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Abstract—It is always a challenging problem to deliver a huge volume of videos over the Internet. To meet the high bandwidth and

stringent playback demand, one feasible solution is to cache video contents on edge servers based on predicted video popularity.

Traditional caching algorithms (e.g., LRU, LFU) are too simple to capture the dynamics of video popularity, especially long-tailed

videos. Recent learning-driven caching algorithms (e.g., DeepCache) show promising performance, however, such black-box

approaches are lack of explainability and interpretability. Moreover, the parameter tuning requires a large number of historical records,

which are difficult to obtain for videos with low popularity. In this paper, we optimize video caching at the edge using a white-box

approach, which is highly efficient and also completely explainable. To accurately capture the evolution of video popularity, we develop

a mathematical model called HRSmodel, which is the combination of multiple point processes, including Hawkes’ self-exciting,

reactive and self-correcting processes. The key advantage of the HRS model is its explainability, and much less number of model

parameters. In addition, all its model parameters can be learned automatically through maximizing the Log-likelihood function

constructed by past video request events. Next, we further design an online HRS-based video caching algorithm. To verify its

effectiveness, we conduct a series of experiments using real video traces collected from Tencent Video, one of the largest online video

providers in China. Experiment results demonstrate that our proposed algorithm outperforms the state-of-the-art algorithms, with

15.5% improvement on average in terms of cache hit rate under realistic settings.

Index Terms—Video caching, edge servers, point process, Monte Carlo, gradient descent

Ç

1 INTRODUCTION

DUE to the fast growth of the online video market, the
online video streaming service has dominated the

Internet traffic. It was forecasted by Cisco [1] that video
streaming applications will take up the Internet traffic from
59% in 2017 to 79% in 2022. On one hand, online video pro-
viders need to stream HD (high definition) videos with
stringent playback requirements. On the other hand, both
video population and user population are growing rapidly.
Thereby, edge devices have been pervasively exploited by
online video providers to cache videos so as to reduce the
Internet traffic and improve the user Quality of Experience
(QoE)[2], [3], [4], [5], [6], [7].

We consider the video caching problem on edge servers
that can provide video streaming services for users in a cer-
tain area (e.g., a city). If a video is cached, edge servers can
stream the video to users directly with a shorter response
time. In contrast, requests for videos that are missed by
edge servers have to be directed to remote servers, resulting
in lower QoE. From video providers’ perspective, the target
is to maximize the cache hit rate of user video requests by
properly caching videos on edge servers. Different from the
general caching problem in [8], [9], [10], [11], video caching
on edge servers confront two particular challenges. Firstly,
video requests are driven by users’ view interest in different
locations [2], [7]. Thus, it is crucial to make caching deci-
sions based on future video popularity which can be learnt
from localized request events. Secondly, user view interest
can be highly dynamic [5], [6]. Thereby, it is essential to
design an agile video caching algorithm that can swiftly
change video popularity prediction according to user
requests.

Briefly, there are two approaches to predict video popu-
larity so as to make video caching decisions. The first
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approach is to predict video popularity based on empirical
formulas. Classical LRU (Least Recently Used), LFU (Least
Frequently Used) and their variants [12], [13], [14] are such
video caching algorithms. However, such approach is sub-
ject to the difficulty of choosing parameter values. For
example, it is not easy to choose an appropriate time win-
dow size in LRU and LFU algorithms [12], [15]. The second
approach is learning-driven video caching algorithm. Typi-
cally, NN (neural network) models such as LSTM (Long
Short-Term Memory) [16], [17] can be leveraged to predict
video popularity so as to make right video caching deci-
sions. The strength of this approach is that model parame-
ters can be automatically determined through learning
historical request patterns, and thus such algorithms can
achieve better video caching performance than classical
algorithms. Yet, such models require a long training time,
and are lack of explainability and interpretability.

In this paper, we aim at optimizing the performance of
video caching on edge servers using a white-box approach.
To this purpose, we develop a mathematical model called
HRS model to capture the evolution process of video popu-
larity. The HRS model is the combination of multiple point
processes, including the Hawkes process [18], the reactive
process [19] and the self-correcting process [20]. The point
processes enable us to exploit timestamp information of his-
torical video requests and time-varying kernels to predict
future events.

Specifically, the intuition behind the HRS model is as
follows: with the Hawkes process, we can model the posi-
tive impact of the occurrence of a past event, and link
future video request rates with the past video request
events; with the reactive process, we can take the influ-
ence of negative events (e.g., the removal of a video from
the recommendation list) into account; with the self-cor-
recting process, we can restrict the growth of video popu-
larity. Compared to NN (neural network)-based models,
the number of parameters of HRS is much less. In addi-
tion, our HRS model is completely explainable and inter-
pretable, making HRS superior in two aspects: 1) HRS is
composed of multiple components and each component
can be evaluated separately. Thus, it is easier to refine
HRS to generalize its use in different platforms [21]. 2)
The performance obtained with HRS is more convincing
and not due to coincidence [22], [23].

In summary, our main contributions in this paper can be
summarized as below:

� We develop a hybrid multi-point process model
called HRS to accurately predict the evolution of
video popularity (i.e., video request rate). Different
from NN-based model, our HRS model is completely
explainable and interpretable. The HRS model can
link future video request rates with both past video
request events and negative events, and take the
characteristics of edge servers into account.

� We propose an online video caching algorithm for
edge servers based on the HRS model. Due to
much less model parameters, the algorithm has
very low computation complexity. All parameters
of the HRS model can be determined automatically
by maximizing the Log-likelihood function. Thus,

the algorithm can be executed frequently to update
cached videos timely according to the dynamics of
video popularity.

� We conduct extensive real trace-driven experiments
to validate the effectiveness of our proposed algo-
rithm. The video request traces are collected from
Tencent Video, one of the largest online video pro-
viders in China. The experimental results show that
the HRS-based online caching algorithm can achieve
the highest cache hit rate with 12.3% improvement
than the best baseline algorithm in terms of cache hit
rate. In particular, the improvement is over 24%
when the caching capacity is very limited. In addi-
tion, the execution time of our algorithm is much
lower than that of NN-based caching algorithms.

The rest of the paper is organized as follows. We first
provide an introduction of preliminary knowledge in the
next section which is followed by the description of the
HRS model in Section 3. Notably, the new online caching
algorithm is proposed in Section 4. The experimental results
are presented in Section 5; while the related works in this
area are discussed in Section 6 before we finally conclude
our paper.

2 PRELIMINARY

2.1 Video Caching On Edge

We consider a video caching system with multiple edge
servers. The system architecture is illustrated in Fig. 1.
Online video providers (OVP) store a complete set of vid-
eos with population C. A number of edge servers are
deployed in the proximity of end users. Since edge serv-
ers are closer to end users, serving users with edge serv-
ers can not only reduce the Internet traffic but also
improve the user QoE [5]. In our scenario, every edge
server provides online video services for users in a certain
area, e.g., a city, exclusively. To guarantee the computa-
tion efficiency, the video caching algorithm on an edge
server only utilizes request events recorded by itself.
Although exchanging information between edge servers
may further improve the caching performance a little bit,
it involves additional communication and computation
overhead, which is harmful for the efficiency.

Fig. 1. The system architecture of the video caching system with multiple
edge servers.
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The problem is to predict the video request rates on each
edge server in the future so that the most popular videos
can be cached in time by the edge server. Therefore, our
objective is to maximize the cache hit rate on each edge
server, which is defined as the number of requests served
by the edge server divided by the total number of requests.
This objective can be transformed to maximize the predic-
tion accuracy of future video request rates.

Without loss of generality, we consider the video caching
problem for a particular edge server, which can store S vid-
eos with S < C. To simplify our analysis, we assume that
all videos are of the same size. Note that it is possible that
OVP splits a video into multiple video segments of equal
size to simplify management and reduce the implementa-
tion cost such as [24], [25]. A video segment is the unit for
caching. Our algorithm is still applicable in this case as long
as the request events of each video segment are recorded.
For simplicity, we use video and video segment inter-
changeably hereafter.

With this simplification, it is apparent that the top S most
frequently requested videos should be cached on each edge
server, and our main task is to predict which S videos will
be most popular in the future. For convenience, major nota-
tions used in this paper are summarized in Table 1.

We first define the event sets as follows. All past video
requests are denoted by an event set E ¼ fe1; e2; :::; eKg. Let
" ¼ ft1; t2; :::; tKg denote the occurrence time of all past
events, t1 < t2 < ; . . .; < tK . In other words, events are
recorded according to their occurrence time points. Each
event in the set E is a tuple, i.e., e ¼ t; ih i, where t is the

request time and i is the video index. Besides, we define the
set "ti as the timestamp set for historical events of video i
before time t and "t ¼ [8i"ti.

2.2 Point Process

Point process is a family of models which are generated
from individual events to capture the temporal dynamics of
event sequences via the conditional intensity function[26].
We employ the point process models to predict the future
request rate given the historical request events of a particu-
lar video. In general, the predicted request rate of video i
can be defined as �i tj"ti

� �
, where "ti is the timestamp set of

historical requested records of video i before time t. The
conditional intensity function represents the expected
instantaneous request rate of video i at time t. In the rest of
the paper, we use �iðtÞ to represent �i tj"ti

� �
.

We first introduce three typical point process models
before we specify the expression of �iðtÞ,

2.2.1 Hawkes Process (HP)

HP [18] is also called self-exciting process. For HP, the
occurrence of a past event will positively affect the arrival
rate of the same type of events in the future. Given the time-
stamp set of historical events "ti, the arrival rate of such
events at time t can be predicted according to the following
formula:

�iðtÞ ¼ bi þ
X
8t2"t

i

fiðt� tÞ:
(1)

TABLE 1
Notations Used in the Paper

Notation Description

C The total number of videos stored in OVP.
S The total number of videos cached on an edge server.
K The total number of request records.
E The event set of all requested records.
"t / zt The timestamp set of all requested records / negative events before time t.
"ti / zti The timestamp set of requested records / negative events of video i before time t.
t / t0 The timestamp of any request record / negative event.
�i tð Þ The conditional intensity function of video i at time t.
~�iðtÞ The estimation of �iðtÞ, which is defined by Eq. (7) for HRS.
�̂iðtÞ The positive form of ~�iðtÞ adjusted by gðxÞ ¼ slog ð1þ expðx=sÞÞ.
bi The bias of intensity function for HRS associated with video i.
vi / ai / gi The parameter of SE / SC / SR term in HRS associated with video i respectively.
k0ðt� tÞ / k1ðt� t0Þ The exponential kernel function of SE / SR term reflecting the influence of past event defined by Eq. (8).
d0 / d1 The decay parameter of k0ðt� tÞ / k1ðt� t0Þ, which can be determined through cross validation in experiments.
T The entire observation period time for the computation of likelihood function.
uu The parameters matrix of a point process and u ¼ b⊺;v⊺;a⊺; g⊺½ � in HRS model.
u
ðjÞ
i The substitute of any parameter associated with video i after j iterations in gradient descent algorithm, such as b

ðjÞ
i .

llðuuÞ The Log-likelihood function of point process, which is defined by Eq.(10) for HRS.
�llðuuÞ The evaluated Log-likelihood function of HRS, which is estimated by Monte Carlo method and defined by Eq. (13).
rb / rv / ra / rg The regularization parameter of bi / vi / ai / gi, which can be determined through cross validation in experiments.
M The number of sample times in Monte Carlo method.
tðmÞ The timestamp of them-th sample in Monte Carlo method.
FiðtÞ /CiðtÞ / GiðtÞ The kernel function of HRS defined by Eq. (22).
Dt The time interval of online kernel functions update.
DT The time interval of online parameter update.
DM The number of sample times of online parameter update.
kth The threshold to truncate the sum of k0 of online parameter update.
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Here, bi is the deterministic base rate and fiðt� tÞ is the
kernel function to reflect the influence of the past event at
time t on the arrival rate of the same type event at time t.
Moreover, fiðt� tÞ should be a monotonically decreasing
function with t� t in that more recent events have higher
positive influence on the future request rate.

2.2.2 Reactive Process

The reactive process [19] is an extension of HP by linking
the future event with more than one types of events. HP
only considers the influence of positive events, while the
reactive process models both exciting and restraining effects
of historical events on instantaneous intensity. The future
rate can be given by:

�iðtÞ ¼ bi þ
X
8t2"t

i

fexc
i ðt� tÞ �

X
8t02zt

i

fres
i ðt� t0Þ:

(2)

Here "ti denotes the same timestamp set of positive
events as that in HP while zti represents the timestamp set of
negative events restraining the intensity function of video i
before time t. fexc

i and fres
i are kernel functions to reflect the

influence of positive and negative events respectively.

2.2.3 Self-Correcting Process

Compared to the Hawkes process and reactive process, the
intensity function of the self-correcting process is more sta-
ble over time [20]. Once an event occurs, the intensity func-
tion will be reduced by a factor e�ai . Here ai is a parameter
representing the ratio of correcting. Mathematically, the
intensity function can be given by

�iðtÞ ¼ exp½mit� aiNiðtÞ�; (3)

where mi is the rate of the steadily increase of intensity func-
tion and NiðtÞ is the number of historical requests of video i
until time t. Generally, the time series of events based on
the self-correcting process are more uniform than those
based on other processes such as HP.

2.2.4 Log-Likelihood Function of Point Process

To apply the point process models to predict video request
rates, we need to determine the parameters (denoted by uu)
defined in each process, such asm and a in the self-correcting
process. An effective approach to determine these parame-
ters is tomaximize the likelihood of the occurrence of a target
event set in the entire observation time ð 0; T �, i.e., ET .

Given the overall intensity function �ðtÞ ¼P8i �iðtÞ and
the occurrence time tl of the last event in the historical event
time set "t, the probability that no event i occurs in the
period ½ tl; t Þ is P no event in ½ tl; t Þ

�� "t� � ¼ exp � R t
tl

h
�ðxÞdx�. Thus, the probability density that an event i occurs
at time t is given by:

P t; i
�� "t� � ¼ �iðtÞexp �

Z t

tl

�ðxÞdx
" #

: (4)

The detailed derivation can be found in [27]. Given the
event set ET ¼ fe1; . . . ; eKg, where ek ¼ tk; ikh i and K is the
total number of events during the time interval ð 0; T �, it is
easy to derive the likelihood function for a given event set
using.

L uu
�� ET� � ¼YK

k¼1
�ikðtkÞexp �

Z tk

tk�1
�ðtÞdt

" #

� exp �
Z T

tk

�ðtÞdt
" #

;

¼
Y
8i

Y
t2"T

i

�iðtÞ � exp �
Z T

0

�ðtÞdt
� �

: (5)

For convenience, we let t0 ¼ 0 and align all time series
for different videos i to the same initial point t0 ¼ 0. In prac-
tice, it is difficult to manipulate the likelihood function.
Equivalently, we can optimize the Log-likelihood function,
which is defined as:

ll uu
�� "T� � ¼X

8i

X
8t2"T

i

log �iðtÞð Þ �
Z T

0

�ðtÞdt; (6)

where "T is the timestamp set of target events in the entire
observation time interval ð 0; T �.

3 HRS MODEL

In this section, we describe the HRS model which is the
combination of three point process models introduced in
the last section.

3.1 Intensity Function Design

First of all, we explain the intuition behind the HRS model,
and the reasons why we take three types of point processes
into account.

� Self-exciting: If a video has attracted a number of user
requests recently, each request can impose some pos-
itive influence on the future request rate of the same
video. This is the self-exciting process depicted by
the Hawkes process. It can well capture videos that
are becoming more and more popular.

� Reactive process: Different from the positive influence
of historical request events, there also exist events
that impose negative influence on the future request
rates. For example, the popularity of a video may
sharply drop down if the video is removed from the
recommendation list. Such negative events can be
modeled by the reactive process.

� Self-correcting: The user population covered by an
edge server is limited. Thus, if users do not repeatedly
request videos, a video can not stay popular forever.
In fact, users seldom replay videos they havewatched
[11]. It is expected that the popularity of a video will
diminish with time after a majority of users have
requested it. The restriction of the limited user popu-
lation can be captured by the self-correcting process.

~�iðtÞ ¼ bi|{z}
bias

þvi

X
t2"t

i

k0ðt� tÞ
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{self-exciting

exp½�aiNiðtÞ�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
self-correcting

� gi
X
t02zt

i

k1ðt� t0Þ
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

self-restraining

;

(7)
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Based on the above discussion, we can see that the evolution of
video popularity is a very complicated process. It is difficult to
preciselymodel the video request rate bymerely utilizing only
one particular kind of point process. In view of that, we pro-
pose to construct the video request intensity function by comb-
ing three types of point processes together. The proposed
request rate intensity function is presented by Eq. (7), where
�iðtÞ is the true request rate of video i at time t, and ~�iðtÞ is the
estimation of �iðtÞ. Each term in Eq. (7) is explained as follows.

� The first term bi is the bias of the intensity function
for video content iwith positive value (bi > 0).

� As we have marked in Eq. (7), vi

P
t2"t

i
k0ðt� tÞ is

the SE (self-exciting) term. It is designed based on
the Hawkes process and vik0ðt� tÞ is the positive
influence imposed by the video request event at time
t. k0ðt� tÞ is a kernel function to be specified later
and vi is a parameter to be learned.

� The second term gi

P
t02zt

i
k1ðt� t0Þ, which is called

SR (self-restraining) term, captures the influence of
negative events such as the event that a video is
removed from the recommendation list. This SR
term is designed based on the reactive process. zti is
the set including the timestamp of all negative events
in the period ½0; tÞ. Similar to modeling the influence
of positive events, k1ðt� t0Þ is the kernel function to
account for the influence of a negative event. gi is a
parameter to be learned.

� The last term exp½�aiNiðtÞ� is the SC (self-correcting)
term andNiðtÞ is the number of historical requests of
video i until time t. The implication is that the influ-
ence of a positive event will be smaller if more users
have watched the video i. For example, if there are
two movies: A and B. Movie A has been watched by
99% users, but Movie B is a new one watched by
only 1% users. Then, the influence of a request event
for Movie A or B should be very different.

For point process models, it is common to adopt expo-
nential kernel functions to quantify the influence of histori-
cal events[18], [26], [27]. Thus, in the HRS model, the kernel
functions k0ðt� tÞ and k1ðt� t0Þ are set as:

k0ðt� tÞ ¼ exp½�d0ðt� tÞ�;
k1ðt� tÞ ¼ exp½�d1ðt� t0Þ�: (8)

Here d0 > 0 and d1 > 0 are two hyper-parameters, which
can be determined empirically through cross validation.
From Eq. (8), we can observe that kernel functions decay
with t� t, implying that the influence gradually diminishes
with time.

By considering the reality of video request rates, we need
to impose restrictions on the intensity function defined in
Eq. (7).

� The video request rate is non-negative. However,
due to the SR term, it is not guaranteed that Eq. (7)
always yields a non-negative request rate. Besides,
the Log-likelihood function requires that the video
request rate must be positive. Thus, we define

�̂iðtÞ ¼ slog 1þ expð~�iðtÞ=sÞ
� �

: (9)

Here s is a small positive constant number. We uti-
lize the property that the function gðxÞ ¼ slog ð1þ
expðx=sÞÞ � maxf0; xg, i.e., the ReLU function, as
s! 0 [28].

� All parameters bi, vi, ai and gi should be positive
numbers to correctly quantify the influence of each
term.

The intensity function �̂iðtÞ is the final estimation form of
the request intensity �t

i for video i at time t.

3.2 Maximizing Log-Likelihood Function

Given the event sets "T and zT , and the parameters uu ¼
bb⊺;vv⊺;aa⊺; gg⊺½ �, the Log-likelihood function is defined in

Eq. (10) according to Eq. (6). In the rest of this work, we use
the shorthand notation ll uuð Þ ¼: ll uu

�� "T ; zT� �
if event sets

are clear in the context. In addition, to simplify our nota-
tions, let I i ¼

R T
0 �̂iðtÞ dt represent the integral term in the

Log-likelihood function of video i.

ll uu
�� "T ; zT� � ¼X

8i

X
t2"T

i

log �̂iðtÞ �
X
8i

Z T

0

�̂iðtÞ dt

¼
X
8i

X
8t2"T

i

log �̂iðtÞ �
X
8i
I i: (10)

Remark: It is worth mentioning that HRS is a kind of
machine learning based caching algorithm. HRS can be
adopted by different online video platforms providing
assorted video categories since all parameters in HRS are
determined automatically by minimizing the loss function
defined in Eq. (10). Even if user request patterns vary with
these platforms, their patterns can be well gauged by our
HRS model with different parameters.

The challenge to maximize the Log-likelihood function
lies in the difficulty to derive I i due to the complication of
Eq. (9). Thus, we resort to the Monte Carlo estimator[29],
[30] to derive I i approximately.

We briefly introduce the Monte Carlo estimator as fol-
lows. Given a function fðxÞ, M samples of x can be uni-
formly and randomly selected from the domain of x, say
ða; bÞ. Then, the integral of fðxÞ can be calculated as:

I ¼
Z b

a

fðxÞ dt ¼ E �IM
 �
;

s.t. �IM ¼ 1

M

XM
m¼1

fðxðmÞÞ
pðxðmÞÞ ;

xðmÞ � Uða; bÞ;
pðxðmÞÞ ¼ 1

b� a
; (11)

where a and b are lower and upper limit points of the inte-
gral function respectively. The expected value of the inte-
gral term, i.e., I ¼ E �IM
 �

, can be approximately performed
by the average of fðxðmÞÞ=pðxðmÞÞ.

Suppose the integral range of I i is from 0 to T , we can
apply the Monte Carlo estimator to evaluate I i as follows:

I i � T

M

XM
n¼1

�̂i tðmÞ
� 


;

s.t. tðmÞ � Uð0; T Þ: (12)
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The Log-likelihood function can be approximately evalu-
ated by:

�ll uuð Þ ¼
X
8i

X
8t2"T

i

log �̂iðtÞ �
X
8i

�IMi ;

¼
X
8i

X
8t2"T

i

log �̂iðtÞ � T

M

X
8i

XM
m¼1

�̂i tðmÞ
� 


;

s.t. tðmÞ � Uð0; T Þ: (13)

Equivalently, we can minimize the negated Log-likeli-
hood function. By involving the regularization terms, our
problem can be formally defined as:

min
uu
L ¼ � �ll uuð Þ þ rbkbbk2 þ rvkvvk2 þ rakaak2 þ rgkggk2;

s.t. bi;vi;ai; gi > 0; for 8i; (14)

where rb; rv; ra and rg are regularization parameters.
Since the Log-likelihood in Eq. (13) is a convex function,

we can solve Eq. (14) by using the Gradient Descent (GD)
algorithm [26], [27]. By differentiating �ll uuð Þ with respect to
each parameter ui 2 uu,1 one can derive the following results:

@ �ll uuð Þ
@ui

¼
X
t2"T

i

1

�̂iðtÞ
@�̂iðtÞ
@ui

� T

M

XM
m¼1

@�̂iðtðmÞÞ
@ui

: (15)

According to Eq. (15), we need to derive @�̂iðtÞ = @ui in
order to obtain the gradient of �ll uuð Þ. Thus, by differentiating
�̂iðtÞ shown in Eq. (9) with respect to each parameter, we
can obtain Eqs. (16), (17), (18), and (19) as follows:

@�̂iðtÞ
@bi

¼ @�̂iðtÞ
@~�iðtÞ

; (16)

@�̂iðtÞ
@ai

¼� @�̂iðtÞ
@~�iðtÞ

vi

X
t2"t

i

k0 t� tð ÞNiðtÞexp½�aiNiðtÞ�; (17)

@�̂iðtÞ
@vi

¼ @�̂iðtÞ
@~�iðtÞ

X
t2"t

i

k0ðt� tÞexp½�aiNiðtÞ�; (18)

@�̂iðtÞ
@gi

¼� @�̂iðtÞ
@ ~�iðtÞ

X
t02zt

i

k1ðt� t0Þ: (19)

Here @�̂iðtÞ=@~�iðtÞ can be calculated by Eq. (20), which
gives

@�̂iðtÞ
@~�iðtÞ

¼ expð~�iðtÞ=sÞ
1þ expð~�iðtÞ=sÞ

: (20)

By integrating Eqs. (16), (17), (18), (19), (20) with Eq. (15),
we can obtain the gradient expression of �ll uuð Þ. Then, let uðjÞi
represent any parameter to be determined after j iterations.
We update ui according to:

u
ðjþ1Þ
i  u

ðjÞ
i þ h � @ �ll uuð Þ

@ u
ðjÞ
i

þ ruiu
ðjÞ
i

 !
; (21)

where rui is the regularization parameter associated with
the parameter ui and h is the learning rate depending on the
GD algorithm. In our work, to adhere to Eq. (21) and ensure
all parameters are within the boundaries specified in
Eq. (14), we adopt the L-BFGS [31] algorithm to minimize
the objective function.

3.3 Analysis of Computation Complexity

The computation complexity for a round of iteration to deter-
mine the parameters in the HRS model is Oðj"T j þ jzT j þ
CMÞ, where j"T j and jzT j are the total numbers of positive
and negative events respectively,C is the total number of vid-
eos andM is theMonte Carlo sampling number of each video.

We analyze the detailed computation complexity as fol-
lows. To minimize the objective function in Eq. (14), it is
necessary to compute gradients according to Eqs. (16), (17),
(18), and (19). To ease our discussion, we define three func-
tions as below:

FiðtÞ ¼
X
t2"t

i

k0ðt� tÞexp½�aiNiðtÞ� (22a)

CiðtÞ ¼
X
t02zt

i

k1ðt� t0Þ (22b)

GiðtÞ ¼
X
t2"t

i

k0 t� tð ÞNiðtÞexp½�aiNiðtÞ� (22c)

We need to compute "Ti for different FiðtÞ’s and GiðtÞ’s,
and zTi for CiðtÞ’s. Specifically, for a particular event with
occurrence time t and its previous event with occurrence
time tl, we can compute FiðtÞ ¼ FiðtlÞexp½�d0ðt� tlÞ� þ exp
½�aiNiðtÞ�.2 Thus, the computation complexity is Oð1Þ to
compute FiðtÞ for each event and the complexity is Oðj"Ti jÞ
to complete the computation for all video i events. Recalling
that "T ¼ [8i"Ti , the whole computation complexity for all
FiðtÞ’s is Oðj"T jÞ. Similarly, the computation complexity is
Oðj"T jÞ/OðjzT jÞ to compute allCiðtÞ’s/GiðtÞ’s.

With the above computations, the complexity to compute
the first term of Eq. (15) is Oðj"T jÞ. For the Monte Carlo esti-
mator, it needs to sample M times for each video. Thus,
there are totally CM samples in a round of iteration for C
videos. Besides, given the sampled time point tðmÞ, the com-
plexity is Oð1Þ to compute all gradients. By wrapping up
our analysis, the overall computation complexity for each
iteration is Oðj"T j þ jzT j þ CMÞ.3

4 ONLINE HRS BASED VIDEO CACHING

ALGORITHM

The complexity Oðj"T j þ jzT j þ CMÞ is not high if the train-
ing algorithm is only executed once. Yet, the online video
system is dynamic because user interests can change over
time rapidly, and fresh videos (or users) enter the online
video system continuously. The computation load will be
too heavy if we need to update the predicted video request
rates very frequently. Thus, in this section, we propose an
online video caching algorithm based on the HRS model.

1. ui is a parameter associated with video i, such as bi.

2. Here, we utilize the property that k0ð0Þ ¼ 1.
3. In fact, this complexity is an upper bound since we can complete

the computation of CiðtÞ in the first iteration without the necessity to
update it in subsequent iterations.
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The online algorithm can update the predicted video
request rates by minor computation with incremental
events since the last update.

Algorithm 1. Kernel Function Online Update Algorithm

Input: Dt , f"tþDt � "tg , fztþDt � ztg , FiðtÞ’s ,CiðtÞ’s ,NiðtÞ’s
Output: Fiðtþ DtÞ’s ,Ciðtþ DtÞ’s ,Niðtþ DtÞ’s
1: while 8i do
2: Fi tþ Dtð Þ  Fi tð Þ � exp½�d0Dt�
3: tl  t
4: for 8t 2 f"tþDti � "tig do
5: NiðtÞ  NiðtlÞ þ 1
6: Fi tþ Dtð Þ  Fi tþ Dtð Þ þ k0ðtþ Dt� tÞ � exp½aiNiðtÞ�
7: tl  t

8: end
9: Niðtþ DtÞ  NiðtlÞ
10: Ci tþ Dtð Þ  Ci tð Þ � exp½�d1Dt�
11: for 8t0 2 fztþDti � ztig do
12: Ci tþ Dtð Þ  Ci tþ Dtð Þ þ k1ðtþ Dt� t0Þ
13: end
14: end
15: return Fiðtþ DtÞ’s ,Ciðtþ DtÞ’s , Niðtþ DtÞ’s

The online video caching algorithm needs to cope with
two kinds of changes. The first one is the kernel function
update. Given the HRS model parameters, the video request
rates predicted according to Eq. (7) should be updated
according to the latest events. The user interest can be very
dynamic. For example, users may prefer News videos in the
morning, but Movie and TV videos in the evening. Thus,
the predicted request rates should be updated instantly and
frequently in accordance with the latest events. The second
one is the parameter update. The model parameters such as
vi and gi capture the influence weight of each term in the
HRS model. In a long term, due to the change of users and
videos, model parameters should be updated as well. We
discuss the computation complexity to complete the above
updates separately.

4.1 Online Update of Kernel Functions

According to Eq. (7), if there are new events, we need to
update kernel functions, i.e., FiðtÞ and CiðtÞ, so as to update
�iðtÞ. Suppose that the time point of the last update is t and
the current time point to update request rates is tþ Dt. Then,
the computation complexity to complete the update is
Oðj"tþDt � "tj þ jztþDt � ztjÞ. In other words, the complexity is
only a linear functionwith the number of incremental events.

For using exponential kernel functions, we can prove that

k0ðtþ Dt� tÞ ¼ k0ðt� tÞexp½�d0Dt�; (23)

k1ðtþ Dt� tÞ ¼ k1ðt� tÞexp½�d1Dt�: (24)

Note that the term exp½�aiNiðtÞ� in Eq. (7) is not dependent
on t. Thus, we can complete the update of terms viFiðtÞ and
giCiðtÞ with Oð1Þ by multiplying exp½�d0Dt� and exp½�d1Dt�
respectively. Then, we only need to add j"tþDti � "tij þ
jztþDti � ztij for each video i. Note that it is unnecessary to
update videos without any new event. Thus, the overall
computation complexity is Oðj"tþDt � "tj þ jztþDt � ztjÞ. The
algorithm details for updating kernel functions are shown
in Algorithm 1.

Algorithm 2. Parameter Online Learning Algorithm

Input: uð0Þuð0Þ , T , DT , f"TþDT � "
Tþln kthd0 g , fzTþDT � zTg ,CiðT Þ

Output: uuðjÞ

1: UpdateCiðtÞwhere t 2 ½T; T þ DT Þ once at first
2: j 0
3: while The termination condition is not satisfied do
4: Update FiðtÞ,GiðtÞ where t 2 ½T; T þ DT Þ with set

f"TþDT � "
Tþln kthd0 g

5: l 0
6: rr  ½0�4	C
7: while 8i do
8: for DM samples then
9: tðmÞ � UnifðT; T þ DT Þ
10: Calculate �̂iðtðmÞÞ, ~�iðtðmÞÞ according to Eq. (7) and

Eq. (9) with FiðtðmÞÞ andCiðtðmÞÞ
11: l l� �̂iðtðmÞÞ
12: for ui 2 fbi;vi;ai; gig do
13: Calculate @�̂iðtðmÞÞ = @ui by one of equation in

Eqs. (16)-(19) corresponding to ui
14: rrui  rrui � @�̂iðtðmÞÞ = @ui
15: end
16: end
17: l ðDT= DMÞ � l
18: rr  ðDT= DMÞ � rr
19: for 8t 2 f"TþDTi � "Ti g do
20: l  lþ log �̂iðtÞ
21: for ui 2 fbi;vi;ai; gig do
22: rrui  rrui þ ð@�̂iðtÞ = @uiÞ= �̂iðtÞ
23: end
24: end
25: end
26: Update uuðjþ1Þ  uuðjÞ by adopting L-BFGS algorithm with

l,rr and the penalty term
27: j jþ 1
28: end
29: T  T þ DT ;
30: return uuðjÞ

4.2 Online Update of Parameters

To update parameters in accordance with new events, it is
necessary to update gradients based on Eqs. (16), (17), (18),
and (19) and execute the GD algorithm again to obtain
updated parameters. To avoid confusing with the kernel
function update, we suppose the time point of the last
parameter update is T and the current time point is T þ DT 4.

In Eqs. (16), (17), (18), and (19), we can also see kernel
functions FiðtÞ’s, CiðtÞ’s and GiðtÞ’s. Therefore, the update
of them will be firstly introduced. If maintaining a fixed
value during the learning process, the kernel functions
CiðtÞ’s can be simply updated by incremental new events
based on the discussion in the last subsection. However, as
for FiðtÞ’s and GiðtÞ’s, we need to scan all historical events
again to compute their values when the parameter a has
been updated, which results in very high computation com-
plexity. To reduce the additional complexity, we propose to
use a threshold kth to truncate the sum of kernel functions.
kth is a very small number. If k0ðt� tÞ < kth where t is the

4. Note that the update frequency of parameters is different from
that of video request rates.
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current time and t is the occurrence of a particular event, it
implies that the influence of the historical event before time
t is negligible. Therefore, it is trivial to ignore this event so
that the computation complexity will not continuously
grow with time. Given kth and the current update time T þ
DT , it is easy to verify that events between time ½T þ
ln kth
d0

; T þ DT Þ needs to be involved to update FiðtÞ’s and
GiðtÞ’s. Thus, the upper bound of computation complexity

for kernel renewal is Oðj"TþDT � "
Tþln kthd0 j þ jzTþDT � zT jÞ.

Next, we introduce the update of all gradients in Eq. (15).
The first term relevant to recent new events can be updated
in Oðj"TþDT � "T jÞ. Furthermore, the Monte Carlo sampling
term needs to be trimmed during online learning process,

i.e., DT
DM

PDM
m¼1

@�̂iðtðmÞÞ
@ui

. We suppose there are DM new sam-

ples during the period from ½T; T þ DT Þ, where DM=M ¼
DT=T since we update the parameters in a shorter time win-
dow. Therefore, we can conclude that the complexity to cal-
culate the Monte Carlo sampling term is OðC � DMÞ with
updated kernels. Here C is the total number of videos in the
system.

By wrapping up our analysis, the overall computation

complexity to update all gradients is OðjzTþDT � zT j þ
j"TþDT � "

Tþln kthd0 j þ j"TþDT � "T j þ C � DMÞ in each iteration.
Note that this is also an upper bound of the computation
complexity. In the end, we present the detailed online learn-
ing algorithm for training the HRS model in Algorithm 2.

4.3 Framework of HRS Edge Caching System

In Fig. 2, we describe the framework of our system includ-
ing an Online HRS model, a Data Processor and an Edge Cache.

As shown in Fig. 2, the Data Processor is responsible for
preprocessing the request records. It is also responsible for
recording positive and negative events. The Online HRS
model utilizes the user request records from the Data Proces-
sor to periodically update kernel functions and the HRS
model parameters. The Edge Cache updates the cached vid-
eos based on the update of prediction results generated by
the HRS model.

To take both computation overhead and bandwidth con-
sumption into account, the Edge Cache can periodically re-

rank video request rates with new prediction updated by
the Online HRS model. If a newly requested video is not hit
by the edge cache, it makes a decision to cache the video
based on the updated prediction. As a result, the Edge Cache
maintains videos with the highest request rates in its cache
and evicts videos with the lowest request rates when the
cache is fully occupied.

The Online HRS model can be further decomposed into
three parts, including HRS Trainer, Parameter Updater and
Kernel Updater. A typically workflow through these three
parts is shown as follows:

A) This is the first step to deploy the HRS algorithm on
an edge node. The HRS model can be initially trained
by the HRS Trainer with the long term request
records according to the method introduced in
Section 3.2.

B) With the arrival of new video requests, the parame-
ters such as ai and bi in the HRS model can be
refined by the Parameter Updater according to Algo-
rithm 2. Thus, these parameters reflect not only long-
term but also short-term popularity trends of videos.
To avoid overfitting, these parameters should not be
updated over frequently. In our experiments, we
update parameters for every a few number of days.

C) The user view interest may change very quickly with
time, which can be captured by the renewal of pre-
diction on video request rates through frequently
updating the kernel functions. With the incremental
user requests, the Kernel Updater can efficiently
update the kernel functions to trace the latest user
request interest.

5 EVALUATION

We evaluate the performance of our HRS algorithm by con-
ducting experiments with real traces collected from the Ten-
cent Video.

5.1 Dataset

Tencent video5 is one of the largest online video streaming
platforms in China. We collected a total of 30 days of
request records from Nov 01, 2014 to Nov 30, 2014. After
data cleaning, encoding and masking, we randomly sample
a dataset which contains a population C ¼ 20K of unique
videos from 5 cities in Guangdong province in China. There
is a total number of K ¼ 15:84Mð15; 841; 209Þ request
records in this dataset and we make the dataset publicly
available on GitHub.6 Each request record in our dataset is
represented by the metadata VideoID; UserID; TIME;h
PROVINCE;CITY i. Given the lack of negative events, the
set of negative events is generated from request records as
follows: if a video stays cold without being requested for a
period, a negative event of this video will be marked in the
dataset. Empirically, the period is set as 12 hours.

We divided the dataset into five parts based on the date
of request records for cross-validation and hyper-parame-
ters selection following the Forward-Chaining trick[32].

Fig. 2. Modules of an edge cache system implementing online HRS algo-
rithm. A representative workflow is presented in order.

5. Tencent Video: https://v.qq.com
6. https://github.com/zhangxzh9/HRS_Datasets
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Each part includes the request records in six days. In the
first fold, Part I, including the request traces in the first 6
days, is used as the training set; while Part II, with the
records from day 6 to 12, is used as validation set. Part III,
including the request records of the next 6 days, is used as
the test set. In the second fold, Part I and II together serve as
the training set, while Part III and IV are used as the valida-
tion set and test set respectively. Finally, we employ Parts I-
III as the training set and the rest two parts as the validation
and test set respectively in the third fold.

5.2 Evaluation Metrics

We employ three metrics for performance evaluation.

� Cache Hit Rate is defined as the number of requests
hit by the videos cached on the edge server divided
by the total number of requests issued by users. If
the HRS runs independently on multiple edge serv-
ers, the overall cache hit rate of the whole system
will be calculated by the weighted average hit rates
of multiple edge servers.

� Bandwidth Consumption Rate (BCR) is defined as the
fraction of bandwidth consumed by OVP to serve all
requests. If a requested video is not cached by the
edge server, the request will be served by OVP. Since
the edge server is closer to end users, a lower BCR is
more desirable. BCR is formally defined as:

BCR ¼ the number of requests served by OVP

the total number of requests

� Execution Time: Due to the possibility that the edge
server is with very limited computing resource, it is
desirable that the computation load of the caching
algorithm is under control so that cached videos can
be updated timely. Thus, we use the execution time
of each algorithm as the third evaluation metric.

5.3 Baselines

We compare the performance of HRS with the following
baselines:

� LRU (Least Recently Used), which always replaces the
video that was requested least recently with the
newly requested one when the cache is full.

� OPLFU (Optimal Predictive Least Frequently Used)[13],
which is a variant of LFU. Different from LFU, it pre-
dicts the future popularity by matching and using
one of Linear, Power-Law, Exponential and Gaussian
functions. Caching server maintains the cache list
based on the estimated future popularity determined
by the selected function.

� POC (Popcaching) [24], which learns the relationship
between the popularity of videos and the context fea-
tures of requests, and stores all features in the Learn-
ing Database for video popularity prediction. Once a
request arrives, POC will update the features of the
requested video online and predicts video popular-
ity by searching the Learning Database with the con-
text features. we set the number of requests in the
past 1 hour, 6 hours, 1 day as the first three features

while 10 days, 15 days and 20 days as the fourth
dimension feature for three folds, respectively.

� LHD (Least Hit Density) [33], which is a rather rigor-
ous eviction policy to determine which video should
be cached. LHD predicts potential hits-per-space-
consumed (hit density) for all videos using condi-
tional probability and eliminates videos with the
least contribution to the cache hit rate. An public
implementation of the LHD algorithm in GitHub7

can be obtained.
� DPC (DeepCache) [17], which predicts video popular-

ity trend by leveraging the LSTM Encoder-Decoder
model. An M-length input sequence with d-dimen-
sional feature vector representing the popularity of d
videos is required for the model. A K-length
sequence will be exported for prediction. Here M
and K are hyper-parameters for model. All model
settings are the same as the work [17] in our
experiments.

� Optimal (Optimal Caching), which is achieved by
assuming that all future requests are known so that
the edge server can always make the optimal caching
decisions. It is not a realistic algorithm, but can be
used to evaluate the improvement space of each
caching algorithm.

Our principle is to select the most influential or state-of-
the-art caching algorithms as baselines. LRU is one of the
most classical caching algorithms and its principle has been
adopted by real systems. OPLFU is an variant of LFU,
which is also a classical algorithm adopted by previous
works [2], [24], [34]. POC, DPC and LHD are more
advanced popularity-based caching algorithms. They are
designed based on probabilistic models or neural network
models, which represent state-of-the-art caching techniques.

5.4 Experimental Settings

We simulate a video caching system shown in Fig. 2 to eval-
uate all caching algorithms. In the gradient descent algo-
rithm, there are six hyper-parameters which are initialized
as d0 ¼ 0:5, d1 ¼ 1:5 and rb ¼ ra ¼ rv ¼ rg ¼ e5 empirically.
Their values will be determined through validation. For all
parameters uu in HRS, their initial values are set as 1, except
that the initial values of gg are set as 0.1, referring to the set-
tings in some previous papers[19], [27], [35]. Moreover, the
number of sample times in the Monte Carlo estimation is set
as 144,000 times for every day, e.g., we set M ¼ 1; 728; 000 in
the first fold, and set M ¼ 2; 592; 000 andM ¼ 3; 456; 000 for
the second and third folds respectively. The time interval
DT to update the online HRS model is set as two days. The
iteration process in the gradient descent algorithm will be
terminated if the improvement of cache hit rate in the vali-
dation set is negligible after an iteration.

By default, the time interval to update kernel functions is
set as 1 hour, and the truncating threshold kth is set as e�9

for parameter online learning. Some detailed experiments
are conducted to study the influence of these two parame-
ters. Furthermore, all algorithms except LHD are pro-
grammed with Python[36] and executed in Jupyter

7. https://github.com/CMU-CORGI/LHD
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Notebook [37] with a single process. As for LHD, we reuse
the code and estimate the execution time according to [33].
Besides, the execution time is measured on an Intel server
with Xeon(R) CPU E5-2670 @ 2.60GHz.

5.5 Experimental Results

5.5.1 Comparison of Cache Hit Rate

We first evaluate the HRS algorithm with other baseline
caching algorithms through experiments by varying the
caching capacity from 0.1% to 25% of the total number of
videos (i.e., the caching size is varied from 20 to 5K videos).
The experiment results of 5 cities are presented in Fig. 3
with the y-axis representing the averaged cache hit rate and
Fig. 4 shows the results of cache hit rate of a single server at
the province level.

Through the comparison, we can see that:

� HRS outperforms all other baseline algorithms eval-
uated in terms of the cache hit rate under all cache
sizes over the test time, with an overall average of
15.5% improvement at city level. DPC is the second
best one in most cases.

� It is more efficient to utilize the caching capacity by
using HRS. To demonstrate this point, let us see a
specific case with a target cache hit rate of 10% in
Fig. 3. In this case, HRS requires a cache size of 40
videos. In comparison, DPC/LHD needs nearly 2-2.4
times cache capacity to achieve the same goal. The
performance improvement against the second best
solution exceeds 145% with 0.1% limited caching
capacity, showing the outstanding ability of HRS to
predict the most popular video when the resource is
constrained and a more accurate decision is needed.

� Compared to other baseline algorithms at the prov-
ince level, HRS also achieves an overall average of
8.4% improvement. The HRS model performs better
at the city level than at the province level for the rea-
son that video popularity trends are more accurately
reflected by leveraging the SC term in city edge serv-
ers. In fact, the HRS model performs better if the
request rate is higher.

Moreover, to check the stability of each video caching
algorithm, we plot the cache hit rate over time with a fixed
caching capacity S ¼ 200 (equivalent to about 1% of total
videos). The results are presented in Fig. 5, showing the

Fig. 3. Cache hit rate for HRS and other baseline algorithms when varying the cache capacity (size) from S ¼ 0:1% ð20Þ to S ¼ 25% ð5000Þ at the city
level.

Fig. 4. Cache hit rate for HRS and other baseline algorithms when varying the cache capacity (size) from S ¼ 0:1% ð20Þ to S ¼ 25% ð5000Þ at the
province level.
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averaged cache hit rate of all algorithms versus the date. In
other words, each point in the figure represents the average
cache hit rate over a day. From the results shown in Fig. 5,
we can draw a conclusion that HRS is always the best one
achieving the highest cache hit rate among video caching
algorithms except the Optimal one indicating the gain of
HRS is very stable over time.

5.5.2 Comparison of Bandwidth Consumption Rate

To further demonstrate the benefit to OVP with a higher hit
rate, we conduct the experiment in Fig. 6 by comparing the
BCR (Bandwidth Consumption Rate) of OVP to serve all
user requests with different caching algorithms. From the
results in Fig. 6, we can observe that the BCR of the HRS
algorithm is the best one consuming the least server band-
width than baselines. Its improvement is significant when
the cache capacity is between 0.5% and 7.5%. It is not diffi-
cult to understand that all caching algorithms perform very
well/bad when the caching capacity is extremely large/
small. In particular, by only caching 7.5% video contents,
HRS can reduce 60% bandwidth consumption for OVP,
indicating that HRS is effective in reducing bandwidth cost
for OVP.

5.5.3 Comparison of Execution Time

We conduct experiments to evaluate the averaged time for
each video caching algorithm with different caching capaci-
ties at the city level. The default time interval to execute each
algorithm is one hour, i.e., Dt ¼ 1h. The experiments are car-
ried out in the all test periods in the three folds to achieve
convincing results. The results are presented in Fig. 7. Both
HRS (Online) and HRS are conducted to examine the influ-
ence of online algorithm on computation complexity.

As we see from Fig. 7, the heuristically designed algo-
rithms, i.e., LHD and LRU, achieve the lowest execution
time. However, HRS is the best one compared with other
proactive video caching algorithms, i.e., DPC, POC and
OPLFU. Compared with the one-hour time interval to exe-
cute caching algorithms, the time cost of HRS (Online) algo-
rithms is negligible. For example, it only costs 0.875s per
hour with caching size of 5000 (about 25% of total videos).
Further, if the computing resource is constrained, HRS
(online) can be degraded to HRS, which can achieve 2.7x
speed up on average. These experiment results indicate the
feasibility of HRS for online edge video caching.

5.5.4 Impact of Each Component

To investigate the contribution to hit rate by each point pro-
cess component in our HRS model, we conduct ablation
experiment by proposing three variants of HRS, which are
HS, HR and HPP. HS or HR is a simplified version of the
HRS model without considering the SR or SC term, respec-
tively. HPP removes both SR and SC terms with only SE
term left. We conduct the experiment at the city level and
and the results are shown in Fig. 8.

From the results, we can observe that HRS (online) and
HRS outperform their variants. The gap between HRS
(Online) and HPP is only moderate indicating that the SE
term is the most important component for HRS. HR and HS
are a little bit better than HPP indicating that SR and SC
terms can slightly improve the caching hit rate.

5.5.5 Setting of Hyper-Parameters

Lastly, We study the sensitivity of two crucial parameters: Dt
and kth in Tables 2 and 3 to see how these two hyper-

Fig. 5. Average cache hit rate of each day over the test period at city
level. Each point in the figure shows the average cache hit rate over a
day. The cache capacity is fixed at S ¼ 1% ð200Þ.

Fig. 6. The reduced rate of bandwidth consumption for HRS and others
baseline algorithms when varying the cache capacity (size) from S ¼
0:1% ð20Þ to S ¼ 25% ð5000Þ at the city level.

Fig. 7. Comparison of execution time under different cache sizes.
Results show the averaged time(s) for each update interval Dt (default
Dt ¼ 1 hour).
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parameters affect the video caching performance. All other
hyper-parameters are kept unchanged as we varyDt and kth.

We repeat the experiments presented in Fig. 3 by setting
different values for Dt. The parameter Dt indicates how fre-
quently the HRS model updates the kernel functions. As we
can see in Table 2, the cache hit rate is higher if Dt is smaller
because the latest user trends can be captured in time with a
smaller Dt. It also confirms that the user interest is very
dynamic over time. However, it is more reasonable to set
Dt ¼ 1 hour since the improvement using Dt ¼ 0:5 hour is
small but with higher time complexity .

In Table 3, we further investigate the influence of kth on
the cache hit rate. kth is negligible and can be discarded to
control the computation complexity. We reuse the setting of
the experiment in Fig. 3 except varying kth. As we can see
from Table 3, the overall cache hit rate is better if kth is
smaller since more kernel functions are reserved for compu-
tation. Because the cache hit rate is very close by setting kth
equal to e�7 or e�8, we finally set kth ¼ e�7 in our experi-
ments with lower time complexity.

6 RELATED WORK

6.1 Video Caching

Caching at the edge is an effective way to alleviate the back-
haul burden and reduce the response time. In recent years,
more andmore research interest has been devoted to investi-
gating the caching problem on edge servers. Ma et al. con-
ducted a complete analysis of the performance of edge
mobile video caching with different factors and proposed a
novel geo-collaborative caching strategy [2]. Poularakis et al.
formulated a joint routing and caching problem guaranteed

by an approximation algorithm to improve the percentage of
requests served by small base stations (SBSs)[3]. Jiang et al.
developed a cooperative cache and delivery strategy in het-
erogeneous 5G mobile communication networks [4]. Yang
et al. devised an online algorithm which estimates future
popularity by location customized caching schemes in
mobile edge servers [5]. Moreover, with the ability to learn
the context-specific content popularity online, a context-
aware proactive caching algorithm in wireless networks was
introduced byMuller et al. [6].

With the explosive growth of video population, it is
urgent to develop more intelligent video caching algorithms
by identifying popularity patterns in historical records. It
was summarized in [38] and [39] that diverse approaches
for content caching have been implemented in the Internet
nowadays. However, less attention has been allocated to
optimize the caching methods and most of them were
deployed based on heuristic algorithms such as LRU, LFU
and their variants [12], [13], [14], which are lightweight but
inaccurate, and thus often fail to seize viewers’ diverse and
highly dynamic interests.

Some proactive models including regression models [40],
auto regressive integrated moving average [41] and classifi-
cation models [42] were proposed to forecast the popularity
of content. Moreover, quite a few learning-driven caching
algorithms were proposed for some special application sce-
narios. Wu et al. proposed an optimization-based approach
with the aim to balance the cache hit rate and cache replace-
ment cost[43]. Wang et al. developed a transfer learning
algorithm to model the prominence of video content from
social streams [44], while Roy et al. proposed a novel con-
text-aware popularity prediction policy based on federated
learning [45].

Besides, with the rapid development of deep learning, a
significant amount of research efforts has been devoted to
predicting content popularity using the neural network
model. Tanzil et al. adopted a neural network model to esti-
mate the popularity of contents and select the physical
cache size as well as the place for storing contents[46].
LSTM was also implemented for content caching in [16],
[17]. Furthermore, deep reinforcement learning (DRL) with
the aim to maximize the caching efficiency through interac-
tions with the environment was advocated in [47], [48], [49].
However, NN-based models typically require a large num-
ber of historical records for tuning the extensive parameters.
But with the sparse requested records of cold videos, it is
not easy to learn an appropriate model for prediction.

Further, because the popularity distribution of contents
may constantly change over time [7], [8], [11], it is difficult
to make decisions based on outdated dataset. Thus, some

Fig. 8. Cache hit rate of HRS and its variants under different cache sizes
for demonstrating the impact of each point process in HRS. The setting
is the same as that in Fig. 3.

TABLE 2
Cache Hit Rate(%) Under Different Dt (hour(s))

Update Cache Capacity

Interval 0.1% 0.25% 0.5% 1% 2.5% 5% 25%

Dt ¼ 3:0 6.157 10.964 17.270 26.622 42.338 54.644 82.747
Dt ¼ 1:0 7.096 12.353 18.975 28.450 43.969 55.960 83.771
Dt ¼ 0:5 7.223 12.386 18.874 29.070 42.754 54.595 83.312

The setting is the same as that in Fig. 3 except Dt.

TABLE 3
Cache Hit Rate(%) Under Different Values for kth

Truncating Cache Capacity

Threshold 0.1% 0.25% 0.5% 1% 2.5% 5% 25%

kth ¼ e�6 7.096 12.351 18.974 28.432 43.961 55.955 83.756
kth ¼ e�7 7.096 12.353 18.975 28.450 43.969 55.960 83.771
kth ¼ e�8 7.105 12.357 18.975 28.450 43.970 55.923 83.732

The setting is the same as that in Fig. 3 expect kth.
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online learning models which are more responsive to con-
tinuously changing trends of content popularity were pro-
posed in [5], [6], [24].

6.2 Point Process

The point processes are frequently used to model a series of
superficially random events in order to reveal the underly-
ing trends or predict future events [50]. Bharath et al.[51]
considered a learning-driven approach with independent
Poisson point processes in a heterogenous caching architec-
ture. Shang et al. [52] formulated a model to obtain a large-
scale user-item interactions by utilizing point process mod-
els. Xu et al. [35] modeled user-item interactions via super-
posed Hawkes processes, a kind of classic point process
model, to improve recommendation performance. More
applications of point processes in recommendation systems
can be found in [53], [54]. Furthermore, point processes
have been applied to study social networks between indi-
vidual users and their neighbors in [55]. Ertekin et al. [19]
used reactive point process to predict power-grid failures,
and provide a benefit-and-cost analysis for different proac-
tive maintenance schemes. Mei et al. [28] proposed a novel
model which was a combination of point processes and neu-
ral networks to improve prediction accuracy for future
events. The reason why point processes have been applied
in predicting discrete events in the future lies in that the
occurrence of a past event often gives a temporary boost to
the occurrence probability of events of the same type in the
future. Naturally, the video request records can be regarded
as time series events, which can be modeled by point pro-
cesses. However, there is very limited work that explored
the utilization of point process models to improve video
caching decisions, which is the motivation of our work.

7 CONCLUSION

In this work, we propose a novel HRS model to make video
caching decisions for edge servers in online video systems.
HRS is developed by combing the Hawkes process, reactive
process and self-correcting process to model the future
request rate of a video based on the historical request events.
TheHRSmodel parameters can be determined throughmax-
imizing the Log-likelihood of past events, and detailed itera-
tive algorithms are provided. In view of the dynamics of
user requests, an online HRS-based algorithm is further pro-
posed, which can process the request events in an incremen-
tal manner. In the end, we conduct extensive experiments
through real video traces collected from Tencent Video to
evaluate the performance of HRS. In comparison with other
baselines, HRS not only achieves the highest cache hit rate,
but alsomaintains low computation overhead.
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