320× 320. For
the RTMAAC algorithm, the actor network is a three-layer MLP
and the number of hidden layer neurons is 128. The state encoder
is a one-layer MLP with 128 neurons and LeakyReLU activation
and a four-head attention network and softmax layer to obtain
the relation among agents. The critic network is a two-layer MLP
with 256 and 128 neurons. In the inference stage, only the actor
and state encoder are used to make the computation offloading
decision, whose decision cost with low latency can be ignored
compared with the computation task based on deep model. The
learning rate of both the actor network and the critic network is
0.001, and the soft update weight τ of target networks is 0.01.
The discount factor γ to update RTMAAC is 0.95, the buffer
length is 1e6, and the batch size is 256.

Deep model and dataset: For the crowd detection model,
we choose two Yolov7 models respectively Yolov7-tiny and
Yolov7-face [35], and deploy them on edge and cloud. There
are two datasets including CroHD [24] and PANDAS [52] used
to validate our RT3C. We use the training set and testing set in
CroHD and part of the training set in PANDAS as different video
scenes in RT3C. Since the average video resolutions in CroHD
and PANDAS are 1, 920× 1, 080 and 27, 722× 16, 842, the
patch resolutions are set to 640× 640 and 3, 840× 3, 840. In
the experiment, the shortest video clip is used as the baseline to
realize the synchronization decision for multiple video streams.

B. Pre-Processing Performance

The performance of key frame detection: To demonstrate the
effect of key frame detection in the proposed RT3C, we perform
some experiments in the four scenes on the CroHD Train dataset,
and the results are shown in Fig. 6 and Fig. 7. In Fig. 6, it is
assumed that all frames are transmitted to the edge or cloud to
execute inference with the deep model, which is noted as only
edge and only cloud respectively. The performances of these
two methods are worse than the RT3C. Although an accuracy-
best model is deployed on the cloud, its reward is the worst in
the four scenes because there is a long distance from the local
to the cloud to increases the transmission delay. Especially in

Fig. 6. Rewards when offloading frames on edge, cloud, and RT3C.

Fig. 7. Rewards when selecting frame randomly, with a fixed interval, and
RT3C.

Fig. 8. Rewards when dividing the frame with equal partition, regional parti-
tion and RT3C.

Scene1, Scene2 and Scene3, the rewards of RT3C are −0.919,
−0.980 and−1.058, which are even better than half of the other
two methods. In Fig. 7, if the frames are randomly or with a
fixed interval determined as the key frame, the RT3C performs
the best performance overall. In addition, although the fixed-
interval strategy presents the best performance in Scene2, its
performance changes in oscillation are worse than RT3C in the
rest of the scenes. Therefore, the key frame detection module is
effective in the RT3C.

The performance of adaptive patch partition: To demonstrate
the effect of adaptive patch partition in the RT3C, we perform
experiments according to the above settings and the result is
shown in Fig 8. The equal partition is to divide the whole key
frame with patch resolution size to cover all regions. The regional
partition is to divide the potential region with patch resolution
based on the previous frame. This means that the predicted areas
where all people appear in the frame are calculated without dis-
carding abnormal crowd areas. It is observed that the proposed
adaptive patch partition algorithm shows the best performance
of the three methods. And the regional partition algorithm is
worse than the equal partition, which demonstrates the effect
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TABLE II
COMPUTATION OFFLOADING PERFORMANCE EVALUATION ON FOUR SPLIT DATASETS IN THE TWO PUBLIC DATASETS WITH OUR RTMAAC

AND OTHER BASELINE METHODS

Fig. 9. Convergence curve of computation offloading algorithms based on four
deep reinforcement learning algorithms.

of combining crowd distribution and estimation and discarding
outliers in the RT3C.

C. Computation Offloading Performance

To verify the feasibility of RT3C, we perform experiments
with multiple scenes of 2, 3, and 4 on the two datasets. Table II
shows the overall performance of RT3C and the other four

algorithms. The Random algorithm refers to randomly generat-
ing the computation offloading strategy. The Deep Deterministic
Policy Gradient (DDPG) algorithm refers that there are multiple
independent agents participating in the decisions of multi-scene
frames [53]. MADDPG [54] and Multi-Agent Proximal Policy
Optimization (MAPPO) [55] are classic multi-agent reinforce-
ment learning algorithms.

The convergence of the computation offloading algorithms:
The Fig. 9 shows the convergence curve for the MARL com-
putation offloading algorithms on PANDAS Train1. Since the
Random algorithms cannot reach the stable convergence, it is
not shown in the figure. It is observed that the optimization
problem can be solved by MARL algorithms, which get con-
vergence after about 1000 episodes. Meanwhile, the proposed
RTMAAC algorithm presents a fast convergence speed and the
best rewards.

The performances of computation offloading decisions: From
the Table II, it is observed that our algorithm RTMAAC achieves
the best reward performance in the two datasets with a variety
of scenarios. As the number of scenarios increases, resource
allocation and optimization decisions become more complex.
When the number of scenes is 4, compared with 2 scenes and 3
scenes, the rewards of RTMAAC are much better than these of
other algorithms. For example, in the CroHD Train dataset, when
there are two video streams required to be computed, the reward
of RTMAAC is−1.115, while the reward of Random is−1.278,
with a difference of 0.163. Due to the crowd distribution and
scene differences in the dataset, there are differences in delay,
MAE and AP among these four selected video clips. When the
number of scenes is 2, the delay is 0.205 on PANDAS Train1 but
0.549 on PANDAS Train2. And the MAE and AP are 29.85 and
0.581 while the detection performance is weaker, with MAE and
AP of 271.97 and 0.338. In addition, since the resolution of the
frame in the PANDAS dataset is bigger than that on the CroHD
dataset, its latency is higher than on the CroHD dataset. If the
entire frame is transmitted to the edge or cloud for detection, the
sum of transmission delay and computation delay is even greater.
It is concluded that when the resolution is larger, it brings a larger
consumption of bandwidth resources and computing resources.
In RT3C, RTMAAC greatly eliminates redundant information
to reduce resource consumption.

The Cumulative Distribution Function (CDF) of computation
offloading decisions: The CDF of delay, MAE, AP and Reward
of the five algorithms are shown in Fig. 10 when the number of
scenes is 2, 3 and 4 on the PANDAS Train1 dataset. RTMAAC al-
gorithm has significant advantages over other algorithms, which
is far ahead of other algorithms in the Reward. The RTMAAC
performs the best performance on the CDF of Delay, MAE and
AP compared to other algorithms.

D. Sensitivity to System Settings

The effect of threshold to select key frame: We set differ-
ent ε to judge key frames to verify the threshold sensitivity,
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Fig. 10. CDF of delay, MAE, AP and reward for crowd counting task on PANDAS Train1 dataset. In the three rows, there are 2, 3 and 4 video streams respectively
required to decide the offloading location based on the computation offloading decision algorithm.

Fig. 11. Number of key frame with different threshold ε to select key frame.

Fig. 12. Rewards when applying different thresholds ε to select key frame.

as shown in Fig. 11 and Fig. 12. There are 429 frames in
these scenes. By conducting experiments in four scenes on the
CroHD Train dataset, the number of key frames obtained in
different scenes are very different. In Fig. 11, the number of key
frames in Scene3 keeps stable with the increase of ε, so it is
a dense scene and the number of people varies greatly, which
requires more frames to be computed with the deep model. As
the threshold increases the number of key frames is reduced.

TABLE III
EFFECT OF THE ADAPTIVE PARTITION SIZE

In Fig. 12, as the threshold increases, the rewards function
increases gradually, because the reduction of the number of key
frames reduces the transmission delay and computation delay.
In RT3C, the requirement for the delay is stricter than MAE
and AP, so the rewards increase as the number of key frames
decreases.

The effect of the adaptive partition size: We explore the effect
of the adaptive partition size of RT3C on the CroHD Train
dataset in the four scenes. The frame resolution of CroHD Train
is 1, 920× 1, 080 and five partition sizes are set as shown in
Table III . It is observed that as the partition size increases, the
AP increases but the delay also increases. When the partition
patch resolution is 640× 640, the reward shows the best value
of−0.93. Therefore, it is important to select the proper partition
size according to the frame resolution to balance the transmis-
sion and computation.

The effect of transmission bandwidth: We demonstrate the
sensitivity of offloading decision algorithms to the transmission
bandwidth as shown in Fig. 13. The reward is larger as the
bandwidth increases since the larger bandwidth greatly reduces
the transmission delay. MADDPG achieves the optimal reward
of −1.232 and our RTMAAC algorithm is −1.253 with a
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Fig. 13. Rewards when applying different transmission bandwidth W .

bandwidth of 1e6. Our RTMAAC algorithm achieves the best
performance with the other bandwidths especially when the
bandwidth is 3e6 and the reward is −1.042. It is found that
our algorithm can adapt to complex network environments and
maintain stable performance.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents RT3C, a novel framework to achieve a
real-time multi-scene crowd counting system based on cloud-
edge-device collaboration. Key frame detection, adaptive parti-
tion and patch encoding are established to reduce the amount
of data uploaded to the server. Then, we propose an RTMAAC
based on MARL to decide the computation offloading location of
the patches of key frames. Extensive experiments are performed
on the real crowd counting dataset to validate that the RT3C
effectively reduces latency and improves counting accuracy
by considering the specific video contents, especially in high-
resolution multi-scene video streams with limited bandwidth
resources.

There still exists more comprehensive application back-
grounds which have not been considered in the RT3C. There
is more than one edge and cloud and not only one type of
computation-intensive task in the real application. In future
work, we will target multi-edge clouds and specific multi-task
scenarios to conduct research on computing offloading issues
based on real system interactions. It is believed that RT3C
provides an initial inspiration for video-related applications and
promotes more practical research based on edge computing with
multiple video streams.
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