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Abstract

Reciprocal recommender systems (RRS) have been widely
used in online platforms such as online dating and recruit-
ment. They can simultaneously fulfill the needs of both par-
ties involved in the recommendation process. Due to the
inherent nature of the task, interaction data is relatively
sparse compared to other recommendation tasks. Existing
works mainly address this issue through content-based rec-
ommendation methods. However, these methods often im-
plicitly model textual information from a unified perspective,
making it challenging to capture the distinct intentions held
by each party, which further leads to limited performance
and the lack of interpretability. In this paper, we propose
a Knowledge-Aware Explainable Reciprocal Recommender
System (KAERR), which models metapaths between two
parties independently, considering their respective perspec-
tives and requirements. Various metapaths are fused using an
attention-based mechanism, where the attention weights un-
veil dual-perspective preferences and provide recommenda-
tion explanations for both parties. Extensive experiments on
two real-world datasets from diverse scenarios demonstrate
that the proposed model outperforms state-of-the-art base-
lines, while also delivering compelling reasons for recom-
mendations to both parties.

Introduction
Reciprocal recommender systems (RRS) (Pizzato et al.
2010) have become increasingly popular in various online
platforms such as online dating (Neve and Palomares 2019;
Xia et al. 2016) and job recruitment (Jiang et al. 2020; Yang
et al. 2022). Unlike traditional recommender systems that
make uni-directional recommendations to users, RRS aims
to fulfill the bilateral needs between two parties by mak-
ing reciprocal recommendations (e.g. recommending satis-
factory date partners to each other, matching job seekers and
recruiters, etc.).

However, building an effective RRS faces unique chal-
lenges compared to traditional recommender systems. One
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major issue is the sparsity of interaction data. For exam-
ple, in job recommendation, once a job seeker accepts an
offer, the interaction between the job seeker and the re-
cruiter becomes inactive until the job seeker looks for new
jobs. Meanwhile, as the job position gets filled, the recruiter
will stop interacting with candidates for that position. Such
bidirectional inactivation after a successful matching leads
to significantly fewer historical interaction signals for ac-
curately modeling the preferences of both sides, compared
to the abundant user-item interactions in traditional recom-
mender systems.

To alleviate the data sparsity issue, existing works (Ake-
hurst et al. 2011; Luo et al. 2020) have explored leveraging
side information such as resumes and job postings. However,
they rely on textual data with inconsistent formats from both
sides. The free-form nature of such user-generated content
makes it difficult to precisely extract and match preferences.
In addition, they treat the information in a unified view with-
out distinguishing between the two parties involved. How-
ever, the two sides often have distinct intentions and pref-
erences when evaluating the same content. The inability to
capture such dual perspectives from inconsistent data for-
mats limits the accuracy and interpretability of existing mod-
els.

These limitations highlight the need for modeling dual
perspectives in reciprocal recommendation. For instance, in
job matching scenarios, a candidate and recruiter may align
on certain dimensions like skills and industry, but have mis-
matches in other dimensions like location and education
preferences due to their different focuses. Capturing such
nuanced differences in intentions and motivations is crucial
for improving the accuracy of matches.

To address the limitations of existing methods, in this pa-
per, we propose a Knowledge-Aware Explainable Recipro-
cal Recommender System (KAERR) that incorporates side
information from both parties involved in the recommenda-
tion process in a knowledge graph. By extracting metapaths
between the two parties, KAERR can explicitly capture their
distinct preferences and intentions. We encode the metapaths
from dual perspectives using a bidirectional LSTM (Hochre-
iter and Schmidhuber 1996) and fuse them with an attention
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mechanism to distill important signals differently. In addi-
tion, we make reciprocal predictions and optimize the model
with a bilateral quadruple-based loss function. The learned
attention weights also provide explainability by revealing
the relative importance of different metapaths. By effec-
tively modeling the knowledge graph information from dual
perspectives, KAERR can improve recommendation accu-
racy and provide explanations. Extensive experiments verify
the effectiveness of KAERR over state-of-the-art baselines.

The contributions of our work are summarized as follows:

• We propose a novel Knowledge-Aware Explainable Re-
ciprocal Recommender System (KAERR) that models
metapaths from a knowledge graph independently from
the dual perspectives of the two parties involved using a
bidirectional LSTM encoder.

• Extensive experiments on two real-world datasets
demonstrate that KAERR consistently outperforms state-
of-the-art baselines on reciprocal recommendation tasks.

• To the best of our knowledge, our model is the first recip-
rocal recommender system that can provide compelling
reasons for the recommendations to both parties by re-
vealing the relative importance of different metapaths
through attention weights.

Related Work
Reciprocal Recommendation
Existing RRS studies can be grouped into several cate-
gories based on their methodology, including collaborative
filtering-based methods (Cai et al. 2012; Xia et al. 2016;
Neve and Palomares 2019), content-based methods (Alanazi
and Bain 2013; Akehurst et al. 2011; Yang et al. 2017), hy-
brid methods (Zhou et al. 2023), and sequential-based meth-
ods (Zheng et al. 2023a). Collaborative filtering methods
use past user interactions to infer preferences from simi-
lar patterns, but struggle with minimal history (cold-start).
Content-based approaches need detailed text data to match
user profiles, relying on the quality of this data. Hybrid
methods combine behavior and content analysis to improve
recommendations. Sequential methods use neural networks
for sequence matching, yet also require extensive interaction
history. Generally, current RRS inadequately address sparse
interactions or the mutual aspect between two sides. Devel-
oping an approach that can overcome sparse bilateral signals
and suit the reciprocal setting remains an open challenge.

Knowledge-Aware Recommendation
Knowledge graphs offer valuable context by mapping en-
tities and their relationships, improving recommender sys-
tems’ representation learning. Knowledge-aware recom-
mendation techniques fall into three categories: embedding-
based methods (Zhang et al. 2016; Wang et al. 2018; Cao
et al. 2019) use entity and relation embeddings from knowl-
edge graphs in user and item representations; path-based
methods (Wu, Zhang, and Lin 2022; Li et al. 2022) extract
knowledge graph metapaths to understand user-item connec-
tions; and GNN-based methods (Wu, Zhang, and Lin 2022;
Li et al. 2022) utilize graph neural networks to learn from

knowledge graph structures. While these methods enrich se-
mantics, they are not specifically tailored for reciprocal rec-
ommendations and fail to differentiate the distinct intentions
and preferences of both parties involved.

Explainable Recommendation
Explainable recommendation is a key research area with di-
verse explanation styles, such as predefined templates (Li,
Chen, and Dong 2021), ranked sentences (Li, Zhang, and
Chen 2021), knowledge graph paths (Xian et al. 2019), rea-
soning rules (Shi et al. 2020), and generated natural lan-
guage (Li, Zhang, and Chen 2020). These styles range from
using fixed templates and selected review sentences to lever-
aging knowledge graph semantics, inference rules, and lan-
guage models to create tailored explanations. Nevertheless,
most systems generate generic explanations without consid-
ering the unique needs of each party in a reciprocal recom-
mendation scenario, a significant drawback for reciprocal
recommendations where individual motivations and priori-
ties vary greatly.

Preliminaries and Notations
To facilitate discussion in the following sections, we take
the example of an online recruitment platform. Next, we for-
mally define the notations for the concepts involved.

Bilateral Interaction Assume that we have a set of can-
didates C = {c1, c2, · · · , cM} and a set of jobs J =
{j1, j2, · · · , jN} posted by recruiters, where M and N are
the total numbers of candidates and jobs. Each candidate or
recruiter can send requests to jobs or candidates that meet
their criteria. All accepted requests form a matching set
M = {(ci, jk) | ci ∈ C, jk ∈ J }. Rejected requests lead to
unilateral matches, which are recorded in matrix UM×N ,
where uik = 1 means candidate ci applied for job jk but
got rejected, and uik = −1 means recruiter of job jk invited
candidate ci but got declined, and the default value within
the matrix is 0.

Knowledge Graph We construct a knowledge graph G =
{(h, r, t)|h, t ∈ E , r ∈ R}, where E represents the set of
entities including candidates, jobs and their attributes, andR
represents the set of relations between entities. Each triplet
(h, r, t) denotes a head entity h, relation r and tail entity
t. For an example, (CandidateA, HasSkill, Java) indicates
CandidateA has the skill Java.

Metapath A metapath is a sequence of entity types and
relation types that defines a specific semantic path between
entities. For instance, a metapath of “Candidate-HasSkill-
Skill-RequireSkill-Job” reveals the skills that candidates
possess which are required for certain jobs. We pre-define
a set of metapath patterns and extract all metapath instances
from the knowledge graph. A metapath p ∈ P can be de-
noted as (e1, r1, e2, · · · , rn−1, en), where ei ∈ E represents
entities and rj ∈ R represents relations.

Problem Definition Given the bilateral interaction his-
tory M, U and knowledge graph G, our goal is to learn a
matching function f(ci, jk) that predicts the matching prob-
ability between candidate ci and job jk based on their in-
teraction records and the metapaths Pi,k that connect them
within the knowledge graph.
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Figure 1: The overall framework of KAERR.

Method
In this section, we present the proposed Knowledge-Aware
Explainable Reciprocal Recommender System (KAERR)
(shown in Figure 1), which incorporates two main modules:
1) Dual-Perspective Metapath Encoder, which encodes the
metapaths from the perspectives of both candidates and jobs
independently using a BiLSTM encoder; 2) Attentive Meta-
path Fusion, which learns attention weights for each metap-
ath and fuses the dual representations based on the attention
weights. In addition to the above two modules, we adopt
MLP-based methods to predict matching probabilities from
both perspectives and average them as the final prediction.
Finally, we optimize the model by minimizing a proposed
bilateral quadruple-based loss that considers both bilateral
matches and unilateral matches to enhance performance in
reciprocal recommendation.

Dual-Perspective Metapath Encoder
To capture the distinct preferences of candidates and jobs
over each metapath, we first encode the metapath in-
stances from each side independently. This is because the
same metapath may imply different intentions from two
sides. For example, the metapath “Candidate-HasDegree-
PhD-LowerDegree-Bachelor-RequireDegree-Job” indicates
a positive signal for the recruiter that the candidate’s edu-
cation level meets the requirement. However, it may not be
that important or even negative for the candidate who pur-
sues a higher degree. Therefore, modeling metapaths from
dual perspectives is necessary.

We choose to use a BiLSTM encoder because each meta-
path can be seen as a sequence consisting of entities and
relations. LSTM is adept at feature extraction from sequen-
tial data, including the ability to handle dependencies within
sequences. Our choice to opt for LSTM over Transform-
ers (Vaswani et al. 2017) is motivated by the need for com-
putational efficiency and to mitigate overfitting risks, con-
siderations that become significant in the context of pro-

cessing metapaths that are typically short and exhibit lim-
ited variability. By treating the candidate and job as the start
of the sequence respectively in two LSTM directions, the
BiLSTM encoder is able to learn the dual-perspective repre-
sentations for each metapath.

For modeling each metapath instance p =
(e1, r1, ..., rn−1, en) ∈ Pi,k between candidate ci and
job jk, we first map the elements in the metapath to
low-dimensional embeddings through a Knowledge Graph
Embedding Layer initialized by TransR (Lin et al. 2015).
TransR is able to capture the structural features of enti-
ties and relations, which facilitates subsequent metapath
modeling.

Specifically, the embedding of the metapath instance is:

E = Embed(p) = [e1, e2, ..., eT ], (1)

where E ∈ RT×de , et ∈ Rde is the de-dimensional knowl-
edge graph embedding of the t-th element, and T = 2n− 1
is the length of metapath.

Then the embedding sequence E is fed into a bidirectional
LSTM encoder to learn contextual representations:

−→
h t = LSTM(et,

−→
h t−1), (2)

←−
h t = LSTM(et,

←−
h t+1), (3)

where −→h t,
←−
h t ∈ Rdh are the dh-dimensional forward and

backward hidden states at step t, respectively.
To represent the perspectives of candidate ci and job jk

over the metapath instance p, we compute dual-perspective
aggregated representations by averaging the BiLSTM hid-
den states from two directions:

pc =
1

T

T∑
t=1

−→
h t, pj =

1

T

T∑
t=1

←−
h t, (4)

where pc,pj ∈ Rdh are the metapath representations of
candidate ci and job jk respectively.
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By encoding the metapath sequentially from two ends, the
BiLSTM model is able to learn distinct preferences over the
same metapath from dual perspectives.

Attentive Metapath Fusion
For the same metapath instance, the attention assigned by
the candidate and recruiter sides may differ, as it implies dis-
tinct intentions for them. To capture such dual-perspective
preferences, we adopt an attention mechanism for metapath
representation aggregation. The attention module can learn
soft weights to highlight influential metapaths while sup-
pressing irrelevant ones differently for the two sides.

Specifically, for each candidate-job pair (ci, jk), given
their metapath representations {pc

l }Ll=1 and {pj
l }Ll=1 from

the dual-perspective metapath encoder, where L is the num-
ber of metapaths, we compute the attention weights as:

αc
l = σ(pc

lw
a
c + bac ), αj

l = σ(pj
lw

a
j + baj ), (5)

where wa
c ,w

a
j ∈ Rdh and bac , b

a
j ∈ R are trainable weight

vectors and bias terms, and σ(·) is the sigmoid function that
squashes the attention weights between 0 and 1 for soft se-
lection:

σ(x) =
1

1 + e−x
. (6)

The fused metapath representations are computed as
weighted sums using the attention weights:

mc =
L∑

l=1

αc
lp

c
l , mj =

L∑
l=1

αj
lp

j
l , (7)

where mc and mj represent the aggregated candidate and
job representations that imply their preferences over each
other.

The attention weights αc
l and αj

l indicate the relative im-
portance of different metapaths from the dual perspectives,
which provides explanations for the recommendation re-
sults.

Prediction
Unlike the traditional recommender systems which make
predictions by fusing representations from both sides, we
make dual-perspective predictions separately and then av-
erage them.

Specifically, given the aggregated metapath representa-
tions mc and mj of candidate ci and job jk, we have:

ŷci→jk = σ(mcwp
c+bpc), ŷjk→ci = σ(mjwp

j +bpj ), (8)

where wp
c ,w

p
j ∈ Rd are trainable weight vectors that

transform aggregated metapath representations into match-
ing probabilities. bpc , b

p
j ∈ R are trainable bias terms. And

ŷci→jk predicts the probability of job jk satisfying candi-
date ci based on the candidate’s aggregated preferences over
metapaths, while ŷjk→ci predicts the probability in the op-
posite direction.

To combine the dual-perspective predictions, we take
their average as the final matching probability:

ŷi,k =
1

2
(ŷci→jk + ŷjk→ci). (9)

Optimization
To optimize the model parameters, we propose a bilateral
quadruple loss that incorporates bilateral matching loss and
unilateral matching loss.

Follow the previous work (Yang et al. 2022), for each pos-
itive sample match ⟨ci, jk⟩, we construct negative samples
⟨ci, j′k⟩ and ⟨c′i, jk⟩, where c′i and j′k are randomly sampled
negative candidate and job respectively. The training set can
be denoted as D = {(i, k, i′, k′) | (i, k) ∈ M, (i, k′) ∈
M, (i′, k) ∈M}, whereM andM are the matched and un-
matched sets, and (i, k, i′, k′) is the abbreviation of quadru-
ple (ci, jk, c

′
i, j

′
k).

The bilateral matching loss is defined as:

Lbm = − 1

|D|
∑

(i,k,i′,k′)∈D

log (σ (2ŷi,k − ŷi,k′ − ŷi′,k)) ,

(10)
where σ denotes the sigmoid function.

The negative samples may contain some unilaterally
matched ones, which can be identified by the unilateral
match matrix U. Specifically, uik = 1 indicates candidate
ci applied but got rejected by job jk, uik = −1 indicates the
opposite direction, and uik = 0 means no unilateral match
between them. The unilateral matching loss is defined as:

Lum = − 1

|D|
∑

(i,k,i′,k′)∈D

log(σ(f(i, k, i′, k′))), (11)

where

f(i, k, i′, k′) = uik′(ŷi→k′ − ŷk′→i)+ui′k(ŷi′→k− ŷk→i′).
(12)

By combining the two parts, the final loss function is:

L = Lbm + λLum, (13)

where λ balances the two loss terms. By minimizing this loss
function, the model parameters can be optimized to improve
the matching prediction performance.

Compared to the previous methods that use either cross-
entropy loss or pairwise loss, our bilateral quadruple-based
loss models the reciprocal matching in two directions simul-
taneously, and also accommodates unilateral matches in re-
ciprocal recommendation.

Experienments
To answer the following questions, we conduct experiments
on two real-world datasets from different scenarios. Our
code is available at: https://github.com/AllminerLab/Code-
for-KAERR-master.

• RQ1: How does our model perform compared to the ex-
isting state-of-the-art methods?

• RQ2: What are the contributions of different components
of our model to the overall performance?

• RQ3: How do parameters influence the results of
KAERR?

• RQ4: Can our model provide intuitive explanations for
the prediction results?
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Dataset Zhaopin UEM
# Candidates/Researchers 4,500 3,124

# Jobs/Demands 19,114 6,247
# Interactions 29,792 18,960

Sparsity 99.97% 99.90%
# Match 28,195 11,245

# KG Entity Types 9 11
# KG Relation Types 24 13

# KG Entities 35,471 58,214
# KG Relations 431,831 585,794

Table 1: Statistics of the experimental datasets.

Datasets We evaluate our model on two real-world datasets
from different reciprocal recommendation scenarios. The
overall statistics are shown in Table 1.
• Online Recruitment. We use a dataset from the Aliyun

Programming Competition on Person-Job Fitting1, pro-
vided by a large Chinese online recruitment platform,
namely Zhaopin. For simplicity, the dataset is called
Zhaopin. In this dataset, if a job seeker views and ap-
plies for a job posting, and the recruiter accepts the ap-
plication, this candidate-job pair is treated as a positive
match, indicating mutual satisfaction.

• University-Enterprise Matching. We have compiled a
dataset derived from industry collaboration records span-
ning the last five years at Sun Yat-sen University. For
simplicity, the dataset is called UEM. In this scenario,
we need to recommend suitable university researchers for
the technology demands proposed by enterprises. Mean-
while, we also need to recommend appropriate enterprise
demands for the researchers based on their capabilities.

Baselines We conduct experiments to compare our proposed
model with the following baseline methods:
• BPRMF (Rendle et al. 2012) is a matrix factorization

model that learns user and item representations by opti-
mizing a pairwise Bayesian Personalized Ranking loss.

• NCF (He et al. 2017) replaces the inner product in matrix
factorization with a multi-layer perceptron, which helps
to capture non-linear relationships.

• LFRR (Neve and Palomares 2019) is a latent factor
model adapted for reciprocal recommendation.

• LightGCN (He et al. 2020) is a simplified graph convo-
lutional network for recommendation that captures col-
laborative filtering signals to generate personalized rec-
ommendations efficiently.

• PJFNN (Zhu et al. 2018) is a convolutional neural net-
work model for person-job fit prediction. It learns joint
representations of person and job from historical appli-
cation data in an end-to-end manner.

• BPJFNN (Qin et al. 2018)is an RNN-based model for
person-job fit prediction. It uses BiLSTM to derive se-
mantic representations for job requirements and appli-
cant experiences.
1https://tianchi.aliyun.com/dataset/31623

• APJFNN (Qin et al. 2018) employs hierarchical atten-
tion on RNN-derived job and applicant representations
to identify key requirements and relevant experiences.

• DPGNN (Zhou et al. 2023) uses graph representation
learning with two nodes per entity to capture two-way
selection preferences and interactions.

We categorize the baseline models into three groups accord-
ing to their core techniques: (1) Collaborative filtering meth-
ods including BPRMF, NCF, LFRR and LightGCN, which
make recommendations based on user-item interactions; (2)
Content-based methods including PJFNN, BPJFNN, and
APJFNN, which rely on profile content features; (3) Hybrid
method DPGNN that combines collaborative filtering and
content-based filtering. Except for BPRMF and NCF, all the
other baseline models are proposed specifically for the re-
ciprocal recommendation scenario. It’s crucial to highlight
that we omitted comparisons with sequential recommenda-
tion models like ReSeq (Zheng et al. 2023b) due to their
dependence on extensive interaction histories and sequential
data, requirements that our dataset does not meet.
Evaluation Following (Yang et al. 2022), we adopt four
common ranking metrics: Recall (R@k), Precision (P@k),
Normalized Discounted Cumulative Gain (NDCG@k) and
Mean Reciprocal Rank (MRR@k). We set k to 5 for evalua-
tion. We perform evaluation from both sides simultaneously
for each positive match, which is well suited for recipro-
cal recommendation. Specifically, for each positive match,
we sample 20 negative instances for both sides to construct
two ranking lists. We then report the average ranking metrics
across both lists.
Implementation Details We implement the baseline models
using RecBole (Zhao et al. 2022) library. Hyper-parameters
for all methods are tuned through grid search. The Adam
optimizer is utilized for model training. The learning rate is
selected from {0.01, 0.001, 0.0001} via tuning. Early stop-
ping with a patience of 10 epochs is adopted to prevent over-
fitting.

Performance Comparison (RQ1)

Table 2 presents the comparison results. It can be observed
that collaborative filtering-based baselines perform poorly
due to limitations in modeling sparse interactions. Although
content-based baselines achieve some improvements com-
pared to collaborative filtering methods, they still under-
perform the hybrid methods. The hybrid method DPGNN
achieves the second-best performance across all metrics, in-
dicating that utilizing both text descriptions and interactions
is important.

In comparison, our proposed KAERR method achieves
superior performance over all baselines on both datasets.
Unlike the existing methods, KAERR explicitly models the
metapaths from dual perspectives and fuses them with at-
tention weights, which allows for capturing the distinct in-
tentions of each party and focusing on influential metapaths.
This leads to more accurate matching between the two sides.
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Dataset Perspective Candidates/Researchers Jobs/Demands
Metric R@5 P@5 NDCG@5 MRR@5 R@5 P@5 NDCG@5 MRR@5

Zhaopin

BPRMF 0.2769 0.0570 0.2164 0.1997 0.3500 0.0789 0.2576 0.2367
NCF 0.3606 0.0739 0.2378 0.2012 0.3236 0.0731 0.2257 0.2020

LFRR 0.2833 0.0582 0.2215 0.2045 0.3545 0.0802 0.2577 0.2352
LightGCN 0.2981 0.0611 0.2312 0.2089 0.3601 0.0814 0.2631 0.2393

PJFNN 0.6929 0.1425 0.4984 0.4392 0.6468 0.1384 0.4605 0.4057
BPJFNN 0.3056 0.0625 0.1970 0.1632 0.2318 0.0480 0.1389 0.1107
APJFNN 0.3074 0.0631 0.1900 0.1536 0.2319 0.0485 0.1396 0.1116
DPGNN 0.7777 0.1617 0.6144 0.5658 0.7460 0.1628 0.5869 0.5441
KAERR 0.9477 0.1979 0.8275 0.7895 0.9499 0.2059 0.8333 0.7990

UEM

BPRMF 0.3202 0.0723 0.1987 0.2156 0.3825 0.0845 0.2663 0.2538
NCF 0.3542 0.0721 0.2335 0.1998 0.3278 0.0756 0.2198 0.2047

LFRR 0.3389 0.0698 0.2354 0.2496 0.3875 0.0925 0.2734 0.2547
LightGCN 0.3458 0.0714 0.2402 0.2547 0.3928 0.0944 0.2792 0.2601

PJFNN 0.7321 0.1623 0.5123 0.4578 0.6723 0.1502 0.4789 0.4156
BPJFNN 0.7514 0.1687 0.5236 0.4629 0.6915 0.1552 0.4887 0.4486
APJFNN 0.7587 0.1695 0.5287 0.4655 0.6963 0.1618 0.4894 0.4523
DPGNN 0.8259 0.1897 0.6532 0.5923 0.8064 0.1921 0.6243 0.5940
KAERR 0.9146 0.1932 0.8014 0.7507 0.9202 0.1961 0.8128 0.7667

Table 2: Performance comparison of all methods.

Dataset Perspective Candidates/Researchers Jobs/Demands
Metric R@5 P@5 NDCG@5 MRR@5 R@5 P@5 NDCG@5 MRR@5

Zhaopin

KAERR 0.9477 0.1979 0.8275 0.7895 0.9499 0.2059 0.8333 0.7990
w/o DPME 0.8936 0.1531 0.7897 0.7612 0.9178 0.1736 0.7912 0.7714
w/o AMF 0.9105 0.1582 0.7875 0.7624 0.9235 0.1821 0.7890 0.7727
w/o BQL 0.9079 0.1597 0.7759 0.7595 0.9201 0.1799 0.7823 0.7612

UEM

KAERR 0.9146 0.1732 0.8014 0.7507 0.9202 0.1961 0.8128 0.7667
w/o DPME 0.8653 0.1427 0.7652 0.7301 0.8827 0.1725 0.7698 0.7221
w/o AMF 0.8702 0.1495 0.7781 0.7399 0.8785 0.1925 0.7754 0.7344
w/o BQL 0.8669 0.1380 0.7664 0.7368 0.8802 0.1786 0.7721 0.7302

Table 3: Performance comparison between KAERR and its variants.

Ablation Study (RQ2)
To verify the effectiveness of our proposed components, we
conducted ablation studies by removing each of the key de-
signs in KAERR. Specifically, we consider the following
three variants of KAERR: (1) KAERR w/o DPME replaces
the dual-perspective metapath encoder with a shared LSTM
encoder, where candidates and jobs use a common metapath
representation; (2) KAERR w/o AMF substituting the atten-
tive metapath fusion by simple mean pooling; (3) KAERR
w/o BQL changes the bilateral quadruple loss to the con-
ventional BPR loss. The results in Table 3 demonstrate a
performance decline when removing any of the above com-
ponents. This confirms that all the components in KAERR
make pivotal contributions to improving KAERR’s perfor-
mance.

Hyper-Parameter Analysis (RQ3)
The parameter tuning results are shown in Figure 2. We
study the impacts of three key hyper-parameters: maximum

number of metapaths Lm, knowledge graph embedding size
he, and λ in the loss function. Lm controls the amount of se-
mantics captured from the knowledge graph. Through test-
ing Lm ∈ 2, 4, 8, 16, 32, we find that Lm = 16 achieves
the best performance, as too small values lead to insufficient
semantics while too large values incorporate noisy infor-
mation. For he, the optimal value differs between the two
datasets due to the knowledge graph size. λ balances the
weights of bilateral and unilateral matching losses, and the
best value is 2 since the proportion of unilateral matches
is relatively small in the interaction data, and moderately
increasing the coefficient that can helps to better exploit
their information. This analysis provides insights into how
to properly set these key factors.

Case Study (RQ4)
Figure 3 shows successful and unsuccessful Candidate-Job
matches. In the successful match, our model predicts high
scores from both the candidate’s and the recruiter’s per-
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Figure 2: The performance of KAERR with different settings of Lm, he, and λ.
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Figure 3: Examples of a successful Candidate-Job match (Top) and an unsuccessful Candidate-Job match (Bottom).

spectives. The attention weights on metapaths highlight the
key factors influencing the match. For the candidate, the
top weights are on location and salary, suggesting these are
the primary considerations. On the other hand, the recruiter
places more emphasis on education, skills, and experience.

In contrast, the unsuccessful match depicted at the bot-
tom shows a different scenario. Even though the candidate
satisfies the job requirements with suitable education, work
experience, and skills, which is indicated by a high predic-
tion score from the job’s perspective, the candidate’s own
prediction score for the job remains low. This discrepancy in
scores is due to the job’s location not meeting the candidate’s
preferences, ultimately resulting in a low overall matching
score. This example underscores the importance of consid-
ering both parties’ preferences in the matching process and
demonstrates the nuanced interpretability our model pro-
vides in real-world recommendation scenarios.

Conclusion
In this paper, we proposed a novel Knowledge-Aware Ex-
plainable Reciprocal Recommender System (KAERR) that
effectively incorporates knowledge graph information to ad-
dress the sparsity issue in the reciprocal recommendation.
By extracting metapaths and modeling them from the dual
perspectives of the two involved parties, KAERR is able to
capture their distinct intentions and preferences. An atten-
tion mechanism is adopted to fuse the metapath represen-
tations by learning soft weights indicating the importance
of each metapath. Extensive experiments on two real-world
datasets verified that KAERR achieves state-of-the-art per-
formance. Furthermore, the attention weights provide inter-
pretability by revealing the relative influence of different
metapaths. For future work, we plan to explore incorporat-
ing metapath modeling with other graph learning techniques
to capture more information from knowledge graphs.
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