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Abstract—Due to the expensive and laborious annotations of
labeled data required by fully-supervised learning in the crowd
counting task, it is desirable to explore a method to reduce the
labeling burden. There exists a large number of unlabeled images
in the wild that can be easily obtained compared to labeled datasets.
Based on the characteristics of consistent spatial transformation
with the annotations of heads and image, this paper proposes a
self-supervised learning framework with unlabeled and limited
labeled data for pre-training and fine-tuning crowd counting model
(SSL-FT). It includes an online network and a target network
that receive the same images but are randomly processed by two
defined augmentation transformations. We leverage unlabeled data
to pre-train the online network based on a self-supervised loss
and small-scale labeled data to transfer the model to a specific
domain based on a fully-supervised loss. We demonstrate the
effectiveness of the SSL-FT on four public datasets including
ShanghaiTech PartA, PartB, UCF-QNRF and WorldExpo’10
utilizing a classical counting model. Experimental results show that
our approach performs better than state-of-art semi-supervised
methods.

Index Terms—Crowd counting, augmentation transformation,
self-supervised learning, self-supervised loss.

I. INTRODUCTION

CROWD counting is to infer the number of people in im-
ages or videos. As a basic computer vision task, it has

drawn increasing attention recently because of its significance
in practical applications, e.g., crowd management, traffic con-
trol, emergency evacuation, urban planning [1], [2], [3], [4].
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To realize crowd counting, many deep-learning-based meth-
ods are proposed with promising performance, most of which
mainly can be divided into detection-based approaches [5], [6]
and density map-based approaches [7], [8]. The key idea of
the former method is to employ bounding boxes to locate the
position of the head or body in an image, while the latter aims to
generate density maps and sum up them to obtain the counts.
Meanwhile, some point-based counting methods are also
explored to predict a set of points to represent heads in an im-
age [9], [10]. Considering that the crowd location is not included
in the evaluation criteria of the counting model, the point-level
labels are actually redundant. To avoid over-labeling, some
methods [11], [12] are also proposed to directly generate the
number of people and only utilize the count-level labels without
the labels of head locations. Though remarkable counting
performance has been achieved by the above fully-supervised
methods, they all require a large amount of point-level or
count-level annotations to guide network learning. In many
real applications, however, access to plentiful labeled data is
costly and time-consuming, especially when the scenario is
very crowded with heavy occlusion.

To this end, exploring a not-so-supervised learning approach
is necessary by leveraging limited labeled data as well as un-
labeled data. Compared to labeled data, there is a large num-
ber of wild images without annotations that can be obtained
and utilized to enhance the performance [13] [14]. For unla-
beled data, semi-supervised methods [15] commonly generate
pseudo-labels by using limited labeled data. However, the un-
reliable pseudo-labels and the unsatisfying generalization abil-
ity are the main drawbacks of these approaches. On the other
hand, self-supervised learning without any annotations is a po-
tential technique, which involves the formulation of contrastive
loss from the hidden semantics of images not relying on ground
truth to update the counting model [16], [17]. Unsurprisingly, the
network model trained only using unlabeled data shows weaker
performance than semi-supervised methods.

To obtain an accurate counting result without adding
additional annotation workload, in our work, we propose a
self-supervised learning method with unlabeled data to pre-train
the model and fine-tune the model using limited labeled data
(SSL-FT). Unlike existing semi-supervised and self-supervised
methods, SSL-FT leverages both limited labeled data as well
as extensive unlabeled data to train the counting model in
a self-supervised manner with an overlapping-consistency
strategy, as shown in Fig. 1. Specifically, for an image and its
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Fig. 1. The presentation of input image processed by different transformations. (a) Crop the image with a certain size. (b) Scale and perform affine transformation
for the image. (c) Align and scale the image. (d) Crop the overlapping region of the two transformed images.

associated density map, when the same image is processed by
both transformations, their density maps also change accord-
ingly. Therefore, the density maps of the overlapping areas of the
two images are regarded as ground truth to each other, and the
gap between the two density maps is named as a self-supervised
loss. Our counting model is first trained with a self-supervised of
the density maps of the same cropped image after going through
different transformations based on self-supervised training. And
then we utilize limited labeled data to fine-tune the trained model
in a fully-supervised manner. In this way, our SSL-FT addresses
the domain-specific shortcomings of limited labeled data while
making full use of unlabeled data. There are two networks in
the SSL-FT including an online network and a target network.
The online network and the target network have exactly the
same network structure, which are initialized with random pa-
rameters. During model training, they receive cropped patches
from the same image processed by different transformations.
The update of the online network relies on the output of the
target network, and the update of the target network uses the
weighting of the previous parameters and the parameters of the
current online network. Finally, we use dilated convolutional
neural networks for understanding the highly congested scene
(CSRNet) [18] due to its strong scalability as the online network
and target network to perform experiments based on the SSL-FT
framework. In summary, the main contributions are as follows:
� We propose a self-supervised method with the unlabeled

dataset to pre-train the counting model, and labeled data
to guide the domain adaptation, improving the adaptive
performance of the model.

� We design a series of augmentation transformations and
alignment schemes that are suitable for labeled and unla-
beled images for density map-based models, increasing the
variety of datasets.

� Extensive experiments show that SSL-FT achieves supe-
rior performance on four challenging datasets, proving the
effectiveness and superiority of our method.

The remainder of this paper is organized as follows: Sec-
tion II presents related works with the crowd counting and
self-supervised learning. Section III elaborates on the technical

details of our SSL-FT. Section IV performs extensive experi-
ments to demonstrate the effectiveness of the proposed method.
Finally, Section V concludes the whole paper.

II. RELATED WORK

In recent years, deep learning has achieved a series of break-
throughs in crowd counting tasks [19], [20]. In this section, we
present semi-supervised methods for crowd counting and the
achievements of self-supervised learning.

A. Semi-Supervised Methods for Counting

Semi-supervised learning is a commonly used method in
the counting task with minimal labeled samples [21], [22],
[23], [24], [25]. Liu et al. utilized an unlabeled dataset by
ranking cropped images at different scales in a multi-network
task [13]. Meng et al. adopted the teacher-student frame-
work to solve the problem of noise supervision of unlabeled
data [12]. Yu et al. used the continuity among video frames to
reconstruct the density map and guided the training based on
the associated loss among frames [26]. Liu et al. designed a
segmentation map predictor for unlabeled data and leveraged
a threshold method to judge whether there is a head anno-
tation existing on the pixel [11]. Vishwanath et al. designed
a Gaussian Processes-based iterative learning framework to
count people [23]. Gao et al. extracted abundant relations and
structural information and employed partial orders from the
latent feature spaces to reduce the estimation error on crowd
counting [24]. These methods reduce the burden of manually
labeling data but their performances are also influenced by
inaccurate pseudo-labels and weak semantic information.

B. Self-Supervised Learning

Self-supervised learning means that the dataset does not pro-
vide extra information as supervised signals to train the model,
which only takes advantage of the properties of images [27].
It is generally implemented based on contrastive learning [28],
which refers to making two kinds of data become similar or
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Fig. 2. Overview of our SSL-FT framework. The SSL-FT framework consists of two steps. In Step 1, the model is pre-trained with unlabeled data, and the online
network is updated with a self-supervised loss function. In Step 2, the model is fine-tuned with labeled data, and the online network is updated with a self-supervised
loss function and a fully-supervised loss function. The target network is updated with the momentum function both in Step 1 and Step 2.

different to train the model via learning latent code. MoCo ran-
domly augments the data from two views, calculates the co-
sine value of positive and negative examples, and employs a
double-tower structure to update the encoder parameters in a
momentum way [16]. SimCLR adds negative examples to the
loss computation [17]. BYOL improves the performance of the
target network by reducing the distance between different views
of the same image [29]. MoBY integrates the two methods of
MoCo and BYOL and uses positive and negative examples to
compare and update the prediction results based on the online
network and target network [30]. In terms of crowd counting,
Deepak et al. designed a completely self-supervised paradigm
based on density regression, exploiting the idea that natural pop-
ulations obey a power-law distribution [31]. Duan et al. proposed
S4-Crowd to formulate self-supervised loss to simulate crowd
scale and illumination changes [32]. Instead of other counting
works based on self-supervised learning, we aim to utilize the
basic consistency characteristic between image transformation
and head location to perform self-supervised crowd counting
using large-scale unlabeled images and limited labeled images.

III. METHOD

In this section, we briefly introduce a preliminary and
overview of the architecture design of our SSL-FT. Then, we
formulate the transformation and alignment scheme based on
contrastive learning. Finally, we present the details of the loss
function and the process of training and testing.

A. Preliminary

In our work, the typical density map-based regression method
is determined as the supporting path to choose counting net-
work. To obtain the continuous labels about the head position,

we use the Gaussian kernel to transform the pixel-level anno-
tations to block-level values based on convolution operations.
Density maps are generated via geometry-adaptive kernels to
avoid the influence of perspective deformation [33]. For an im-
age with labels, the density map is calculated as

D(x) =
N∑
i=1

δ(x− xi) ∗Gσi
(x), (1)

σi = βdi, (2)

where x represents a pixel in the image, xi represents the pixel
of the head position, N represents the number of heads, and Gσi

represents a Gaussian kernel with variance of σi. The value of
σi is adaptively determined by the average distance di between
xi and its nearest head point and the parameter β.

B. Overview of SSL-FT

To make full use of a large amount of unlabeled data and
limited labeled data, as shown in Fig. 2, our SSL-FT contains
two steps: (1) The density map-based model is first pre-trained
with unlabeled data, and the supervision information is derived
from the self-supervision of the same image processed by differ-
ent transformations. (2) Limited domain-specific labeled data is
used to fine-tune the model to achieve domain adaptation in a
supervised manner.

In the SSL-FT framework, there are two-stream networks con-
sisting of an online network and a target network. The architec-
ture and the number of parameters of the target network are
exactly the same as the online network. The training of SSL-FT
is divided into two stages. First, the unlabeled images through
two kinds of random affine transformations are input into the on-
line network and the target network, and the two networks output
different feature maps. The parameters including operations and
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magnitudes of the affine transformation participate in the inverse
transformation of the feature map. And then the contrastive loss
of the overlapping region of the feature maps corresponding
to the two transformation maps is measured. This contrastive
loss is used to perform gradient update for the online network
θonline. Meanwhile, the target network θtarget is updated by the
momentum function, which is expressed as follows:

θtarget = ϕ · θtarget + (1− ϕ) · θonline, (3)

ϕ = 1− (1− ϕ0) · cos(1 + π · k/K)

2
, (4)

where ϕ is the step size of the momentum update, ϕ0 is the ini-
tial value, K is the total number of iterations of the training and
k is the index of the current training iteration. It is noted that
the function avoids network vibration and performance degra-
dation caused by violent updates. And the model is fine-tuned in
dynamic uncertain changes through the adjustment of periodic
momentum update parameters by the cosine function, making
the counting network break through the local optimum. After the
network is pre-trained with unlabeled data, minimal labeled data
from a specific dataset is used to fine-tune the online network
and target network. Different from the pre-training stage, the loss
function not only includes the distance of the density maps from
overlapping regions between two different transformed images,
but also the distance between the estimated map and the ground
truth. It boosts the online network to realize the domain adapta-
tion on a specific domain. The update of the target network is still
performed with the momentum update function according to (3).
In the stage of model inference, the online network predicts the
number of people for an input image and the target network is
not allowed to participate in the inference stage. In addition, the
SSL-FT framework can be applied to strong supervision mod-
els, e.g., density map-based regression and point-based regres-
sion methods, and weak supervision models of the count-level
method.

C. Transformation and Alignment

A series of affine methods and basic transformations are ap-
plied to feature maps based on SSL-FT. In this paper, images
are transformed according to the following orders:

1) Randomly crop the original image with a size of 90% to
130% of the original image size. It is required to include
at least one person in the cropped patch.

2) Scale the cropped images to a uniform size. It is deter-
mined by the scale of the target scenario generally varied
from 256× 256 to 512× 512.

3) Randomly flip the image with 50% probability. The flip
direction includes vertical flip and horizontal flip.

4) Randomly rotate the image by a certain angle along with
the center of the image generally varied from −30 degrees
to 30 degrees.

5) Convert the image to a grayscale image with an executing
probability of 0.2, and then process the image with the
gaussian blur method with an executing probability of 0.2.

6) Apply gaussian noise with the mean and standard devi-
ation of 0 and 0.5, and salt and pepper noise with the
proportion of 1e− 6 performed on the image.

7) Adjust the brightness, contrast, saturation, and hue of the
image with values of 0.4, 0.4, 0.4 and 0.2, and with an
executing probability of 0.6.

The 1) and 2) generate diverse sizes of patches in the im-
ages to fit real application scenarios. The 3) and 4) leverage the
characteristic of consistency between different transformations
to generate supervised information. And the 5), 6), and 7) make
augmentations for the image without changing the head loca-
tions. The listed series of transformations can be formulated as
follows:

I ′ = T (I), (5)

whereT (·) represents the above-mentioned transformation from
1) to 7), I and I ′ are the images before and after the transforma-
tion, and the parameters of the affine transformation and scale
transformation for each image are recorded. And then the trans-
formed images are input into the counting network to obtain the
density map M . To match the M with another density map to
obtain the supervised information, the inverse transformation is
performed on M to obtain the original perspectives, which is
expressed as follows:

M ′ = T ′(M), (6)

where T ′(·) represents the inverse transformations, including
rotation, flip and scale operations, and the transformations in 5)
to 7) are not required to perform an inverse transformation. And
the parameters of inverse operations are opposite to the original
transformation.M andM ′ represent the feature maps before and
after inverse transformation. For example, a series of transfor-
mations in T from 1) to 4) for image I is expressed as crop size
with 500× 500, resizing to 512× 512, vertical flip and rotating
10 degrees. And a series of inverse transformation operations in
T ′ for density mapM ′ is expressed as rotating -10 degrees, verti-
cal flip and resizing to 500× 500. For the same image processed
by two different transformations of T1 and T2, two density maps
are obtained through the online network and the target network,
represented as M1 and M2 respectively. Then the two images
are inversely transformed using T ′

1 and T ′
2 to obtainM ′

1 andM ′
2.

And then the original image and the transformation sequence are
used to align the two density maps, and the overlapping area is

m = M ′
1 ∩M ′

2. (7)

In the image, m is represented as the position coordinates of
the upper left and lower right corners of the overlapping regions
of M ′

1 and M ′
2, which is calculated by comparing the positions

they occupy in the original image. Thus, after the image is trans-
formed, the feature maps output by the online network and the
target network are aligned to find the overlapping area. The sig-
nals for the mutual supervision of these two images are obtained.
In the crowd counting task, the pixel of head location strictly fol-
lows the one-to-one correspondence in the affine transformation.
For different transformed images, it is a brand new image for the
counting network. Therefore, through transformation and align-
ment, it is guaranteed that the pseudo-label can be obtained.
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Meanwhile, the extensiveness of the data is expanded through
augmentation operations, which enhances the robustness of the
model.

D. Loss Function

When the network is trained with unlabeled data, only the
information of the transformation and alignment operations is
used to achieve self-supervision. The self-supervised loss func-
tion for unlabeled data is expressed as

Lself (M1,M2) =
∑

‖M ′
1(m)−M ′

2(m)‖2, (8)

where M ′
1(m) and M ′

2(m) represent the feature maps of the
aligned overlapping regions output by the online network and
target network. When the network is trained on minimal labeled
data, in addition to the self-supervised loss, the loss between the
transformed image and the ground truth is also included, which
is expressed as:

Lfully =
∑

‖M −G‖2, (9)

where G represents the ground truth of the density map corre-
sponding to the image. Therefore, for the update of the online
network, the loss function is expressed as:

L = λ1 · L1
self + λ1 · L2

self + λ2 · Lfully, (10)

where λ1 and λ2 are the balance parameters of the two loss val-
ues and λ2 is 0 when the model is trained by unlabeled data.
To make full use of existing data participating in model train-
ing and introduce more information, two cropped images from
the same image transformed by different operations are simul-
taneously input to the online network and the target network,
and the cross-computation comparison loss is used to update the
network. There are two self-supervised loss values in the train-
ing phase, which are L1

self (M1,M2) and L2
self (M2,M1). In

L1
self (M1,M2), M1 is generated by online network and M2 is

generated by target network, and in L2
self (M2,M1), M1 is gen-

erated by target network andM2 is generated by online network.
In this way, the limited labeled data contribute more information
to the model training.

IV. EXPERIMENTS

In this section, we evaluate the performance of the proposed
SSL-FT framework on public datasets and compare it with state-
of-the-art methods.

A. Experimental Setting

Network structure: We leverage a typical model CSRNet with
the simple structure and optimization goal [18] as the counting
network of the SSL-FT framework. We choose a dilated con-
volutional network with a dilation rate equipped with channel
numbers of 512, 512, 512, 256, 128, and 64.

Compared methods: We illustrate the details of compared
semi-supervised methods with our method as follows:

� Mean Teacher (MT) [21]: The method consists of a teacher
network and a student network, both of which use the origi-
nal image and the augmented image to estimate the density
map.

� Unsupervised Data Augmentation (UDA) [22]: The
method utilizes the advanced noise augmentation methods
to participate in semi-supervised learning.

� Interpolation Consistency Training (ICT) [25]: This is a
semi-supervised method, and the model learning is guided
by maintaining consistency in the transformation.

� L2R [13]: The method utilizes a large number of unlabeled
images and implements a novel counting method by rank-
ing the number of people with the cropped images.

� Gaussian Process-based (GP) [23]: The method aims to
achieve counting using small-scale labeled images and
large-scale unlabeled data based on the Gaussian process.

� Inter-Relationship-Aware Self-Training (IRAST) [11]: The
method is to keep consistent with the crowd distribution of
segmentation maps for different scales.

� Spatial Uncertainty-Aware (SUA) [12]: This is a semi-
supervised model based on a teacher-student framework,
both of which estimate the spatial uncertainty map.

� S4-Crowd [32]: This is a semi-supervised learning frame-
work for crowd counting. The two supervised loss func-
tions are proposed to simulate the variations among images
and generate fine-grained pseudo-labels.

� S2FPR [24]: The method extracts the structural informa-
tion from the latent feature space. And unlabeled data is
employed to enhance the representation ability.

Datasets: We evaluate our method on four popular datasets
including ShanghaiTech part A (SHA), ShanghaiTech part B
(SHB) [33], WorldExpo’10 (WE) [38] and UCF-QNRF [39]. We
randomly take out a proportion of labeled data in the training
dataset of these four datasets and evaluate the model on the
complete testing dataset.

Implementation details: When transforming the image, we
use the horizontal flip direction instead of the vertical flip. Other
transformation parameters are set as mentioned above. We em-
ploy the training dataset of SHA removing labels to complete
the pre-training task on CSRNet as unlabeled samples, and then
only select 25% of the datasets in the target domain including
SHB, WE and UCF-QNRF dataset for fine-tuning the model.
The four datasets are processed by Gaussian kernel with the
fixed kernel size of 15× 15 and σ of 4 to obtain the ground
truth of the labeled dataset [33]. In particular, when making
comparisons on the SHA dataset, we use the SHB dataset with-
out their labels to pre-train the counting model and then the
labeled SHA dataset is used to fine-tune the model. Compared
with other semi-supervised models, we adopt external images
not belonging to the target dataset, which improves the robust-
ness of the model. We adopt Adam optimizer with a learning
rate and weight decay rate of 1e− 4. The initial value of the
momentum update parameter ϕ is 0.99. The cropped size for
each image is 512× 512 on all datasets. The λ1 and λ2 are set
as 1 and 1 when there are labeled images.

Evaluation protocol: We use common evaluation criteria,
mean absolute error (MAE) and mean squared error (MSE),
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TABLE I
EVALUATIONS ON FOUR CROWD COUNTING DATASETS COMPARED WITH THE FULLY-SUPERVISED METHODS AND SEMI-SUPERVISED METHODS (* REPRESENTS

THE PERCENTAGES OF LABELED DATA ON SHA, SHB, WE AND UCF-QNRF ARE 30%, 30%, 28% AND 60%)

to evaluate counting performance:

MAE =
1

N

N∑
i

‖ĝi − gi‖, (11)

MSE =

√√√√ 1

N

N∑
i

‖ĝi − gi‖2, (12)

where N is the number of images, and ĝ and g are the predicted
count and real count in the image.

B. Counting Results

We compare our method with fully-supervised and semi-
supervised methods, as shown in Table I. Our baseline method is
directly trained with minimal labeled data without going through
the pre-training stage on unlabeled data. Our SSL-FT means that
we first pre-train the model with unlabeled data not belonging
to the target dataset, and then fine-tune it with domain-specific
labeled datasets. Since we adopt CSRNet as the network archi-
tecture of the SSL-FT framework, our method is weaker than the
fully-supervised method CSRNet. However, the performance is
stronger than some fully supervised models such as CMTL [34]
and Switch-CNN [35] on some datasets. For semi-supervised
methods, it can be found that our method significantly out-
performs them on both MAE and MSE on the four datasets,
although we use less labeled data than these methods by 5%
or even 35%. For three semi-supervised crowd counting mod-
els, our SSL-FT is better than these three models including GP,
IRAST and S4-Crowd on both SHA and SHB datasets, better
than S4-Crowd by 2.4 and 15.4 in MAE and MSE, and our
baseline also performs better on WE and UCF-QNRF datasets
than these three methods. The MAE and MSE of our method on
UCF-QNRF are 132.5 and 210.2. Compared with the S2FPR,
SSL-FT performs better on SHA and UCF-QNRF datasets when
using the same amount of labeled images.

Fig. 3. The comparisons of convergence speed between baseline model and
SSL-FT model. The loss values include self-supervised loss value and fully-
supervised loss value.

Meanwhile, we observe that our SSL-FT shows the best per-
formance on SHA and SHB, while our baseline performs better
on WE and UCF-QNRF. In our experiment, the number of la-
beled data of WE and UCF-QNRF are 845 and 300. It is con-
cluded that when there are many labeled images on the training
dataset, the pre-trained model has little effect on improving the
overall performance of the model. The results are consistent with
the conclusions in [40] and [41]. In addition, the pre-training
dataset SHB has a gap with the fine-tuning dataset UCF-QNRF
and WE in the crowd distribution. As a result, the pre-trained
model is not trained well to learn the region of interest that is
consistent with the target domain. When the model is transferred
to the target scenario, the performance of the model is decreased.
Therefore, SSL-FT is helpful in applications with small-scale la-
beled datasets. When there are more labeled samples, the effect
of pre-training is diminished. In this case, we can just leverage
the baseline method to train the model and conduct inference.

C. Ablation Studies

Effect of pre-training for convergence rate: We compare the
convergence rate of the baseline method and the SSL-FT method
on the SHA dataset and SHB dataset, as shown in Fig. 3. It
can be seen that the initial loss value of SSL-FT is lower than
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Fig. 4. The effect of the percentage of labeled images. We evaluate our SSL-FT
method and GP method [23] on the labeled SHA dataset with 5%, 25%, 50%,
75% and 100% of labeled data.

TABLE II
THE EFFECT OF THE NUMBER OF UNLABELED IMAGES. THERE ARE 50, 100,
200, 300 AND 400 UNLABELED IMAGES IN SHB USED TO PRE-TRAIN THE

MODEL AND FINE-TUNE WITH 75 IMAGES IN SHA

the baseline, and during 300 epochs, its loss value keeps de-
creasing on the SHA dataset. And the same phenomenon ap-
pears on the SHB dataset. Therefore, it can be concluded that
the pre-trained model using SSL-FT converges faster than the
baseline method, which is beneficial in scenarios where the col-
lection of labeled data is difficult. And the convergence rate
depends on the size of the dataset and the transferring ability of
the pre-trained model. Therefore, the computational resources
consumed in the pre-training stage can be compensated by re-
ducing the number of training epochs in the fine-tuning stage,
showing the energy efficiency of our method are not weaker than
other semi-supervised methods.

Effect of the percentage of labeled images: We evaluate the
effect of the proportion of labeled data, as shown in Fig. 4. The
percentages of 5%, 25%, 50%, 75% and 100% of the labeled data
are selected to train the baseline model and the SSL-FT model.
We compare the MAE and MSE of baseline, the SSL-FT method
and the GP method [23] which has the same configurations with
SSL-FT on the testing dataset. It can be found that when the
proportion of labeled data is only 5%, the performance of SSL-
FT and GP is similar but the baseline model is weaker than theirs.
When the percentages of labeled data are 25%, 50% and 75%,
the performance gap between the SSL-FT and GP increases,
and our baseline and SSL-FT method are far superior to the
GP method. For the model trained on 75% of labeled data, the
MAE and MSE of SSL-FT are 77.9 and 127.8, which are reducer
by 10 than the GP method. When these models are trained on
the fully labeled dataset, the performance gap of the models is
further narrowed. This proves that our SSL-FT method is robust
on labeled datasets in different settings, which can be leveraged
to generalize better performance in the real world with diverse
scenarios.

Effect of the percentage of unlabeled images: We validate the
effect of the number of unlabeled data from 50 to 400, and fix the
number of labeled images to 75. According to the results shown
in Table II, it can be found that the performance of the model

TABLE III
THE EFFECT OF THE TYPE OF PRE-TRAINING DATASET. THE UNLABELED SHA,

SHB, UCF-QNRF AND WE DATASET ARE USED AS THE PRE-TRAINING

DATASET TO TRAIN THE MODEL AND FINE-TUNE ON THE 75 IMAGES IN SHA

TABLE IV
THE EFFECT OF CONTRAST MOMENTUM ON THE 75 IMAGES IN SHA

varies greatly, which may be related to the matching degree of
scenarios between unlabeled data and labeled images. When
there are more unlabeled images participating in the stage of
pre-training, the distribution between the source domain and the
target domain has a bad effect on the model training. When the
number of unlabeled images is 100, the MAE and MSE reach
better performance with 76.30 and 125.48. If the distributions
of unlabeled data and labeled data are quite different, the pre-
training stage for the model may weaken the robustness of the
model.

Effect of the type of pre-training dataset: We evaluate the ef-
fect of the type of pre-training dataset with unlabeled SHA, SHB,
UCF-QNRF and WE dataset. The model is fine-tuned with the
left-labeled SHA dataset and the results are shown in Table III. It
can be observed that when using 225 unlabeled images in SHA
as the pre-training dataset, the fine-tuned model reaches the best
performance with the MAE and MSE of 80.78 and 132.38 com-
pared with other models pre-trained on SHB, UCF-QNRF and
WE datasets. And a large distribution gap between SHA and WE
according to the results weaker than 11.23 and 6.64 of MAE and
MSE on WE dataset. It is concluded that we need to select a suit-
able unlabeled dataset matching the target domain as much as
possible to improve counting performance.

Effect of the contrast momentum: We evaluate the effect of the
step size of contrast momentum with 25% labeled data of the
SHA dataset, as shown in Table IV. When ϕ is 0.99, MAE and
MSE are 82.12 and 132.92 to achieve better performance. How-
ever, when we set ϕ less than 0.90, the counting performances
degrade greatly. As the contrast momentum becomes smaller,
it proves that the model retains less of the parameters recorded
from the previous step, and the performance of the model tends
to deteriorate. Generally, ϕ should maintain a relatively large
value to fully retain the previous parameters to ensure steady
updates of the model.

Effect of the type of transformation operation: We explore the
effect of multiple operations in the transformation orders with
25% labeled data of SHA dataset, and the results are shown in
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TABLE V
THE EFFECT OF TRANSFORMATION TYPE ON THE 75 IMAGES IN SHA

TABLE VI
THE EFFECT OF SELF-SUPERVISED LOSS FUNCTION ON THE 75 IMAGES IN SHA

Table V. The model performs worse when transformations in-
cluding rotation, brightness, and gaussian and salt noises are re-
moved. Specifically, if there is a lack of rotation transformation,
the MAE and MSE are 86.98 and 140.22. It is also observed that
gaussian and salt-and-pepper noises have less effect on perfor-
mance improvement. Therefore, we need to perform reasonable
augmentation transformation and choose appropriate parame-
ters for the images.

Effect of the self-supervised loss function: In the stage of the
fine-tuning model with 25% labeled data, we study the effect
of the self-supervised loss Lself , as shown in Table VI. The
Lself means that the two transformed images for the same im-
age are both input to the online network and the target network
simultaneously, and then the self-supervised loss values of the
overlapping area are alternately calculated. When we do not
use self-supervised loss or use only one of the self-supervised
loss values for transformed images, the performance is weaker
than using two alternating loss values. This indicates that the
self-supervised loss also has a large effect when the model is
trained on labeled data. The supervised loss can be further ap-
plied in the fully-supervised methods as an augmentation strat-
egy to improve the counting accuracy.

V. CONCLUSION

This paper proposes a self-supervised learning framework
SSL-FT utilizing unlabeled data and minimal labeled data for
crowd counting. First, the counting model is pre-trained by un-
labeled data. The model is then fine-tuned on the labeled data to
realize the domain adaptation in a specific dataset. We present
transformation and alignment schemes during self-supervised
learning. Extensive experiments on four public datasets demon-
strate that our method achieves state-of-the-art performance.
SSL-FT is expected to be widely used with low labeling costs
while ensuring counting performance in the real world.
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