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Abstract—Federated learning (FL) emerges as a promising paradigm to enable a federation of clients to train a machine learning
model in a privacy-preserving manner. Most existing works assumed that the central parameter server (PS) determines the
participation of clients implying that clients cannot make autonomous patrticipation decisions. The above assumption is unrealistic
because the participation in FL training may incur various cost and clients also have strong desire to be rewarded for participation. To
address this problem, we design a novel autonomous client participation scheme to incentivize clients. Specifically, the PS provides a
certain reward shared among participating clients for each training round. Clients decide whether to participate each FL training round
or not based on their own utilities (i.e., reward minus cost). The process can be modeled as a minority game (MG) with incomplete
information and clients end up in the minority side win after each training round because the reward of each participating client may not
cover its cost if too many clients participate and vice verse. The challenge of autonomous participation schemes lies in lowering the
volatility of participating clients in each round due to the lack of coordination among clients. Through solid analysis, we prove that:

1) The volatility of participating clients in each round is very high under the standard MG scheme. 2) The volatility of participating clients
can be reduced significantly under the stochastic MG scheme. 3) A coalition based MG is proposed, which can further reduce the
volatility in each round. By conducting extensive experiments in real settings, we demonstrate that the stochastic MG-based scheme
outperforms other state-of-the-art algorithms in terms of utility and volatility, and the coalition MG-based client participation scheme can
further boost the utility by 39%-48% and reduce the volatility by 51%—100%. Moreover, our algorithms can achieve almost the same
model accuracy as that obtained by centralized client participation algorithms.

Index Terms—Client participation, federated learning, minority game, volatility

1 INTRODUCTION

ECENT decade has witnessed the rapid growth of
machine learning (ML) techniques and its applications
in various fields. It is estimated that the global ML market
will grow at a compound annual growth rate of over 40.1%
in the period of 2020-2027 and reach a valuation of over US
$76.8 billion [1]. More and more diverse ML tasks will be

e  Miao Hu, Di Wu, and Xu Chen are with the School of Computer Science
and Engineering, Sun Yat-sen University, Guangzhou 510006, China,
and also with the Guangdong Key Laboratory of Big Data Analysis and
Processing, Guangzhou 510006, China. E-mail: humiao@outlook.com,
{wudi27, chenxu35)@mail.sysu.edu.cn.

o Yipeng Zhou is with the School of Computing, Faculty of Science and Engi-
neering, Macquarie University, Macquarie Park, NSW 2109, Australia.
E-mail: yipeng.zhou@maq.edu.au.

o Min Chen is with the School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China.
E-mail: chenxu35@mail .sysu.edu.cn.

Manuscript received 9 Mar. 2021; revised 11 Jan. 2022; accepted 18 Jan. 2022.
Date of publication 4 Feb. 2022, date of current version 20 Apr. 2022.

This work was supported in part by the National Natural Science Foundation
of China under Grants 62072486, U1911201, U2001209, 61972432, and
62176101, in part by the Science and Technology Planning Project of Guang-
dong Province under Grant 2021A0505110008, in part by the Natural Science
Foundation of Guangdong under Grant 2021A1515011369, in part by the
Program for Guangdong Introducing Innovative and Entrepreneurial Teams
under Grant 2017ZT07X355, in part by Pearl River Talent Recruitment Pro-
gram under Grant 2017GC010465, and in part by Australia Research Council
under Grant DE180100950.

(Corresponding author: Di Wu.)

Recommended for acceptance by R. Tolosana.

Digital Object Identifier no. 10.1109/TPDS.2022.3148113

executed on resource-constrained mobile devices with spe-
cialized hardware (e.g.,, GPU, DSP) [2]. However, in the
meanwhile, the barriers among different data owners and
the issue of privacy leakage have impeded the further
development of ML and thus received arising attentions in
recent years.

As a promising solution, Federated Learning (FL) provides
an efficient way to train machine learning models among
decentralized clients while not requiring them to expose their
private data [3], [4], [5]. Specifically, the FL training is con-
ducted via multiple rounds of global iterations. A number of
FL clients participate each round by uploading their compu-
tation results (e.g., parameters) to the centralized parameter
server (PS). The PS applies the model aggregation algorithm
(e.g., FedAvg [3], FedSGD [6]) on the information such as
parameters submitted from clients, and then distribute
aggregated parameters back to clients participating the next
round. During the entire FL training, clients never expose
their private data, and thus data privacy can be preserved.

Most of existing works (e.g., [7], [8]) assumed that the
central PS can completely determine the participating client
set in each round without considering the willingness of
individual clients. In practice, participating FL training
incurs various cost such as computation and energy for cli-
ents. For resource-constrained devices, e.g., mobile phones,
they may be reluctant to participate FL training. Even if
there is no resource constraint, participating clients such as
business companies in the cross-silo FL [9], [10] also have
strong desire to be rewarded after contributing their
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computation results (or computing facilities) to the FL train-
ing. Therefore, an incentive mechanism to incentivize cli-
ents in FL is vital for the success of FL training. A common
approach is to provide a certain amount of reward in each
round that will be shared among participating clients [11],
[12], [13], [14].

In this work, we address this key issue by designing an
autonomous client participation scheme for FL training with
the goal to properly solicit a certain number of clients to par-
ticipate FL in each round. We consider a more realistic sce-
nario, in which clients are uncooperative and with
incomplete information. Each client knows its own utility
(defined as reward minus cost), but does not know the utility
information of other clients. We only assume that the amount
of reward budget is limited in each round and the reward is
shared by participating clients. The dilemma is that, the more
clients participate in an FL training round, the less reward
each participating client can receive. Thus, each client is
more willing to participate when there are fewer participat-
ing clients, and vice verse. The above problem is inherently a
kind of game [15]. This scenario is different from previous cli-
ent participation problems (e.g., [11]), which assumed that
clients are rational and with complete information.

Specifically, we model the autonomous client participa-
tion problem in the FL training as a minority game (MG). In
the MG model, a client is said to be in the minority side and
win the game if the client is on the side with higher utility.
For FL training, a client is in the minority side if and only if
the number of participating clients is below the maximum
number of beneficial clients, which implies that a client can
benefit from participating in the FL training process. Each
client makes autonomous decision by optimizing its future
utility with the goal of being in the minority side. Through
analyzing the MG played by FL clients, we can derive that:
1) The number of participating clients under the standard
MG model is highly volatile, which have negative impacts
on FL model accuracy and convergence. 2) A stochastic
MG-based client participation scheme is proposed, in which
clients winning in the last round keep their decisions
unchanged, while the rest probabilistically change their
decisions. We prove that this scheme can considerably
reduce the volatility of participating clients. 3) We further
improve the stability of participating clients by proposing a
coalition MG-based client participation algorithm, in which
clients form multiple coalitions and clients in the same coali-
tion make opposite decisions so as to maximize the long-
term winning probability (i.e., staying at the minority side).

Overall, our main contributions in this paper can be sum-
marized as below:

e To the best of our knowledge, we are the first to
model the autonomous client participation process
in FL as a minority game by enabling each client to
make independent participating decisions with
incomplete information.

e We develop a family of MG-based autonomous cli-
ent participation algorithms, including the standard
MG-based and stochastic MG-based algorithms. We
prove that stochastic MG-based algorithms can sig-
nificantly reduce the volatility of the number of par-
ticipating clients.
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e A coalition MG-based client participation algorithm
is proposed to further lower the volatility, which
allows multiple clients to form a coalition to play the
MG game against others. The gain of improved win-
ning probability has been theoretically derived.

e We conduct extensive experiments under realistic
settings to evaluate our algorithms. The results indi-
cate that the stochastic MG-based algorithm and the
coalition MG-based algorithm can improve the utility
(defined as reward minus cost) by 39%-48% and
reduce the volatility by 51%-100% compared to other
baselines. Moreover, the FL model accuracy achieved
by our scheme is comparable to that achieved by cen-
tralized algorithms.

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes relevant works in recent years, and Sec-
tion 3 presents the preliminary knowledge. Section 4
introduces the system model of autonomous client partici-
pation problem in FL. The standard MG-based client partic-
ipation is proposed in Section 5, while more advanced
stochastic MG-based algorithm and coalition MG-based
algorithm are presented in Sections 6 and 7. The experimen-
tal results are discussed in Section 8. We conclude this work
and envision our future work in Section 9.

2 RELATED WORK

In this section, we introduce recent studies on client selec-
tion and incentive mechanism in federated learning, and
related work of minority game.

2.1 Client Selection in Federated Learning

Federated learning (FL) has attracted tremendous attention
(e.g., [3], [16], [17]) in the past years. In the FL training pro-
cess, given the large number of clients, only a partial set of
clients can participate in each FL training round [16].

Past studies [7], [8], [18], [19], [20] focused more on the
problem of client selection from the perspective of the
parameter server to speedup the FL training process. Yang
et al. [18] proposed a client scheduling policy by considering
the staleness of received parameters and instantaneous
channel qualities to improve the efficiency of FL. Wadu
et al. [19] proposed a joint client scheduling and resource
allocation policy to minimize the loss of accuracy in feder-
ated learning under imperfect channel state information.
Nishio et al. [7] performed federated learning by actively
managing clients based on their resource conditions. Xu
et al. [8] formulated a stochastic optimization problem for
joint client selection and resource allocation under long-
term client energy constraints, and developed a new client
selection algorithm. Amiri et al. [20] designed scheduling
and resource allocation policies to determine the subset of
devices for transmission in each training round, and resour-
ces to be allocated among participating clients. However,
the above algorithms were based on the assumption that all
the FL clients are willing to participate in the FL training
process, and the client selection was simply made by the
parameter server itself.

In practical scenarios, clients are also sensitive to the cost
incurred by participating in the FL training process. More-
over, clients are also independent and free to join or leave
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the FL training process. It is essential to design fully autono-
mous client participation decision algorithms, which are
more suitable for practical FL systems. One thread of
research is on the incentive mechanism design for FL clients
[12], [13], [14]. Sarikaya et al. [11] modeled the interaction
between FL clients and the parameter server as a Stackel-
berg game. Yu et al. [21], [22] proposed an FL incentivizer,
which dynamically divides a given budget among clients in
a federation by jointly maximizing the collective utility
while minimizing the inequality among the clients, in terms
of the received payoff and the waiting time for receiving
payoffs. However, the formulated game was generally
based on the assumption that clients are rational in a static
setting. Most FL clients are personal devices such as mobile
phones, which are inherently dynamic and highly autono-
mous. Therefore, without knowing the state of each client, it
is difficult to determine the set of clients that should be
involved in each iteration.

Recently, Zhan et al. [23] designed a deep reinforcement
learning-based incentive mechanism to determine the opti-
mal incentive strategy for the parameter server and the opti-
mal training participation strategies for clients. However,
the complexity of deep neural networks will increase with
the number of clients in the system. Moreover, it is also
opportunistic for clients to cooperate with each other to
increase their rewards. In this work, we further exploit the
opportunities of both competition and cooperation among
clients, and propose a more efficient client participation
decision scheme for federated learning.

2.2 Minority Game

In practical FL systems, a client has limited information of
other clients in terms of available choices or conditions. For
scenarios with incomplete information, minority game (MG)
shows its efficiency on clients’ distributed decision-making
[24], [25]. Ranadheera et al. [26] applied MG to solve the dis-
tributed decision-making problems in wireless networks.
Recent work [27] developed an MG-based distributed
server activation mechanism for computation offloading in
order to guarantee energy-efficient activation of servers.
Furthermore, the asymmetric processing capacity between
edge servers and clouds has been investigated by a variant
of MG with arbitrary cut-offs [26], [27]. Hu et al. [28] pro-
posed an MG-based computation offloading scheme, in
which tasks with heterogeneous workloads are divided into
subtasks and instructed to form into a set of groups.

The minority game can be applied to the design and anal-
ysis of client interaction in federated learning as well, how-
ever, this issue has not been explored to the authors’ best
knowledge.

3 PRELIMINARY

In FL, multiple devices can jointly learn a common model
through sharing their parameters (or gradients). As illus-
trated in Fig. 1, we consider an FL system that contains a
parameter server (PS) and a set of N clients (e.g., smart-
phones) with datasets Dy, Dy, - - -, Dy, where K; = |D;| is the
maximum number of sample mini-batches in client i. In the
tth training round, the ith data owner (i.e., client ¢) can con-
tribute local model trained on its dataset to the PS.
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Fig. 1. The framework of federated learning with autonomous client
participation.

In Fig. 1, we present an FL framework with autonomous
client participation. Different from previous works that
used the central PS to decide client participation, we
describe the FL training process with autonomous client
participation as below.

e  Step 1: At the beginning of each training round, each
client autonomously decides whether to conduct
local model training on its own data or not.

e  Step 2: If client 4 participates the tth training round, it
will send the local computation results (e.g., gra-
dients) to the PS.

e Step 3: After receiving the computation results (e.g.,
gradients) from all participating clients, the PS exe-
cutes a model aggregation algorithm (e.g., FedAvg
[3] or FedSGD [6]).

e Step 4: Next, the PS sends the updated global FL
model to all clients.

The autonomous client participation continues until the

PS claims that the FL training process ends.

Similar to [25], we can classify all clients in each round
into two kinds, namely cooperators and defectors. A coopera-
tor participates in the current FL training round. Let x;(t)
denote the number of mini-batches contributed by client i at
the t¢th training round. That is, if z;(¢t) > 0, client ¢ is a coop-
erator for the tth training round. Otherwise if x;(t) = 0, cli-
ent 7 is a defector who refuses to participate the tth training
round.

To quantify the relationship between model accuracy
and data contribution from clients, we define Q(X) as the
model accuracy given the number of mini-batches, X. Spe-
cifically, Q(-) is a concave increasing function bounded by
1. The shape of the model accuracy function Q(-) is plotted
in Fig. 2a for illustration. Q(-) is assumed to be concave
increasing based on previous works, such as [29] (assuming
that Q(-) is a logarithmic function) and [30] (assuming that
Q(+) is a power law function). Our study is based on the con-
cave increasing property of Q(-).

Based on the definition of Q(-) function, we then define
the data contribution in the ¢th training round as below.

Definition 1 Data Contribution. The model accuracy
improvement q(t) at the tth training round can be defined as:

q(t) = Q(X(1)) — Q(X(t - 1)), M

where X (t) = St SOV a;(k) is the cumulative number of
mini-batches contributed until round t.
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(a) The general Q-function. (b) The Q-function approximation.

Fig. 2. The general Q-function and its approximation.

In previous works [3], [4], [5], [6], [7], [8], a certain num-
ber of clients are selected by the PS to participate each round
of training with a pure random and uniform manner. How-
ever, it is difficult to guarantee that the volatility of the num-
ber of participating clients is low if they make independent
and autonomous decisions. Basically, the volatility reflects
the fluctuation of the number of participating clients. The
objective of our work is to design autonomous client partici-
pation schemes that can achieve a low volatility of the num-
ber of participating clients in different training rounds.

4 SYSTEM MODEL AND GAME FORMULATION

This section introduces the system model and analyzes the
client participation decisions via a game theoretic approach.

4.1 Game Without Incentive From PS

We first consider a simple scenario in which the PS will not
provide any additional reward to the FL system. FL clients
are not volunteers (e.g., [21], [22], [23]), and rewards should
be provided to incentivize clients to participate in FL. model
training. The incentive for FL clients to cooperate is to gain
a common FL model that can be used by all clients. Thus,
the reward of each client is related to the accuracy of the
trained model.

Definition 2. FL public reward, which is defined as the reward
generated by performance improvement induced by a globally
trained FL model. The public reward of each FL training round
can be enjoyed by all participating clients and its value is
dependent on the improvement of model accuracy. According to
[22], [31], the FL public reward RF*(-) allocated to client i can
be quantified by a function of the total number of mini-batches
as follows:

R (2i(t),X-i()) = Vetient (X (t = 1))a(2), )

where x_;(t) is the number of mini-batches contributed by cli-
ents exclf\zfpt client i at the training round t, X(t) =
S SN 2i(K), Veiens i the marginal per capital return
(MPCR) [32] from the perspective of clients, which can be set
at the client’s discretion.

Unfortunately, the reward defined in Eq. (2) is hard to
obtain in practical scenarios. Alternatively, we can approxi-
mate it by the following equation:

N
Rf‘L(I1(t)a X_7(t)) ~ )\client Z T (t)» (3)
i=1

where Agient is the reward weight on the amount of data,
which can be defined by ¥ i (X (¢t — 1)) Q' (X (¢t — 1)) £ Actient-
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The detailed approximation derivation of Eq. (3) can be
found in Appendix A, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2022.3148113.

Recall that the improvement of the model accuracy func-
tion @ in round ¢ is determined by the sample mini-batches
contributed by all clients. Thus, the intuition of the FL pub-
lic reward is that the reward in round ¢ is also dependent on
the collective samples contributed by all clients for round ¢.
In addition, the reward is the same for all clients, i.e.,
R (ai(t),xi(t)) = RY™(aj(t),x (1)), Vi, j € N, since all cli-
ents can obtain the common trained model with identical
model accuracy. The key notations used in the paper are
illustrated in Table 1.

The cost of each client is defined as below.

Definition 3. Cost of data contribution Similar to most exist-
ing studies (e.g., [22], [33]), the cost is defined as a linear func-
tion of the number of mini-batches contributed by a client. Let
¢;(z;(t)) denote the cost of data contribution x;(t) by client i at
the training round t. If client ¢ contributes x;(t) in the tth FL
training round, it turns out that

ci(zi(t)) = nzi(t), 4)

where 1 is the cost coefficient that can be obtained from field
measurements.

The cost can consist of communication cost and computa-
tion cost. The communication cost is mainly determined by
the model size, i.e., the number of model parameters to be
communicated. Thus, the communication cost can be fixed
beforehand once the learning model is specified. In contrast,
computation cost is mainly affected by the number of sam-
ples used for local training. Since the computation cost to
process each sample is about the same, we employ a linear
function to model the computation cost (similar to [22],
[33]), i.e., the computation cost is a linear function of the
number of used samples. More complicated cost function
will be considered in our future work.

With the above defined reward and cost, we can formu-
late a general game model for FL client participation with
incomplete information.

Definition 4. General Game. A general game model for FL cli-
ent participation with incomplete information can be formu-
lated as a game I = (N, S;, U(x;,x_;)), where:

e N is a finite set of N clients (i.e., the set of players)’,
indexed by i.

o S, is the set of strategies for client i. Each client tacti-
cally chooses a strategy from a strategqy set S; =
{81, .-, Sky ..., 5K, }, Where s, is the strategy that s,
mini-batches are contributed to one FL model training
round, sg; > --- > sy =0, and K; is the maximum
number of mini-batches of client i.

o There is a cost cy, if contribution sy, is chosen, where
ck, > -+ > ¢ = 0. In particular, s; = ¢; = 0 indi-
cates that client i does not participate in the FL train-
ing process.

1. This work exchangeably uses notations of “client” and “player”.
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TABLE 1
Key Notations Used in the Paper
Notation Description
N The total number of clients (i.e., players) in the FL system
N the set of clients (i.e., players) in the FL system
D; client i’s dataset
K; the maximum number of mini-batches in client 7, i.e., K; = |D;|
q(t) the clients’ contribution (quality) at the ¢th training round
Q) the function mapping from the number of data to the training quality
x;(t) the number of mini-batches contributed from client ¢ at the FL training round ¢
X_; vector of the number of mini-batches contributed from clients except for client :
Aclient the marginal per capital return (MPCR) from client’s perspective
server the MPCR from server’s perspective
R (z;,x ;) the FL public reward allocated to client i
RZP S5, %) the PS incentive reward allocated to client ¢
c the total number of credits allocated by the P’S as the incentive reward in each training round
ci(xi(t)) the training cost for client ¢ at the training round ¢
n the cost coefficient that can be obtained from field measurements
r the formulated game I' = (N, S;, U(x;,x_;))
S; the set of strategies for client 7, where S; = {s1,...,8,...,5x,}
Si: the strategy that the s;, times of mini-batches are contributed to one FL model training round
Ui(xi,x—i) the utility function for client ¢ defined in Eq. (5)
Ri(xi,x_;) the rewards allocated to client ¢
) the defined cut-off value in Definition 7
a;(t) the decision made by client 7 at the FL training round ¢
+(t) the number of cooperators at the FL training round ¢
(t) the number of defectors at the FL training round ¢

Qe
=

QR
*

a3
e

N_

M the number of historical records (i.e., the memory length)

the attendance on the collective sum of the difference in the actions of all players at a given time ¢
the volatility on the attendance value that fluctuates around the mean attendance (i.e., cut-off value)
the defined ratio @ = 2 /N, referred to as the training parameter or control parameter

the minimum value of the defined ratio «

the probability that the client will change its decision for the stochastic MG-based decision algorithm
the initial state 77(0) for the stochastic MG-based decision algorithm

(t) the state updated at the FL training round ¢ for the stochastic MG-based decision algorithm

8 =

the steady state probability vector

the state transition matrix for the stochastic MG-based decision algorithm

o The utility function for client ¢ can be represented as:
UZ'(ZK@,X,Z') = Ri(xi,x,i) — Q(Zl) (5)

The utility depends not only on client i’s strategy x;
but also on strategies chosen by opponents x_;.

In the general game formulation, we consider a scenario
with incomplete information, in which a client cannot
observe the utility function (or even action space) of others.

4.2 Nash Equilibrium of General Game
In the following, we analyze the equilibrium achieved
under the formulated game.

Given the reward and cost, the utility of client i can be
transformed into the following form:

N
Ui(zi, X—3) = Aclient Z T — NT;. (6)
=1

Assume that the game is played under standard game-
theoretic assumptions, i.e., clients are rational in maximiz-
ing utility and selfish in that utility equals its own payoff.
We can prove that clients can achieve a Nash equilibrium
state. Intuitively, a Nash equilibrium is a stable strategy pro-
file: no client can gain higher utility by changing its strategy
if the strategies of other clients are unchanged. Formally, a

strategy profile x = {z1,...,zy} is a Nash equilibrium if,
for all clients Vi, x; is a best response to x_;. Let &} denote
the optimal number of mini-batches contributed by client :.
The Nash equilibrium can be achieved if and only if the fol-
lowing equations hold, i.e.,

Uj(l';;X,Z‘) Z Ui(xi,x,j), VZ (7)

It is because that all of the clients simultaneously play best
responses to each other’s strategies in a Nash equilibrium.

Specifically, we have the following two propositions on
the Nash equilibrium of the formulated game.

Proposition 1. When Acient > 1, the Nash equilibrium can be
achieved when each client contributes all its data to FL train-
ing. That is, the strateqy profile x* = {K,,..., Ky} is a Nash
equilibrium.

Proof. The proof can be found in Appendix B, available in
the online supplemental material. O

Proposition 2. When Adgieny < 1, the Nash equilibrium can be
achieved when each client contributes nothing to FL training.
That is, the strategy profile x* ={0,...,0} is a Nash
equilibrium.

Proof. The proof can be found in Appendix C, available in
the online supplemental material. 0
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Remark. From Propositions 1 and 2, we can see that there
are two extreme cases. If the cost is small enough, i.e.,
Adient > 7, all clients autonomously participate the game,
and the FL training can be conducted successfully. How-
ever, if Agient < 1, every client would like to be a free rider
since contributing nothing is a dominant strategy, which
brings the highest utility to the client regardless of others’
actions. This implies that simple FL public reward is insuf-
ficient to guarantee sustainable federated learning. O

In the following discussion, we focus on the cases when
Adient < 1. To solve the free-riding problem, we propose to
introduce additional reward from the PS to recruit clients,
which can be formulated as an MG.

4.3 Reward From PS

Definition 5. PS incentive reward, which is defined as the
reward allocated by the PS to each client based on its contribu-
tion. Similar to [22], [34], the PS incentive reward function
can be defined as follows:

CZL‘{, (t)
POARE()

where C'is the total amount of credits allocated by the PS as the
reward in each training round. In practice, the credit value can
be determined by jointly considering the training cost and the
number of required participating clients per training round.

R (wi(t), x-i(t)) = ) ®)

With the additional PS incentive reward, the total reward of
each client should be updated by combining Egs. (3) and
(8), which gives:

o _ Ci(t)
chcnt Z i ZZ |z (t) .

As the participation recruitment budget C is limited,
only a fraction of clients have incentives to participate in the
FL training process when the received reward is higher
than the incurred cost.

Discussion. A question arising here is that what is the
motivation for the PS to contribute additional reward. If the
role of the PS is simply to coordinate clients, the PS may not
have the incentive to contribute reward. However, the PS
may also benefit significantly from FL. For example, the PS
of an online video system may target to train a recom-
mender system via FL [35]. The recommender can definitely
improve the service quality of video services and thus be
desired by the PS as well.

Formally, the condition for the PS to trigger FL training
under Agient < 7 can be analyzed as follows.

The utility function of the PS has two components:

Rz(l‘l(t) 72 (9)

e Reward. Similar to the definition of rewards for cli-
ents, the reward of the PS is Rsuve(X*(t)) =
Aserver X (t). Here X*(t) denotes the optimal amount
of mini-batches contributed to the FL model training
until round ¢, and Asver is the rewarding weight on
the data contribution which can be set at the server’s
discretion.

e Cost. The cost in each FL training round is a fixed
reward budget C.
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The utility of the PS is Userver(X*(£)) = Aserver X (t) — C.
Following Eq. (9), we have the equation Adient X () + C —
nX*(t) =0, and thus X*(t) = By substituting it into
the utility of the PS, we have

'7/\lt

Ascrvcr + Aclicnt -n

C. (10)
n— )\client

Userver (X* (t) ) =

Thus, the PS has the incentive to contribute reward as long
as )\server + )\client > 1. Note that )\server > 0. If >\server =0, it
implies that the PS has no incentive to provide additional
reward to FL.

In the rest, we focus on the case that A\grver + Actient > 17 >
Adtient- Clients are solicited by the PS to participate FL train-
ing. They need to make independent and autonomous par-
ticipation decisions in each round, and this problem can be
formulated as an MG.

5 STANDARD MG-BASED CLIENT PARTICIPATION
DECISION ALGORITHM

In this section, we first formulate the minority game, and
clearly define the state, action, transition, reward, and strate-
gies in the game. Then, we propose a standard MG-based
client participation decision algorithm.

5.1 Minority Game Formulation

Minority game (MG) [25] is a powerful theory tool in model-
ing collective behaviors of clients when they have to com-
pete for limited resources with incomplete information. MG
can also be applied in the context of federated learning, con-
sidering the decentralized nature of FL.

In classic form of MG (e.g., the El Farol Bar problem
[36]), players make their decisions on whether to attend a
bar or not each night. Going to a bar is a enjoyable choice
for a player only if the bar is not too crowded, otherwise,
the player chooses to stay at home. Obviously, players
should adjust their decision based on their expectations
on what others choose, and these expectations are gener-
ated by the decisions of other players. In each round of
MG, each player determines its action based on the histor-
ical and preference factors. After all players make their
decisions, the action associated with less players is
declared as the minority side strateqy, and the players in
the minority side win certain payoffs. The results are also
broadcast to all players so that each player can update
their information and adjust its action accordingly in the
next round.

Next, we re-formulate the problem of FL client participa-
tion decision with minority game as follows:

Definition 6. Minority Game Model. The properties of the
minority game are given as below:

There are N clients in the FL system.
At each training round t, each client ¢ makes a decision
a;(t) € {+1,—1}. The action a;(t) = +1 indicates that
a client selects the “cooperated strategy”, and a;(t) =
—1 indicates that a client selects the “defected strateqy”.
o The clients who are in the minority side, i.e., a;(t) =
—sign(32N, a,(t)), win, and the others lose.
e No communications between players are allowed.
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In each FL training round, a client chooses either
“cooperated strategy” or “defected strategy”, and clients can be
divided into two categories:

e  Minority. A client is said to be in the minority side
and win the game if the client is on the side with
higher and non-negative utility.

e  Majority. Conversely, clients in the majority side lose
the game if the client is on the side with lower and
negative utility.

There exists a threshold number of participating clients,
below which participants can be in the minority side. On
the contrary, if the number of participants is larger than the
threshold, the participants are in the majority side. Thus, we
define the threshold number of participating clients as the
cut-off value, which can be formally defined as follows:

Definition 7. Cut-off value v is defined such that, when the
number of cooperated clients approaches v, the FL training pro-
cess reaches the performance threshold. Thus, for a client to ben-
efit from training, the number of FL training clients should not
exceed the limit of . As a result, being in the population
minority (defined by ) is always desired.

Let N, (t) denote the number of cooperators at the train-
ing round ¢, and N_(¢) denote the number of defectors at
the training round ¢. In total, we have N = N (t) + N_(¢).
The minority side can be formally defined as:

e When N, (t) <, for cooperated clients, the allo-
cated reward is greater than the training cost. That
is, the clients choosing cooperated strategy belong to
the minority side and win the game.

e Conversely, when N, (t) > 1, for cooperated clients,
the training cost is greater than the allocated reward.
That is, the clients choosing defected strategy belong
to the minority side and win the game.

Each player has a given set of decision making strategies
that help them select future actions. The action of player i at
time ¢ is shown by «;(t). The target of each client is to make
the decision a;(t) to choose the winning side as possible. In
other words, the client participation decision strategy needs
to predict the winning action of the following training
round(s), and choose the action a;(t) to make itself in the
winning side. At the end of each round, players are
informed of the winning action, which is then used as his-
tory data by players to improve their decision making in the
next rounds.

5.2 Algorithm Design
5.2.1 State

In the context of FL, a client knows very limited information
of others due to the privacy requirement. The winning side
information will be broadcast by the PS to each client at the
end of each training round. The winning side information is
defined as “1” if the “cooperated strategy” is the minority
side, and “-1” otherwise. It is also the only available infor-
mation that each client can utilize.

In our model, the state of a client is defined based on its
decision history and winning side information. Formally,
we define the state as the past /M winning choices from the
client’s perspective, with A being the number of historical
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TABLE 2
An Example Strategy Table for a Client

The historical The decision at
winning decisions round ¢

-1 -1 -1 1
-1 1 -1 1
1 -1 -1 1
1 1 -1 1

records. In other words, a strategy is essentially a mapping
of a history with M records to an action. In our model, there
are two actions to select from (“cooperated” or “defected”),
and the complete strategy space containing 22 strategies is
very huge with correlated and redundant strategies.

Players using correlated strategies probably obtain identi-
cal decisions, and thus lower their chance to choose the
minority side. Inspired by [37], [38], we shrink the strategy
space with the following principle. In the original strategy
space with size 22", there exists a subset of 2V pairs of points
and each pair of strategies is with the maximum irrelevant
degree. They are called anti-correlated pairs in the sense that
the two strategies of a pair always predict opposite actions.
The reduced strategy space selects strategies according to
the rule as below: one strategy is anti-correlated to the other
one in the same pair. The reduced strategy space size is 2" 1,
which is much smaller than the size of the original strategy
space 22" An example with two anti-correlated strategies is
shown in Table 2, where a client has two strategies regardless
of the historical winning information.

5.2.2 Action

Let a;(t) denote the action taken by a client in the ¢tth FL
training round with «;(t) € A= {—1,+1}. For each client,
the action is defined as the selected strategy, either
“cooperated” or “defected”. That is, a;(t) = +1 indicates
that a client selects the “cooperated strategy”, and a;(t) =
—1 indicates that a client selects the “defected strategy”.

In the minority game model, an important measure is the
difference in the attendance of the two sides. The attendance
is defined as below:

Definition 8. Attendance, which is the collective sum of the dif-
ference in the actions of all players at a given time t. The atten-
dance is formally defined as:

A(t) = N, (t) — N_(t) = 2N.(t) — N. (11)

Equivalently, the attendance value can be obtained by aggrega-
tion operation, i.e.,

A(t) = iai(t). (12)

The central quantity of interest is the difference in the crowd of
the two sides.

5.2.3 Transition

In each training round, a client chooses an action a, and
transits to a new state s’ from state s given the transition
probability Pr{s'|s,a} = 1 for the real state ¢ if a is the win-
ning action, and Pr{s'|s,a} = 0 otherwise. An example is
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TABLE 3
An Example State Transition for a Client
The state at FL The winning decision The state at FL
training training round
round ¢ t+1
1 -1 1 1 -1 1 1
1 -1 1 -1 -1 1 -1

shown in Table 3, where the winning information of the
past three training rounds are taken as the states. Note that
the current state is s = {1, —1, 1}. The next state transits to
s' ={-1,1,1} if the winning decision is “cooperated”. Oth-
erwise, the next state transits to s’ = {—1,1, —1} if the win-
ning decision is “defected”.

524 Reward

The reward of a client can be represented by a utility func-
tion, which characterizes the relative utility of a particular
action. Let U;;(s,a) denote the utility function of a corre-
sponding action « in the tth training round. For a client in
state s, after selecting a given action a, the corresponding
utility function is updated according to the following rule:

At)
N
where s is the current state of a client, i.e., the last M win-
ning actions, and a denotes the action that a client may take.
Eq. (13) indicates that the utility contains information about
the accumulative experience from the history. The state-
action strategy is rewarded (i.e., U;(s,a) — U;;—1(s,a) > 0)
when it correctly predicts the minority sign, that is, if a;(t) =
—sign A(t), and penalized otherwise.

The states are updated during the course of the clients’
interaction with the environment. Actions that lead to a
higher reward are preferred.

Uii(s,a) = Uiy1(s,a) — a;(t) (13)

5.2.5 Decision Strategy

Generally, a client will choose action a that can maximize
the utility U; (s, a) based on the current state s, i.e.,

a’(t) = argmax  Ujs(s,a). (14)
However, this might lead to the local optimality. Thus, we
use both exploration and exploitation strategies in decision
making. In our framework, the clients select the action by

resorting to a probabilistic choice model, i.e.,
eBli(s.a)
- ZH’EA eﬁl/’,yt(s,a’) ’

where B is the relative weight assigned by clients to the
empirical evidence accumulated in U; with respect to random
idiosyncratic shocks. If B — oo, clients always play their best
strategy according to the scores. When g decreases, clients
take more opportunities to explore the unknown strategy. In
Eq. (15), the probabilistic action decision making is adopted
to avoid the trap of local optimality. This is a well-known
choice model among economists, called the Logit model [39].
By utilizing the Logit model, for strategy exploitation, a
client selects the action following Eq. (14). Meanwhile, it

(15)
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also explores other strategies by randomly selecting actions
a*(t) with a probability following Eq. (15).

The standard MG-based client participation decision is
illustrated in Algorithm 1, which contains four steps:

o Decision initialization. Before conducting the MG-
based decision, the initial decision is randomly
selected by each client. To improve the convergence
rate to the optimality, each client can use a probabil-
ity (i.e., ¥/N) to guide the possibility of joining the
current round training.

e Transaction. After collecting the updated gradients,
the parameter server will aggregate the results using
method such as FedAvg [3]. Besides, the cooperators
will be paid with the incentive regulations.

e  Utility update. The cooperators receive rewards from
the parameter server. Based on the historical reward
information, each client will update the utility func-
tion following Eq. (13).

e  Decision iteration. Based on the utility function, each
client makes the decision for the training round ¢ + 1
following the principle defined in Eqgs. (14) and (15).
The client participation decision process continues
until the training model converges.

Algorithm 1. Standard MG-Based Client Participation
Decision

1: Given: N, q;(t) € {+1,-1},C

2: % Step 1: decision initialization

3: fori=1:Ndo

4:  Randomly initialize decision for client ¢;

5: end for

6: repeat

7: % Step 2: transaction

8:  The clients conduct local model update;

9:  PS calculates the attendance A following Eq. (11);
10:  PSsends rewards C/ N (t) to each cooperator;
11: % Step 3: utility update
12: % minority side determination
13:  if A(t) > O then
14: win(t) = —1
15:  else
16:  win(t) = +1
17:  endif
18:  PSbroadcasts the winner information win(t);
19: fori=1:Ndo
20: % Update the utility function following Eq. (13);
21: if a;(t) # win(t) then
22: if (rand()%N) < abs(A4) — 1 then
23: a;(t+1) = (a;(t) + 1)%2
24: end if
25: end if
26: end for
27 t=t+1
28: % Step 4: decision iteration

29:  Clients act following the probability in Eq. (15);
30: until PS claims that the training process ends.

5.2.6 Scalability

It is worth emphasizing that the communication overhead
of our work is very small. In our formulated minority game
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Fig. 3. The volatility per client versus the number of clients in the
FL system.

model, it is only necessary to use M-bit size memory to
record the historical winning side information. It is inde-
pendent of the network size. Thus, the algorithm complex-
ity remains unchanged as the network size grows.
Therefore, our proposed model can guarantee a good sys-
tem scalability even for very large networks with a large
population of clients.

5.3 Observations

In the following, we discuss the properties of the standard
MG-based client participation decision policy, including
volatility and phase transition.

5.3.1 Volatility

Basically, the attendance value never settles but fluctuates
around the mean attendance (i.e., cut-off value). The fluctu-
ation around the mean attendance is known as volatility,
denoted by o®. We focus on the cooperative properties of
the system in the stationary state. Symmetry arguments
suggest that none of the two strategies (“cooperated” or
“defected”) will be systematically the minority one. This
means that A(t) will fluctuate around E;{A}. The fluctua-
tion is a measure of the quality of cooperation in the game.
The size of fluctuations of A(t) indicates a remarkable
non-trivial behaviour. The volatility is defined as [25]:

T (ZV: ai<t>> =E{A%} — (B{4})". (16)

i=1

Volatility is an inverse measure of the system performance.
When the fluctuation is smaller, it implies that the size of
the minority (i.e., the number of winners) is larger. Hence, a
smaller volatility corresponds to a higher clients’ satisfac-
tion level along with better resource utilization.

Fig. 3 illustrates the volatility per client versus the num-
ber of clients in the federated learning system. Let M denote
the number of historical records, also named as the memory
length. From these curves, we have three key observations.
First, regardless of the value of M, the volatility first ascends
and then descends with the increase of the number of clients
N. This might be due to that, when the number of clients is
small compared to the number of possible historical
records, the outcome is seemingly random. When the histor-
ical information is too complex (e.g., M is too large), the
learning function over-fits the fluctuations and thus the
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Fig. 4. The volatility per client versus the training parameter « in the
FL system.

volatility is relatively high. Second, with the increase of M,
we find a graphic right shifting of the curves. The reason is
that, it needs more clients to process the more complex his-
torical information with the increase of memory length.
Third, the number of clients that can achieve the minimum
value of volatility is linear with the exponential function of
memory length, i.e.,, N* ~ e

5.3.2 Phase Transition

From the above observations and the minority game theory,
volatility depends on the ratio & = 2" /N as the training
parameter or control parameter [25]. Based on these results,
Fig. 4 illustrates the volatility per client versus the training
parameter «. According to the variation of the global effi-
ciency, the game can be divided into two phases by the min-
imum value of @ (denoted by o).

e When o < o, for a small M, the number of strate-
gies is smaller than the number of clients N. Thus
many clients could use the same strategy, leading
them to make the same decision. This creates a herd-
ing effect.

e Oncea > o, the value of M is large enough to make
the strategy space larger than the number of clients
N, so that the probability of any two clients using
identical strategies diminishes. Note that «* corre-
sponds to the minimum volatility, indicating the sys-
tem’s ability to a state where the resource utilization
can be maximized.

6 STOoCHASTIC MG-BASED CLIENT PARTICIPATION
DECISION ALGORITHM

In the previous section, we point out the volatility problem
existing in the standard MG-based client participation deci-
sion algorithm. To tackle the volatility problem, we extend
the standard minority game by adding some randomness:
winners of the last game stick to their choice, and losers
individually change their decision with probability p [40].
The process is as follows:

e If a client ¢ is successful in a given round, it will
make the same decision in the next round: a;(t +

e Otherwise, the client will change its action with a
probability p = Pr{a;(t + 1) = —a,(t)}.
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difference of # clients in two sides

Fig. 5. The steady state probability versus the difference of the number
of clients in two sides.

This stochastic principle is a reasonable way of behaving
in the absence of complete information. It is related to the
Johnson’s model [40], but different in decisive details. Fol-
lowing the stochastic minority game principle, there are
(N +]A])/2 losers and |A] is at most in the order of N. The
average number of changes is p(NN + |A|)/2 ~ pN.

This is evidently a stochastic one-step process and can be
handled well by existing tools for Markov Jprocesses.

Instead of using the whole set {a;(t)};,_; of time depen-
dent random variables we consider the stochastic process:

17

—

=

The possible values k that K(¢) can take are from —N/2 to
N /2. Then, the probabilities

m(t) = Pr{K(t) = k} (18)
together with the transition probabilities
pu = Pr{K(t+ 1) = k|K(t) = I} (19)

are the basic quantities to describe the system. To shorten
the notation, we consider the probabilities 7, (t) as compo-
nents of the state vector 7(t) = {7_y2,...,7xn/2}. The num-
ber of players in the majority in the t¢th round is
N =2+ |K(t)|. Since players perform independent Ber-
noulli trials, the transition probability is given by the bino-
mial distribution

N/2+1 ;
( 2+ )pl_k(l—p)‘wﬂk7 for [ > 0,

I—k
b =
N/2 -1 ,
( k/ l )p’“*l(lfm]v/“, for 1 < 0. (0)

This stochastic process may be considered as a random
walk in one dimension. Given the initial state #(0), the state
7(t) is updated at each training round by multiplying it by
the transition matrix P:

w(t+1) =Pr(t). (21)
As t — oo, we have the steady state probability as:
7 =Pr’. (22)

We consider p = ¢/(N/2), where ¢ is constant and much
smaller than N. As N increases, the number of clients that
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Cc
decision (A) | decision (B) | decison (C) winner
cooperated defected cooperated B
cooperated defected defected A
defected cooperated cooperated A
defected cooperated defected B

Fig. 6. An example on coalition formation with three clients (A, B and C).
When the clients (A and B) in the coalition make opposite decisions, the
client C can never be the winner in the minority.

change sides every training round stays constant ¢, i.e., c cli-
ents will change their decision. Given the definition of ¢, we
can approximate the steady state probability as below.

Theorem 3. In the stochastic MG-based algorithm, Qiven the
value of c, the steady state probability mj, can be expressed by
the incomplete gamma function:

o _v(E+1/2,0)

R 172) )

where y(s,x) = [t e 'dt.

Proof. The proof can be found in Appendix D, available in
the online supplemental material. 0

Fig. 5 illustrates the steady state probability versus the
difference of the number of clients in two sides. The curve is
roughly Gaussian distributed for small ¢, and forms two
peak values for larger values of c. For a smaller ¢, the sto-
chastic MG principle achieves a smaller volatility compared
to the cases with a larger c.

7 CoALITION MG-BASED CLIENT PARTICIPATION
DECISION ALGORITHM

Recall that there is no information sharing in both stan-
dard MG-based decision and stochastic MG-based deci-
sion algorithms. We then propose a coalition MG-based
client participation decision algorithm by taking advan-
tage of cooperation among some clients.

As shown in Fig. 6, suppose that three clients (4, B and
C) serve for the model update in the FL system. Two cli-
ents (A and B) make decision in a coalition way, and the
other one (C) is free in decision making. When the clients
in the coalition make the opposite decisions, e.g., A is
cooperated, and B is defected or A is defected and B is
cooperated. In this situation, the client C' will surely be in
the majority no matter what decision it made, either coop-
erated or defected.

Motivated by this example, we propose a coalition MG-
based client participation decision algorithm. In general, the
client participation decision should be modeled as an non-
transferable utility (NTU) game in a partition form, as the
value of a coalition S will have a strong dependence on how
the players in A'\S are structured [41]. The coalitional game
in a partition form is inherently complex to solve.
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Fortunately, there exists a simple and efficient coalition
formation solution for our problem. In our solution, clients
can form coalition pairs with two members in each coalition.
Two members in the same coalition need to always make
opposite decisions. With this design principle, the NTU
game can be degenerated into a transferable utility (TU)
game in a characteristic form.

To analyze the stability of the coalitional game, we intro-
duce the concept of coalitional stability in our paper, cap-
tured by the notion of the core, i.e., the set of outcomes such
that no subgroup of players has the incentive to deviate. We
define the mathematical property of super-additivity as fol-
lows [41].

Definition 9. A TU game (N, v) is said to be super-additive if
and only if

’0(81 USQ) > U(Sl) + ’U(Sz),vsl,SQ C N, st.51 NSy, = @.

A game is super-additive if cooperation, i.e., the forma-
tion of a larger coalition out of disjoint coalitions, guaran-
tees at least the value that is obtained by disjoint coalitions
together. If the payoff of a game is super-additive, coopera-
tion is always beneficial to all players. Players have the
incentive to form the grand coalition V (i.e., the coalition of
all players) since the payoff received from v(N) is no less
than the payoff received by the players in any disjoint set of
coalitions they could form.

Suppose that we have the grand coalition N, we make
the following definitions based on the grand coalition N
before we introduce the concept of the core.

Definition 10. A payoff vector r € RV for dividing v(N) is
group rational if Y.\ ri = v(N).

Definition 11. A payoff vector r € RV is individually rational if
each player can obtain a benefit no less than that by acting
alone, ie.,r; > v({i}),Vi € N.

Given that a payoff vector is both group rational and
individually rational, we can define the core as follows.

Definition 12. Given a TU coalitional game, the core is defined
in which no coalition S C N has an incentive to reject the pro-
posed payoff allocation, deviate from the grand coalition, and
form a new coalition S instead. Mathematically, the core is
given by:

C= {1'527"1'7 and Zri > u(S), VSQ./\/}

ieN i€S

(24)

where r; is the reward allocated to player i.

The core guarantees that no group of players has an
incentive to leave the grand core in order to form another
coalition.

Coalition formation entails finding a coalitional structure
that maximizes the total utility. A centralized coalition for-
mation mechanism is usually much simple for execution.
However, the number of partitions of a set A/ grows expo-
nentially with the number of players in N and is given by a
value known as the Bell number [42], [43]. Hence, finding
an optimal partition by using a centralized approach is, in
general, computationally complex and impractical.
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For our problem, we judiciously explore the properties of
the game to find a simple and efficient coalition formation
solution. The principle is that clients can form coalition
pairs with two members in each coalition. Two clients in the
same coalition always make opposite decisions. With this
decision principle, we have

U(Sl USZ) = ’U(Sl) + 1)(52), |81| = ‘Sz‘ =285 NS =29

This implies that our coalitional game is stable since the for-
mation of a large coalition out of disjoint coalitions equals
to the value that is obtained by the disjoint coalition pairs
together. More specifically, the expected reward of each
member in the core equals to that of an independent client
in any coalition pair.

According to the above principle, our algorithm com-
poses of two key steps, i.e., the coalition formation step and
the decision-making step, which will be described as follows.

Step 1: in the coalition formation step, each client pairs with
another one in the FL system. The motivation for a client to
join a coalition is that the potential winning probability will
increase. Let S denote the set containing the clients that have
been paired with each other, e.g.,, S = {1,2,...,i}. When for-
mulating coalitional pairs, we also take the communication
efficiency into account. Let d;; denote the distance measure
between clients ¢ and j. As the communication efficiency
deteriorates with the distance between clients, the objective
of client pairing is set as:

msin E dl‘]

{ij}es

(25)

Specifically, given N clients in the system, the number of
pairs is (N — 1)/2 when N is an odd number.

To minimize the objective in Eq. (25), we use the dynamic
programming method to iteratively fill the pairing set S
from the complete client set V. Let d(S) denote the sum of
distances between clients as pairs in the set S, and we have
the recursive equation as:

d(8) = min{|d; ;| + d(S/{i}/{j}]i, ] € S}- (26)

The detailed coalition formation algorithm is illustrated
in Algorithm 2. To guarantee the performance of the coali-
tion formation, Algorithm 2 is performed on the parameter
server. This is efficient for its convenience and flexibility for
practical deployment.

Algorithm 2. Client Coalition Formation Algorithm

1: Given: N,d; j,i,j€{1,.... N}, S=0,R=N ={1,...,N}
2: repeat

3:  Select the pairs 7, j that minimize d; j;

4: S—Su{itu{jh

5. R < RHi}/Hib

6:  Find the clients to be added into S following Eq. (26);
7:untilR = @or [R|=1.

Step 2: when we have two clients in each coalition, one
client randomly selects the decision and the other one takes
the opposite decision. When the total number of clients in
the federation is even, then there must be one and only one
winner in each coalition at each training round.
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TABLE 4

Experimental Parameter Settings
Symbol  Definition Default Value
N the number of players/clients 1001
T # of mini-batches per client 10
C the recruitment budget per round 500
c the parameter for stochastic MG 1,10
v the cutoff value 50
M the historical length 5
S the size of strategy space 2
B the weight for standard MG 1
n the coefficient for cost function 1
T the total number of training rounds 100

We conduct theoretical analysis on the advantages for
joining a coalition in terms of winning probability (i.e., stay-
ing in the minority side). For completeness, we discuss two
cases: (1) suppose that there are IV, clients joining coalitions,
where N, /2 clients choose cooperated strategies and others
choose defected strategies; (2) the residual N — N, clients
who are not in any coalition will make the random decision.
Then we have the following proposition.

Proposition 4. Let p. and p,,. denote the winning possibility for
clients in the coalitions and not in any coalition, respectively.
Then we have the improvement on winning probability for join-
ing a coalition as:

1

< c nc§12~
oN—N,) PP

27

Proof. The proof can be found in Appendix E, available in
the online supplemental material. ]

For the example in Fig. 6, when the three clients make
random choice, the client not in a coalition can never be a
minority (e.g., C). When they join a coalition (e.g., A or B),
the winning probability increases to 1/2.

It is worth discussing other related approaches for the
formulation of coalitions. The recursive core method is
applicable for the analysis of the dynamics of coalition
formation while taking externalities into account [44],
[45], [46]. As externalities are not considered in our work,
the recursive core is not applicable for our analysis. For
forming coalitions, some works generated client prefer-
ence list over all possible coalitions and then ordered
them based on preferences such as [47]. However, decen-
tralization introduces significant communication over-
heads, which may increase the complexity and fail to
achieve the optimality. Considering this, some works pro-
posed to design centralized coalition formation mecha-
nisms [42], [48], which are simpler and more efficient for
execution.

8 PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to
evaluate the performance of our proposed MG-based cli-
ent participation decision algorithms for federated
learning.
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8.1 Experimental Settings

In our experiments, we use two datasets for evaluation,
including the MNIST digit recognition dataset [49] and
the CIFAR-10 image classification dataset [50]. We simu-
late a federated learning system that contains one parame-
ter server and N clients. The parameter server is
responsible for aggregating updated parameters from
cooperated clients and broadcast the winning information
to all clients. In default, there are 1001 clients in the sys-
tem and each client conducts the model training indepen-
dently. Based on the updated model parameters and
winning information, each client iteratively decides
whether to participate in the current training round or
not. That is, each client needs to choose one strategy from
“cooperated” or “defected” in each model training round.
Table 4 lists the key parameters with corresponding val-
ues used in our experiments.

To evaluate the performance of our client participation
decision algorithms, we use random decision algorithm and
optimal decision algorithm as the baselines. All the com-
pared algorithms are listed as below:

o Standard MG (Standard MG-based client participa-
tion decision algorithm) proposed in Section 5.

e  Stochastic MG (Stochastic MG-based client participa-
tion decision algorithm) proposed in Section 6.

o  Coalition MG (Coalition MG-based client participa-
tion decision algorithm) proposed in Section 7.

e Random Decision, in which each client randomly
makes the cooperated or defected participation deci-
sion with equal probability [20].

e  Optimal Decision (FedAvg), in which clients’ participa-
tion decisions are made by the coordination server
optimally such as FedAvg [3].

The evaluation metrics include the attendance, volatility,

utility, and model accuracy. In detail, we have

e  Attendance, which is the collective sum of the differ-
ence in the crowd of the two sides, the cooperated
side and the defected side. A larger attendance
means a bigger difference between the crowd of the
two sides, and vice versa. The formal definition can
be referred in Eq. (11).

e Volatility, which describes the fluctuation around
the mean attendance (i.e., cut-off value). The vola-
tility metric can be regarded as a measure of the
quality of cooperation in the game. A smaller value
of the volatility means a high quality of cooperation
in the game, ie., a better performance can be
achieved. On the contrary, a larger value of the vol-
atility indicates that players tend to be disordered
in the game. The volatility can be calculated accord-
ing to Eq. (16).

e Utility, which can be calculated as the received
reward from the PS minus the training cost for each
client. In the formulated game, each client aims to
maximize its own utility. The calculation formula for
the client utility can be obtained with Eq. (5).

e  Model accuracy, which is verified on two datasets.
The MNIST dataset contains 60,000 grayscale images
of handwritten digits from 1 to 10 [49]. The CIFAR-
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Fig. 7. The ratio of cooperated clients versus the FL training round.

10 dataset consists of 60,000 colour images in 10 clas-
ses, with 6,000 images per class [50]. Both datasets
are divided into two sets: training set and test set.
The training set includes 50,000 randomly selected
images and the rest 10,000 images are used for
testing.

We compare how these metrics are affected by the sys-

tem parameters under different algorithms.

8.2 Performance Comparison
8.2.1 Attendance

Fig. 7 presents the ratio of cooperated clients over the total
number of clients versus the FL training round. Given that
the budget from the PS can at most incentivize ¥ = 50 cli-
ents (50% cooperators in the FL system). From the results,
the coalition MG scheme can achieve a similar perfor-
mance as that of the optimal decision. While for other
schemes, more than 50% cooperators might exist in the FL
system. That is, some cooperators might receive a nega-
tive utility, which is unprofitable for these clients. The sto-
chastic MG scheme can achieve better performance
compared to that of the standard MG scheme or the random
decision scheme. Specifically, with the FL. model training
process, we have the ratio of cooperated clients approach-
ing the optimal value 0.5. Fig. 7b illustrates the ratio of
cooperated clients versus the FL training round when ¢ =
10. We find that the stochastic MG scheme cannot easily
approach the optimal value. This is due to a higher explo-
ration probability for the case with ¢ = 10 compared to the
case with ¢ = 1.
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Fig. 8. The attendance versus the FL training round.

Fig. 8 illustrates the attendance versus the FL training
round. Again, we find that the coalition MG scheme can
achieve performance close to the optimal value. For the sto-
chastic MG scheme, we have the attendance changing from
a large number to a number close to zero. This implies that
the stochastic MG scheme can help clients keep achieving a
non-negative reward.

8.2.2 Volatility

We also show the system volatility in different experimental
settings as shown in Fig. 9. Again, we find that the coalition
MG scheme can achieve the minimum system volatility
among all five schemes. While the stochastic MG scheme can
achieve a lower volatility compared to the standard MG
scheme or the random decision. The stochastic MG scheme
and the coalition MG scheme can reduce the volatility by
51%-100% compared to other baselines.

8.2.3 Utility

Fig. 10 shows the CDF of client utility over the FL training
process. Recall that a negative utility will reduce motivation
to participate in FL model training, therefore, a non-nega-
tive utility is preferred. For the coalition MG scheme and the
optimal decision, we find that the clients will receive a non-
negative utility from the start to the end of training. For the
stochastic MG scheme, we have the CDF curve close to the
optimal one, especially for the case with ¢ = 1. While for the
standard MG scheme and the random decision, the client util-
ity is negative with a high probability. The stochastic MG
scheme and the coalition MG scheme can improve the utility
by 39%-48% compared to other baselines.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on April 23,2022 at 23:52:45 UTC from IEEE Xplore. Restrictions apply.



HU ET AL.: INCENTIVE-AWARE AUTONOMOUS CLIENT PARTICIPATION IN FEDERATED LEARNING

80 M optimal decision IlMcoalition MG
Bl standard MG~ I random decision
[stochastic MG

Iml IH

The parameter ¢

Volatility
B (o))
o o

N
o

Fig. 9. The system volatility versus different parameter c.

—¥—optimal decision
—t+—random decision
standard MG
—A—stochastic MG
0.6 —©—coalition MG

0.8r

CDF

0.4r

0.2

2 15 -1 -05 0 0.5 1 1.5
client utility
@ec=1

—¥—optimal decision
08l —+—random decision
standard MG
—A—stochastic MG
0.6 (| —©—coalition MG

CDF

0.4r

0.2

0 S~ iy X — ‘

2 -15 -1 -05 0 0.5 1 1.5
client utility
(b) c=10

Fig. 10. The CDF of client utility over the FL training process.

8.2.4 Model Inference Accuracy

Fig. 11 demonstrates the cumulative client utility versus the
FL model accuracy on MNIST and CIFAR-10 datasets. As
the progress of FL training, the cumulative utility increases
with the model accuracy. However, the increasing rate is
different. Our MG-based distributed algorithms outperform
the state-of-the-art active Fed Avg algorithm. For time-vary-
ing client participation, the stochastic MG scheme can
achieve the highest expectation on utility due to its stochas-
tic decision-making design, which can be referred in Sec-
tion 6. While the coalition MG and standard MG schemes can
also achieve superior performance compared to the FedAvg
solution. The system scalability for the standard MG scheme
is slightly lower than that of the stochastic MG scheme, due
to the unsettled attendance volatility problem. While for the
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coalition MG scheme, as the coalition is unchanged with
training, it cannot get the best performance as well. Without
regard to utility, the accuracy of all schemes approach the
optimal model accuracy with the training progress.

9 CONCLUSION

This paper formulated a minority game (MG) model of
autonomous client participation decision for federated
learning. We first proposed an MG-based framework for
autonomous client participation problem. We found that
the performance cannot be continuously improved with the
evolutionary training process in federated learning. Facing
this challenge, we then proposed an extended MG-based
algorithm, namely, stochastic MG-based decision, where cli-
ents gradually change their model contribution level in a
stochastic manner. Besides, we also observed that clients
can cooperate with each other to improve the possibility of
taking the winner action. By taking competition and cooper-
ation among clients into consideration, we further proposed
a coalition MG-based participation decision algorithm. The
results indicate that the stochastic MG-based algorithm and
the coalition MG-based algorithm can improve the utility
by 39%-48% and reduce the volatility by 51%-100% com-
pared to other baselines. Moreover, the FL. model accuracy
achieved by our scheme is comparable to that achieved by
centralized algorithms. As the future work, we plan to
investigate the extension of our MG-based algorithms to
scenarios with multiple federated learning tasks.
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