
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Accelerating Federated Learning via Parallel
Servers: A Theoretically Guaranteed Approach

Xuezheng Liu , Zhicong Zhong, Yipeng Zhou , Member, IEEE, Di Wu , Senior Member, IEEE, Xu Chen ,

Min Chen , Fellow, IEEE, and Quan Z. Sheng , Member, IEEE

Abstract— With the growth of participating clients, the cen-
tralized parameter server (PS) will seriously limit the scale
and efficiency of Federated Learning (FL). A straightforward
approach to scale up the FL system is to construct a Parallel
FL (PFL) system with multiple parallel PSes. However, it is
unclear whether PFL can really accelerate FL or reduce the
training time of FL. Even if the answer is yes, it is non-
trivial to design a highly efficient parameter average algorithm
for a PFL system. In this paper, we propose a completely
parallelizable FL algorithm called P-FedAvg under the PFL
architecture. P-FedAvg extends the well-known FedAvg algorithm
by allowing multiple PSes to cooperate and train a learning
model together. In P-FedAvg, each PS is only responsible for
a fraction of total clients, but PSes can mix model parameters
in a dedicatedly designed way so that the FL model can well
converge. Different from heuristic-based algorithms, P-FedAvg
is with theoretical guarantees. To be rigorous, we theoretically
analyze the convergence rate of P-FedAvg in terms of the number
of conducted iterations, the communication cost of each global
iteration and the optimal weights for each PS to mix parameters
with its neighbors. Based on theoretical analysis, we conduct a
case study on five typical overlay topolgoies formed by PSes to
further examine the communication efficiency under different
topologies, and investigate how the overlay topology affects
the convergence rate, communication cost and robustness of a
PFL system. Lastly, we perform extensive experiments with real
datasets to verify our analysis and demonstrate that P-FedAvg

Manuscript received August 17, 2021; revised December 19, 2021; accepted
March 29, 2022; approved by IEEE/ACM TRANSACTIONS ON NETWORKING

Editor G. Joshi. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant U1911201 and Grant U2001209, in part
by the Science and Technology Planning Project of Guangdong Province
under Grant 2021A0505110008, in part by the Program for Guangdong
Introducing Innovative and Entrepreneurial Teams under Grant 2017ZT07 ×
355, and in part by the Pearl River Talent Recruitment Program under
Grant 2017GC010465. This is an extended version of a paper that appeared
in the IEEE International Conference on Computer Communications (INFO-
COM 2021) [DOI: 10.1109/INFOCOM42981.2021.9488877]. (Corresponding
author: Di Wu.)

Xuezheng Liu, Di Wu, and Xu Chen are with the School of Computer
Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China,
and also with the Guangdong Key Laboratory of Big Data Analysis and
Processing, Guangzhou 510006, China (e-mail: lxuezh@mail2.sysu.edu.cn;
wudi27@mail.sysu.edu.cn; chenxu35@mail.sysu.edu.cn).

Zhicong Zhong is with the Department of Computer Science and Engineer-
ing, Chinese University of Hong Kong, Hong Kong 999077, China (e-mail:
zhiczhong3@mail2.sysu.edu.cn).

Yipeng Zhou and Quan Z. Sheng are with the Faculty of Science and Engi-
neering, School of Computing, Macquarie University, Sydney, NSW 2109,
Australia (e-mail: yipeng.zhou@mq.edu.au; michael.sheng@mq.edu.au).

Min Chen is with the School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China
(e-mail: minchen@ieee.org).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNET.2022.3168939, provided by the authors.

Digital Object Identifier 10.1109/TNET.2022.3168939

can significantly speed up FL than traditional FedAvg and other
competitive baselines. We believe that our work can help to lay
a theoretical foundation for building more efficient PFL systems.

Index Terms— Parallel federated learning, convergence rate,
network topology, mixing matrix.

I. INTRODUCTION

THE past decade has witnessed the tremendous success
achieved by machine learning. However, an arising con-

cern threatening the advances of machine learning is the poten-
tial leakage of user privacy because data samples collected
to train machine learning models may contain end users’
sensitive and confidential information [2]–[4]. To reconcile the
concern on data privacy leakage, the Federated Learning (FL)
framework is devised. In a typical FL system, a centralized
parameter server (PS) is deployed to coordinate the learning
process for a number of decentralized clients. Instead of
collecting original data samples from clients, only interme-
diate computations (e.g., model parameters) are gathered from
clients via the Internet. To facilitate the collaboration of mul-
tiple clients, various model average algorithms are designed,
such as the FedAvg algorithm [5].

In vanilla FL, a single centralized PS is responsible for
coordinating clients. For a large-scale FL system, it turns
out that the communication between multiple decentralized
clients and the single PS would be the bottleneck and the
learning process can be retarded considerably due to the
following two reasons [6], [7]. Firstly, for clients located in
different geographic areas, it is difficult to establish a fast
network to connect all of them with a single PS. Secondly,
the communication capacity of a single PS is limited while
the client population can be a huge number [8]. Thereby, the
single PS can only interact with a small portion of all clients in
each global iteration, and hence the overall learning efficiency
can be low.

To overcome the bottleneck of a single PS in FL, a straight-
forward solution is to build a parallel FL (PFL) system by
deploying multiple decentralized and parallel PSes in the
system. Fig. 1 shows a simple PFL system with clients
distributed in three cities. By deploying three PSes such as
edge servers in different cities, the PFL system can cover all
clients completely and exclusively. Meanwhile, PSes exchange
model parameters with each other so that the model can finally
converge. However, constructing an efficient PFL faces quite
a few challenges: 1) In theory, it is unclear whether PFL will

1558-2566 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on May 10,2022 at 21:03:44 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/INFOCOM42981.2021.9488877
https://orcid.org/0000-0003-1533-0865
https://orcid.org/0000-0002-9433-7725
https://orcid.org/0000-0001-9943-6020
https://orcid.org/0000-0003-1242-0718
https://orcid.org/0000-0002-0960-4447
https://orcid.org/0000-0002-3326-4147

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 1. A simple PFL system with three PSes located in three different cities
to serve their clients.

converge or lower the convergence rate than the traditional
FL; 2) Even if PFL can converge, a highly efficient model
average algorithm is still unknown for PFL; 3) To speed up the
convergence, what is the optimal network topology to connect
these PSes? 4) How should a PS mix parameters exchanged
with its neighbor PSes?

In this paper, we propose a parallel FL algorithm called
P-FedAvg for the PFL system, which is an extension of the
FedAvg algorithm [1]. 1 The P-FedAvg algorithm works as
follows. Each client conducts a number of local iterations
before its model parameters are uploaded to its PS. After
collecting model parameters from selected clients, each PS
conducts a round of global iteration by aggregating model
parameters uploaded from its clients and then mixing model
parameters with its neighbors. Then, each PS distributes the
mixed model parameters to its covered clients to kick off a
new round of global iteration.

To prove the feasibility of PFL, we formally prove the
convergence of P-FedAvg in terms of the number of iterations.
By taking the communication time cost of each global iteration
into account, we prove that PFL can accelerate FL or reduce
the training time of FL when communication is the bottleneck
of the FL system. The reason lies in that our method can
distribute the communication load of a single PS in traditional
FL to multiple parallel PSes in PFL. Furthermore, we continue
to optimize the weights for PSes to mix their parameters with
neighbor PSes so as to maximize the final model accuracy.
We also explore how the overlay topology connecting PSes
affects the convergence rate, the system robustness and the
communication cost through case study with five typical over-
lay topologies. Finally, extensive experiments are conducted by
using the MNIST, FEMNIST [9] and CIFAR10 [10] datasets,
and the experimental results demonstrate that P-FedAvg can
significantly outperform the original FedAvg and other com-
petitive baselines.

The rest of the paper is organized as follows. The related
work is discussed in Sec. II. The P-FedAvg algorithm is
designed in Sec. III. Its convergence rates are derived in
Sec. IV. Its communication cost is analyzed in Sec. V. The
influence of the overlay topology and the algorithm to optimize

1Our initial work has been published in IEEE INFOCOM 2021. The current
version has significantly extended our initial work by completing the proof
of theorems, conducting analysis of communication cost, revising case study
and extending experiments.

the mixing matrix are presented in Sec. VI. The experiments
are reported in Sec. VII before our paper is concluded in
Sec. VIII.

II. RELATED WORK

In this section, we briefly review the literature related to
our study, including federated learning, decentralized parallel
learning, and communications in FL.

A. Federated Learning

The FL framework was originally proposed by [5] to
preserve privacy for users without uploading data samples.
However, no theoretical results on the effectiveness of FedAvg
were provided. Later, Stich [11] and Yu et al. [12] theoret-
ically derived the convergence rates of FedAvg for convex
and non-convex loss functions respectively, by assuming iid
samples and full participation mode. However, it is more
common that samples on FL clients are non-iid. In light of
this, the convergence rate of FedAvg with non-iid samples
was studied in [13]–[16]. Since clients need to communicate
with the PS via the Internet, a number of works studied how to
improve the convergence rate of FedAvg with heterogeneous
and limited resources [17]–[19]. For most previous works,
they commonly assumed that there existed a single centralized
PS, which was responsible for the communication with all
clients. The bottleneck caused by the single PS in FL has
been largely overlooked by these works.

B. Decentralized Parallel Learning

To overcome the shortcoming of a single PS, decentralized
parallel learning (e.g., distributed SGD) has been extensively
studied in recent years. In the distributed SGD framework,
multiple workers execute computation and communication
tasks independently. Lian et al. [7] proposed a synchronized
decentralized parallel SGD algorithm, in which all workers
computed local gradients in parallel and then exchanged gradi-
ents with neighbors synchronously, and later proposed an asyn-
chronous distributed SGD algorithm that can achieve a faster
convergence rate by assuming iid samples in [20]. Wang and
Joshi [21] extended the analysis of the above distributed SGD
algorithm by allowing each client to execute multiple iterations
before synchronization. The convergence rate analysis with
non-iid samples was provided in [22]. Koloskova et al. [23]
investigated the relation between the convergence rate of
decentralized SGD algorithms and the connectivity of the
graph formed by workers. The above algorithms are applicable
for a computing cluster in which workers can communicate
with each other efficiently. However, due to the unreliable
client-to-client communication, the communication overhead
is too high if all FL clients communicate with each other via
the Internet.

C. Communications in FL

Vanhaesebrouck et al. [6] pointed out that it is almost
impossible to deploy an always-on reliable PS in practice.
Communication congestion occurs frequently if there is a

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on May 10,2022 at 21:03:44 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: ACCELERATING FL VIA PARALLEL SERVERS: THEORETICALLY GUARANTEED APPROACH 3

single PS in FL [7]. Some previous works studied how to
reduce communication traffic of the PS in FL. Li et al. [24]
proposed a gradient sparsification technique to reduce the
size of transmitted data. Reisizadeh et al. [25] synthetically
adopted methods of quantized message-passing, periodic aver-
aging and partial participation to address the communications
and scalability challenges in FL. Liu et al. [26] proposed
a hierarchical FL, in which a three-level tree was formed
among PSes and clients. However, such kind of architecture
was not flexible and the root node was still a communication
bottleneck. Lian et al. [7], [20] showed that the decentralized
learning algorithms can outperform the centralized algorithms
when communication conditions were poor. Wang et al. [27]
develops a network-aware distributed learning methodology to
improve network resource utilization across a network of fog
devices.

Different from these works, our contribution lies in propos-
ing a flexible PFL framework that can distribute the commu-
nication traffic among multiple PSes. In addition, theoretical
analysis is provided to guarantee fast convergence of PFL.

III. DESIGN OF PARALLEL FL ALGORITHM

In this section, we first introduce the system model of PFL
and then describe the design of parallel learning algorithm
(namely, P-FedAvg) for PFL.

A. System Model of PFL

In a parallel FL system, suppose that there are M PSes.
For PS i, it covers a set of clients denoted by Ni with
cardinality Ni. Meanwhile, N = ∪M

i=1Ni and Ni ∩ Ni� = φ.
The M PSes are connected, and the formed topology can be
captured by a matrix L. The dimension of L is M ×M . If PS
i and PS i� are connected, we have Lii� = 1. 2 Otherwise
Lii� = 0. Note that we only consider an undirected scenario
which implies that Lii� = Li�i.

Data samples are distributed on clients. For client j, it owns
a set of samples, Dj . The objective of these clients is to train
a common machine learning model which can be expressed
by a loss function f̃(x). Here, x with dimension d is the
set of parameters to be determined by the learning algorithm.
Formally, f̃(x) can be defined by samples on clients as
follows:

f̃(x) =
M∑
i=1

∑
j∈Ni

pj f̃j(x). (1)

Here, f̃j is the portion of the loss function contributed by
client j, f̃j : R

d → R, ∀j ∈ N , pj = Dj�
M
i=1
�

j∈Ni
Dj

,

Dj is the cardinality of Dj . It can be defined as f̃j(x) =
Eξj∈Dj f̃(x; ξj), ∀j ∈ N . f̃(x; ξj) is the loss function
defined with a single sample ξj . The learning objective is
to find x∗ that can achieve the minimized loss function,
i.e., f̃∗ := f̃(x∗) = min f̃(x). If fj(x) = MNipj f̃j(x), f̃(x)

2In our study, Lii = 1.

can be re-defined by

f(x) =
M∑
i=1

1
M

∑
j∈Ni

1
Ni

fj(x). (2)

Assuming that M , Ni and pj are all constant in the process
of training, minimizing f and f̃ are equivalent. Note that we
will use fj as the loss function contributed by client j in the
following.

As described in Fig. 1, the parallel FL works as follows:
1) Each PS i distributes the set of model parameters 3 x

to a number of selected clients in Ni to start a round of
global iteration.

2) Each client conducts E rounds of local iterations and
returns the updated x to its PS.

3) Each PS i aggregates model parameters returned from
its clients, and then mixes the model parameters with its
neighbor PSes.

4) If the termination conditions are not satisfied, go back
to Step 1.

B. P-FedAvg Algorithm

We first define xj as the parameter vector maintained by
client j. The intermediate parameter vector vi = 1

Ki

∑
j∈Ki

xj

for PS i represents the model parameters obtained by aggre-
gating parameters from clients in Ki with cardinality Ki. xi is
the parameter vector after exchanging intermediate parameter
vectors between PSes. We further define the mixing vector
wi = (wi1, wi2, . . . , wiM)T where wii� ≥ 0 with 1 ≤ i� ≤ M
and

∑M
i�=1 wii� = 1. wi represents the weights for PS i to

exchange model parameters with its neighbors. In other words,
if PS i exchanges its model parameters with its neighbors, xi

is updated as xi = Vwi where V = (v1, . . . ,vM). Similarly,
we define the mixing matrix W as W = (w1, . . . ,wM). W
can be determined based on the topology matrix L, which will
be further discussed later.

Let ∇f(x,B) denote the gradient of the loss function
obtained with the sample batch set B with cardinality B.
Specifically, it is ∇f(x,B) = 1

B

∑
∀ξ∈B ∇f(x, ξ) where

∇f(x, ξ) is the gradient of the loss function obtained with a
particular sample ξ. Let η denote the learning rate. By extend-
ing the FedAvg algorithm proposed in the seminal work [5],
we design the Parallel FedAvg (P-FedAvg) algorithm in
Alg. 1.

In Alg. 1, each client executes E rounds of local iterations
before its parameters are returned to PS. r is the index for
global iterations while tr is the index for local iterations. rE+
tr is the index for the total number of iterations including
both global and local iterations. Ki(t) implies that the selected
clients are different in round r for a fixed cardinality Ki.

In comparison with the original FedAvg algorithm, each PS
in P-FedAvg conducts FedAvg in parallel. Note that, to make
these PSes reach a consensus, in each round of global iteration,
each PS not only aggregates parameters from its covered
clients (i.e., line 8 in Alg. 1), but also exchanges model
parameters with its neighbors (i.e., line 10 in Alg. 1).

3x can be randomly generated for the first round of global iteration.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on May 10,2022 at 21:03:44 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

Algorithm 1 Parallel Federated Averaging (P-FedAvg).
Input: learning rate ηt, mixing matrix W, initialized parame-

ters x0, number of iterations of each round E
Output: model parameter x

Server(x0):
1: Initialize model parameter x with x0

2: for each round r = 1, 2, . . . , T
E do

3: for each PS i = 1..M parallel do
4: Ki = A random set of Ni selected by PS i
5: for each client j ∈ Ki(r) parallel do
6: xj = Client(xi)
7: end for
8: vi = 1

Ki

∑
j∈Ki(t)

xj

9: Exchange model parameters with neighbor PSes
10: xi = Vwi

11: end for
12: end for

Client(x):
13: for tr=1,2..,E do
14: B(tr) = A batch of samples selected from local data
15: x = x − ηrE+tr

1
|B|

∑
∀ξ∈B(tr) ∇f(x, ξ)

16: end for
17: return x

C. Communication Topology and Mixing Matrix

Intuitively, to make the P-FedAvg algorithm converge as
fast as possible, PSes should form a fully connected graph.
However, it is well known that the communication cost via
the Internet is expensive. This implies that it is impractical
to construct a fully connected graph for M PSes. Thus, it is
more reasonable to assume that M PSes form a connected
graph with a limited number of edges.

In this work, we assume that the topology formed by PSes
is fixed which is determined by system operators. Given the
topology matrix L, we have wii� > 0 only if Lii� = 1. Next
the problem is to determine the mixing matrix W based on L
so that the P-FedAvg algorithm can converge with the fastest
rate.

We defer the determination of W after the analysis of the
convergence rate. Here, we temporarily assume that W is
known so that we can derive the converge rate of P-FedAvg
first. Note that W is a doubly stochastic symmetric matrix
with W1 = 1, 1TW = 1T and W = WT .

IV. CONVERGENCE ANALYSIS

In this section, we provide the convergence analysis of
the P-FedAvg algorithm under non-iid data distribution. Our
analysis will show that the converge rate is determined by the
total number of conducted iterations, the number of PSes and
the mixing matrix W.

A. Notation and Definition

Let t denote the index of the total number of conducted
iterations, which implies that r =
 t

E � and tr = t mod E.

To facilitate our analysis, we define a number of variables as
follows. Based on vi(t) and xi(t), we define

v̄(t) =
1
M

M∑
i=1

vi(t), (3)

x̄(t) =
1
M

M∑
i=1

xi(t) =
M∑
i=1

∑
j∈Ki(t)

1
MKi

xj(t). (4)

In fact, v̄(t) and x̄(t) are virtual variables representing the
global consensus obtained by aggregating parameters across
all PSes. We use them to prove that each xi(t) will converge
to x̄(t) finally. For simplicity, we define the parameter matrix
after iteration t as

X(t) = [x1(t),x2(t), . . . ,xM (t)]. (5)

Similarly, the virtual parameter matrix is defined as

X̄(t) = [x̄(t), x̄(t), . . . , x̄(t)] = X(t)
1
M

11T . (6)

Here 11T represents a M × M matrix with all elements of
value 1.

To derive the evaluation of X(t), we define the gradient
of PS i as ∇fi(xi(t)) = 1

Ki

∑
j∈Ki(t)

∇f(xj(t),Bj) where
∇f(xj(t),Bj) is the gradient obtained with batch samples of
client j. The gradient matrix is denoted by

∂f(X(t)) = [∇f1(x1(t)),∇f2(x2(t)), . . . ,∇fM (xM (t))].
(7)

Let ηt be the learning rate at iteration t. From a logical
view, when t mod E �= 0, the update of client j’s parameters
would be xj(t) = xj(t − 1) − ηt∇f(xj(t),Bj). Otherwise if
t mod E = 0, the parameters will be aggregated. In summary,
the relationship between x and v can be expressed as:

V(t) = X(t − 1) − ηt∂f(X(t)), (8)

X(t) =

{
V(t) t mod E �= 0,

V(t)W t mod E = 0,
(9)

where W is the mixing matrix and V is the intermediate
computation before PSes exchange parameters with each other.

B. Assumptions

Similar to previous work [7], [13], [23], we make a few
necessary assumptions to facilitate our analysis.

Assumption 1: (L-smoothness) The loss function, fj :
R

d → R, j ∈ N , is differentiable and there exists a constant L
such that for all x,x� ∈ R

d: ∇fj(x,Dj)−∇fj(x�,Dj) ≤
L x − x� .

Assumption 2: (μ-convex) The loss function, fj : R
d →

R, ∀j ∈ N , is μ-convex which means that there exists a
constant μ such that for all x,x� ∈ R

d:fj(x) − fj(x�) + μ
2

x − x� 2≤ �∇fj(x,Dj), (x − x�)�.
Assumption 3: (Bounding Stochastic Gradient) For client j,

ξj(t) represents the data sampled from the local data of the
client j at time t. The stochastic gradients are uniformly
bounded by G: E ∇fj(xj(t), ξj(t)) 2≤ G2, ∀j ∈ N .

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on May 10,2022 at 21:03:44 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: ACCELERATING FL VIA PARALLEL SERVERS: THEORETICALLY GUARANTEED APPROACH 5

TABLE I

SUMMARY OF MAIN NOTATIONS

Assumption 4: (Bounding the variance) For client j, given
a parameter vector xj and a sample ξj randomly collected
from Dj , the variance of stochastic gradients is bounded by:
E ∇fj(xj ; ξj) −∇fj(xj ,Dj) 2≤ σ2

j , ∀j ∈ N .
Assumption 5: (Expected Consensus Rate) The mixing

matrix, W, is a symmetric stochastic matrix, i.e., WT = W,
1TW = 1T and W1 = 1. There exists a constant 0 < p ≤
1 such that ∀X ∈ R

d×M , XW − X 1
M 11T 2

F≤ (1 − p)
X − X 1

M 11T 2
F .

Here, X 1
M 11T is the global average parameter matrix

across all PSes, while XW is one step of iteration by exchang-
ing parameters between PSes. Assumption 5 guarantees that
the gap between X and X 1

M 11T becomes smaller through
one step iteration, and finally X converges to X 1

M 11T .
According to [28], 1−p is the spectral radius of the matrix

W − 1
M 11T . p is a critical parameter that will affect the

convergence rate significantly. W should be determined to
maximize p. More details will be discussed in the next section.

1) Non-iid Data Assumption: It is well known that the
sample distribution in FL is non-iid. Let f∗ and f∗

j , ∀j ∈ N
denote the minimum values of f and fj respectively.

Assumption 6: (Non-iid degree) There exists a constant Γ
that quantifies the degree of non-iid as follows: Γ = f∗ −∑M

i=1

∑
j∈Ni

1
MNi

f∗
j , where

∑M
i=1

∑
j∈Ni

qj = 1.

The non-iid degree Γ is originally proposed in [13] to
measure the distance between the minimum value of the
global loss function and the average minimum value of local
loss functions and has been widely used in existing studies
(e.g., [29]–[31]). If the sample distribution is iid, it implies
f∗ = f∗

j , ∀j and Γ goes to zero as the number of samples
grows. Otherwise, Γ > 0 captures the degree of heterogeneity
if the sample distribution is heterogeneous on clients.

C. Convergence Rates

In this section, we present the convergence rate analy-
sis of the P-FedAvg algorithm under both full and partial

participation modes. In addition, we will discuss the impli-
cations of the convergence rates by comparing them with that
of the centralized mode presented in the work [13].

1) Full Participation Mode: For the full participation mode,
each server i involves all clients in Ni as the selected clients in
the set Ki for each round of global iteration. In this scenario,
by leveraging the assumptions listed in the last subsection,
we can derive the convergence rate of P-FedAvg as below.

Theorem 1: In the full participation mode, if Assumptions 1
to 6 hold and let ηt = 4

μ(a+t) , a = max{16k, 2E}, k = L
μ ,

and the P-FedAvg algorithm will cease after T iterations, then

f(xavg(T)) − f∗

≤ μa3

T 3
 x̄(0) − x∗ 2 +

8(2a + T)
μT 2

(
8E2G2 + 6LΓ

+
64E2G2

p
(
2
p

+ 1) +
∑
j∈N

q2
j

σ2
j

Bj

)
, (10)

where xavg(T) = 1
ST

∑T
t=0 stx̄(t), ST =

∑T
t=0 st, st = (a +

t)2 and qj = 1
MNi

if j ∈ Ni.
In Theorem 1, we prove the convergence of xavg(T) which

is defined as the average of x̄(t) over T iterations. Meanwhile
Assumption 5 guarantees that xi(t) will converge to x̄(t) as
long as x̄(t) can converge. qj is the weight of client j. Through
comparing the convergence rate derived in Theorem 1 and the
convergence rate of the centralized scenario derived in the
work [13], we can observe that:

• The asymptotic convergence rate of P-FedAvg is

O
(

1
T

(
E2G2 + LΓ + E2G2

p2 + E2G2

p +
∑

j∈N q2
j

σ2
j

Bj

))
.

In comparison, the asymptotic conver-
gence rate of the FedAvg algorithm is

O
(

1
T

(
E2G2 + LΓ +

∑
j∈N q2

j
σ2

j

Bj

))
according to [13].

Apparently, the decentralized organization of PSes will
bring extra cost to the algorithm.

• For P-FedAvg, p is a crucial parameter that heavily
determines the convergence rate. If p can be regarded
as a constant, the convergence rate of P-FedAvg is
asymptotically the same as that of FedAvg. p is affected
by the topology matrix L and the mixing matrix W.
We will further investigate the algorithm to maximize p
in Sec. VI.

For a centralized FL, the communication expense for sup-
porting all users is very large. Although P-FedAvg has a
slower theoretical convergence rate, it could reduce the large
communication expense through decentralized PSes.

2) Partial Participation Mode: In practice, it is more com-
mon that only a portion of clients can be engaged in each
round of global iterations due to the limited communication
resource. Thus, we can further assume that each PS i randomly
selects Ki clients with replacement from the set Ni for a round
of global iteration.

Theorem 2: In the partial participation mode, if Assump-
tions 1 to 6 hold and let ηt = 4

μ(a+t) , a = max{16k, 2E},
k = L

μ and the P-FedAvg algorithm will cease after T

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on May 10,2022 at 21:03:44 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

iterations, then

f(xavg(T)) − f∗

≤ μa3

T 3
 x̄(0) − x∗ +

8(2a + T)
μT 2

(
8E2G2 + 6LΓ

+
64E2G2

p
(
2
p

+ 1) +
∑
j∈N

q2
j

σ2
j

Bj
+

M∑
i=1

4E2G2

M2Ki

)
, (11)

where xavg(T) = 1
ST

∑T
t=0 stx̄(t), ST =

∑T
t=0 st, st = (a +

t)2 and qj = 1
MNi

if j ∈ Ni.
The convergence rate in Theorem 2 is very similar to that in
Theorem 1. Through comparing the convergence rate under
partial participation in Theorem 2 with that of the centralized
FedAvg in [13], we can observe that:

• For simplicity, let Λ = E2G2 + LΓ +
∑

j∈N q2
j

σ2
j

Bj
.

The asymptotic convergence rate of P-FedAvg is
O

(
1
T

(
Λ + E2G2

p2 + E2G2

p +
∑M

i=1
E2G2

M2Ki

))
. In compar-

ison, the asymptotic convergence rate of the FedAvg

algorithm is O
(

1
T

(
Λ + E2G2

K

))
according to [13].

• By temporarily ignoring the impact of p, the convergence
rate of P-FedAvg heavily depends on the value of Ki’s.
If

∑M
i=1 Ki = K , it is easy to verify that

∑M
i=1

E2G2

M2Ki
≥

E2G2

K . Thus the centralized algorithm can asymptotically
achieve a better convergence rate when selecting the same
number of clients.

• However, with M decentralized PSes, it is reasonable to
assume that

∑M
i=1 Ki � K . By abusing notations a

little bit, we assume K is the number of participating
clients in each global iteration in FedAvg. Therefore,
in practice P-FedAvg can possibly achieve a much better
convergence rate through involving more participating
clients.

Other than the potential benefit to improve the convergence
rate under the partial participation mode, it is more important
that P-FedAvg can distribute the communication traffic from
a single centralized PS to a number of decentralized PSes.
Hence, P-FedAvg is more efficient in communications and
robust because the collapse of a single PS will not affect the
entire system significantly.

D. Proof Outline

Due to limited space, we can only briefly sketch the proof
outline of Theorem 1 and Theorem 2 in our paper. 4

1) Proof Outline of Theorem 1: Since Assumption 5 has
guaranteed that xi(t) will converge to x̄(t), we only need to
prove that x̄(t) will converge to x∗ in P-FedAvg. We first
show the per step convergence as follows.

Lemma 1: (Per step speed of P-FedAvg) If Assumptions 1- 6
hold, and ηt = 4

μ(a+t) , a = max{16k, 2E}, k = L
μ , then

EB1(t)...BN (t) x̄(t + 1) − x∗
≤ (1 − μηt) x̄(t) − x∗ 2 +2

M∑
i=1

(
1
M

 x̄(t)

4The detailed proof is provided in submitted supplementary files.

−xi(t) 2 +
∑
j∈Ni

1
MNi

 xi(t) − xj(t) 2)

− 3
4
ηt(f(x̄(t)) − f∗) + η2

t (6LΓ +
M∑
i=1

∑
j∈Ni

σ2
j

M2N2
i Bj

)

(12)

Here B1(t), . . . ,BN(t) represent sample batches randomly
selected by clients for the training at iteration t. It is clear
from (12) that we need to further bound the terms

∑M
i=1

1
M

x̄(t) − x̄i(t) 2 and
∑M

i=1

∑
j∈Ni

1
MNi

 xj(t) − xi(t) 2).
Lemma 2: (Bounding the divergence among PSes) If

Assumption 3 and 5 hold, and ηt = 4
μ(a+t) , a =

max{16k, 2E}, k = L
μ , then

 X(t) − X̄(t) 2
F≤

32
p

(1 +
2
p
)E2MG2η2

t . (13)

Lemma 3: (Bounding the divergence between PSes and
clients) If Assumption 3 holds and ηt = 4

μ(a+t) , a =
max{16k, 2E}, k = L

μ , then

∑
j∈Ni

1
MNi

 xi(t) − xj(t) 2≤ 4
M

E2η2
t G2. (14)

We can substitute (13) and (14) into (12) to refine the bound
in Lemma 1. Then, we can finally prove the convergence rate
in Theorem 1 with the refined bound.

Let et = 3
4 (f(x̄(t)) − f∗) denote the gap between the loss

function at iteration t and the minimum loss function. We fur-

ther define A = 8E2G2(4+p
p)2+6LΓ+

∑M
i=1

∑
j∈Ni

σ2
j

M2N2
i Bj

and rt = x̄(t)− x∗ 2. Through (12), (13) and (14), we can
prove the following essential inequality: rt+1 ≤ (1−μηt)rt −
ηtet + η2

t A. Based on this inequality, we could recursively
derive that 1

ST

∑T−1
t=0 stet ≤ μa3

4ST
r0 + 2T (2a+T)

μST
A, where ST

and st are defined in Theorem 1. Then, through rearranging
the equation, we can obtain the convergence rate in Theorem 1.

2) Proof Outline of Theorem 2: To prove the convergence
rate in Theorem 2, we use a trick by assuming that all clients
will be activated by PSes to update. But in the aggregation
step, PSes just aggregate those selected clients. Although it is
different from the reality, the evolution of parameters on PSes
is identical to that in the original P-FedAvg algorithm.

We divide the measure of the convergence rate into two
parts: i) the convergence rate of all clients and ii) the deviation
between selected clients and all clients. The proof of the first
part is almost the same as the proof of Theorem 1, and thus
we focus on bounding the second part. To derive the bound,
we first show that the expectation of the average parameters
from selected clients is equal to that of all clients for every
global iteration.

Lemma 4: (Unbiased sampling scheme) If t is divisible by
E and PSes randomly select clients with replacement, then

EK(t)(x̄(t)) = v̄(t), (15)

where K(t) = ∪M
i=1Ki(t) represents all selected clients.

Then, we further prove that the parameter variance between
selected clients and all clients.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on May 10,2022 at 21:03:44 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: ACCELERATING FL VIA PARALLEL SERVERS: THEORETICALLY GUARANTEED APPROACH 7

TABLE II

THE COMMNICATION TRAFFIC OF P-FEDAVG AND FEDAVG IN
A COMMUNICATION ROUND

Lemma 5: (Bounding the variance of x̄(t)) If Assumption 3
holds and ηt = 4

μ(a+t) , a = max{16k, 2E}, k = L
μ , then

 x̄(t) − v̄(t) 2≤
M∑
i=1

4E2G2η2
t

M2Ki
. (16)

The proof of Theorem 2 can be completed by expanding
EB1(t)...Bn(t) x̄(t)−x∗ 2 as E v̄(t)−x∗ 2 +E x̄(t)−
v̄(t) 2 +2 E < x̄(t) − v̄(t), v̄(t) − x∗ >. Here < x,x� > is
the inner product of vectors x and x�.

The first term E v̄(t) − x∗ 2 can be bounded with
the similar method used to prove Theorem 1. According to
Lemma 4, we have 2E < x̄(t) − v̄(t), v̄(t) − x∗ >= 0.
According to Lemma 5, the term E x̄(t)−v̄(t) 2 is bounded
by

∑M
i=1

4E2G2η2
t

M2Ki
. Finally, by putting these bounds together,

we can derive the convergence rate in Theorem 2.

V. COMMUNICATION COST ANALYSIS

The convergence rate analysis presented in the last section
can only evaluate the learning performance in terms of the
number of iterations. However, the cost to conduct each
global iteration is very different between PFL and FL from
the communication perspective. In this section, we compare
the communication cost in terms of communication traffic
and communication time between PFL and FL to demonstrate
the advantages of P-FedAvg.

A. Communication Traffic Analysis

Firstly, we compare the total communication traffic of each
global iteration. Let s denote the model size. For FL, both
the uplink and downlink communication traffic is Ks in
each global iteration since the PS needs to exchange model
parameters with K participating clients. Hence, the total
incurred communication traffic size is 2Ks in each global
iteration by FL. In contrast, PS i only communicates with
Ki participating clients, and thus the incurred communication
traffic between PS i and its clients is 2Kis. Meanwhile, each
PS needs to mix its model parameters with neighbors which
incurs 2(Ki+Li0−1)s communication traffic in each global
iteration by PS i. Here Li denotes the neighbor PSes of PS i.

The comparison of communication traffic is presented in
Table II. We let

∑M
i=1 Ki = K to conduct a fair com-

parison. It is interesting to note that P-FedAvg incurs addi-
tional L − I0 s communication traffic. However, the peak
communication traffic of P-FedAvg is max1<i<=M 2(Ki +
Li0 − 1)s, which is much less than that of FedAvg as
long as K participating clients are scattered in different PSes.
It is not difficult to interpret this result. If clients from a
particular PS dominate participating clients in P-FedAvg, the

communication of this PS will become the bottleneck of the
PFL system such that PFL cannot outperform FL.

B. Communication Time Analysis

To compare PFL and FL in a finer granularity, we take the
topology influence into account by comparing the communi-
cation time cost.

We employ two classical network models (namely, edge-
capacitated and node-capacitated network models) to analyze
the communication time cost of FL and PFL. The difference
between them lies in the bottleneck of the communication net-
work. Edge-capacitated and node-capacitated network models
put restrictions on the capacity of overlay links and terminal
nodes, respectively [32]. Peer-to-Peer (P2P) Network is a
representative node-capacitated network. Typically, multicast
network is edge-capacitated because data replication is per-
formed on network nodes (e.g., routers).

P-FedAvg runs in a synchronous manner. Each PS halts until
receiving model parameters of adjacent PSes before entering
the next global iteration. We characterize the communication
time cost between PSes as follows. For any two adjacent PSes
i and i� in the overlay topology, the communication time cost is
defined as the time interval between the time point of starting
a global iteration for PS i and the time point of receiving
parameters from PS i by PS i�. The time interval consists of
two parts: 1) transmission delay, which is determined by the
model size and the communication capacity of links between
PSes and clients; 2) computation delay accounting for E local
iterations in clients. 5

Let dii� denote the consumed time for communication
between two PSes i and i� in a global iteration. Then,

dii� = max
j∈Ki

{Tij + EZj} + Tii� , (17)

where Tij (or Tii�) represents the transmission delay between
PS i and the participating client j (or PS i�), and Zj denotes
the computation delay of one local iteration by client j.
We assume that the computation time cost per local iteration
by client j is a random variable obeying Zj ∼ FZ .

We model Tij and Tii� as random variables to account for
the random communication capacity between PSes and clients.
Let bi denote the capacity of PS i to communicate with its
clients and bj denote the uplink capacity of client j, then the
time cost of transmitting a model with size s taken by PS
i and client j can be defined as Y 1

i = s
bi

and Y 2
j = s

bj
,

respectively. Without loss of generality, we assume that Y 1
i ∼

FY 1 and Y 2
j ∼ FY 2 are random variables. Then, Tij is a

random variable which is expressed as

Tij = KiY
1
i + Y 2

j .

Assume that each PS equally allocates the communication
capacity among its clients. Let Bi denote the communication
capacity between PS i and its neighbor PSes, which is inher-
ently random as well. Similarly, the PS equally allocates the

5To simplify our analysis, we ignore the time cost of the simple aggregation
operation in PSes.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on May 10,2022 at 21:03:44 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

communication capacity among its neighbor PSes. Then Tii�

is defined as

Tii� = s

/
min

{
Bi

Li0 − 1
,

Bi�

Li�0 − 1
, Aii�

}
, (18)

which is a random variable assumed to obey Tii� ∼ FT . Here
s is the model size. Li0 is the number of i’s neighbours
in matrix L and Aii� is the available bandwidth along the
link between PS i and i�. For node-capacitated networks, the
communication bottleneck lies in Bi

�Li�0−1 or Bi�
�Li��0−1 , while

for edge-capacitated networks, the communication bottleneck
lies in Aii� .

Based on dii� , the delay matrix is defined as D = (dii�).
The communication time cost is determined by the largest dii� .

Definition 5.1: Given the overlay network L associated
with the delay matrix D = (dii�), the time cost of each global
iteration is α = max∀(i,i�):Lii�=1 dii� .

Since the communication and computation are indepen-
dently conducted on different clients and PSes, we can
naturally assume that Y 1

i ’s, Y 2
j ’s, Zj’s and Tii� ’s are iid

(independent and identically distributed) random variables.
The expected time cost of each global iteration, i.e. α, can
be computed as follows.

Theorem 3: Let all the participating clients set K =⋃
1�i�M Ki and PSes communicate in the overlay network

L, we have

E [α] ≤ max
1�i�M

KiE

[
Y1

(M)

]
+ E

[
Y2

(K)

]
+ EE

[
Z(K)

]
+ E

[
T(�L−I�0)

]
, (19)

where Y1
(M) = max

1�i�M
Y 1

i , Y2
(K) = max

j∈K
Y 2

j , Z(K) = max
j∈K

Zj

and T(�L−I�0)
= max

∀(i,i�):Lii�=1
Tii� denoting the highest order

statistic of M , K , K and L − I0 iid random variables,
respectively [33].

The proof of Theorem 3 is straightforward. Since max is
a convex function, the expectation of α can be bounded by
the sum of expectations of Tij , Tii� and EZj . Tij measures
the time cost to communicate with client j by PS i, and thus
Tij = KiY

1
i + Y 2

j . The communication time cost of Tii� can
also be analyzed under two cases: edge-capacitated and node-
capacitated network models. Computation cost is the product
of local iterations E and Zj .

To explicitly demonstrate the benefit brought by P-FedAvg,
we define the speed-up metric SM of P-FedAvg over FedAvg
with M PSes as the expected time cost of each global iteration
of FedAvg over P-FedAvg.

SM

=
KE

[
Y1

(1)

]
+E

[
Y2

(K)

]
+EE

[
Z(K)

]
max

1�i�M
KiE

[
Y1

(M)

]
+E

[
Y2

(K)

]
+EE

[
Z(K)

]
+E

[
T(�L−I�0)

] .

(20)

Here each PS coordinates Ki clients with K =
∑M

i=1 Ki.
From Theorem 3 and Eq. (20), we have the following

insights:
1) From Eq. (20), we can observe that P-FedAvg can

significantly speed up FL if communication capacity of

Fig. 2. The speed-up of P-FedAvg by distributing K participating clients
among M = 5 PSes with different local iterations E on clients. β refers to
the ratio of computation to communication time cost.

the PS is the bottleneck. The advantage of P-FedAvg
lies in reducing the term KE

[
Y1

(1)

]
in FedAvg to the

term max
1�i�M

KiE

[
Y1

(M)

]
in P-FedAvg. If KE

[
Y1

(1)

]
dominates the time cost of FedAvg, P-FedAvg can speed
up FL by a factor of K

max Ki
. However, if the bottleneck

lies in clients, e.g., the time cost is dominated by the
computation cost EE

[
Z(K)

]
, P-FedAvg cannot really

speed up FL.
2) If participating clients are dominated by clients from

a particular PS, P-FedAvg cannot really accelerate the
convergence since maxKi ≈ K and P-FedAvg con-
sumes additional E

[
T(�L−I�0)

]
time to mix parameters

with other PSes.
3) It is worth mentioning the difference between

edge-capacitated networks and node-capacitated
networks. For edge-capacitated networks, adding
more links in L is highly likely to reduce the
communication time cost E

[
T(�L−I�0)

]
. In contrast,

for node-capacitated networks, the communication
time cost could be inflated if adding more links since
both Bi

�Li�0−1 and Bi�
�Li��0−1 in Tii� can be reduced

with denser connections. This result indicates the
complication to optimize PFL in practice. From
Theorems 1 and 2, the convergence rate is higher if the
connection is denser because p is larger. Whereas, the
convergence rate analysis in Theorems 1 and 2 ignores
the communication cost, which however increases with
more links in the overlay network L.

C. Runtime Analysis

According to our analysis, P-FedAvg can significantly out-
perform FedAvg when communication capacity is the system
bottleneck. To further illustrate this point, we investigate how
the speed-up metric SM defined in Eq. (20) is affected by
system parameters. We numerically plot the change of SM

(computed according to Eq. (20)) in two scenarios in Fig. 2.
Here, we set Y 1

i , Y 2
j , Tii� , Zj ∼ Exponential(1) with mean

value equal to 1. To observe the influence of computation
capacity relative to communication capacity, we define β =
E [Zj]

/
E

[
Y 1

i

]
. We set M = 5 PSes, and each of them

coordinates K
M clients where K ranges from 50 to 1,000.

In Fig. 2(a), the value of SM becomes higher as the number
of clients in the system increases. The reason is that the

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on May 10,2022 at 21:03:44 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: ACCELERATING FL VIA PARALLEL SERVERS: THEORETICALLY GUARANTEED APPROACH 9

communication traffic becomes heavier with the increase of
client population. In Fig. 2(b), we tune the computation capac-
ity such that the ratio β of computation to communication
time cost ranges from 1 to 50. SM gradually diminishes with
the increase of β. The reason is that the computation time
cost becomes the bottleneck of the system with the increase
of β, while P-FedAvg can effectively speed up FL when
communication is the system bottleneck. It is worth noting
that SM is also affected by the parameter E. If E is smaller,
it implies that clients need to communicate more frequently
with the PS, and thus P-FedAvg can better speed up FL. But
no matter what the value of E is, we can always find cases in
which P-FedAvg can significantly speed up FL.

VI. IMPACTS OF PS OVERLAY TOPOLOGY

AND MIXING MATRIX

According to the results derived in the previous section,
p can heavily affect the convergence rates for both full and
partial participation modes. In this section, we proceed to
discuss the algorithm to maximize p given a topology matrix
L. Then, we conduct a case study with five specific scenarios
to illustrate how p is determined by L.

A. Optimization of Mixing Matrix

Recall that L describes the overlay topology formed by PSes
with Lii� = 1 if PS i is connected with PS i� while W is
the mixing matrix which is constructed based on L. In other
words, we can assign wii� > 0 only if Lii�=1. Otherwise,
wii� must be 0. On the other hand, W is a set of important
parameters in the P-FedAvg algorithm because W determines
the value of p.

In fact, maximizing p for a general case is a non-convex
optimization problem. Fortunately, we study an undirected
network topology, which implies that L is a symmetric matrix.
Therefore, we let W be symmetric matrix as well to simplify
our analysis. At the same time, W must be a stochastic matrix
to make sure that PSes can reach a consensus after a certain
number of iterations.

Theorem 4: If W is a symmetric stochastic matrix, i.e.,
WT = W, 1TW = 1T and W1 = 1, we can let 1 − p =
W − 11T

M 2
2 such that Assumption 5 holds.

Proof: We prove this theorem briefly by assuming that X
is an arbitrary M × M matrix to further gain the insights to
construct efficient networks. Then

 XW − X
1
M

11T 2
F = (X − X

1
M

11T)W 2
F ,

= (X − X
1
M

11T)(W − 1
M

11T) 2
F ,

≤ X − X
1
M

11T 2
F W − 1

M
11T 2

2,

= (1 − p) X− X
1
M

11T 2
F .

From Theorem 4, we can conclude that maximizing p is
equivalent to minimizing W − 11T

M 2. The optimization
problem can be formally defined as follows:

minW W − 11T

M
2,

Fig. 3. The figure to show the topologies of complete, ring, 2d-torus, balanced
tree and barbell.

s.t. W = WT ,

W1 = 1,

wii� ≤ Lii� , ∀i, i� ∈ [1 . . .M].

Note that W − 11T

M 2≤ γ iff (W − 11T

M)T (W − 11T

M) �
γ2I, ∀γ ≥ 0. Thus, the above optimization problem could
be further converted to a semi-definite programming (SDP)
problem which is formally defined as follows:

min γ,

s.t. W = WT ,

−γI � (W − 11T

M
) � γI,

W1 = 1,

wii� ≤ Lii� , ∀i, i� ∈ [1 . . .M]. (21)

The SDP problem is similar to the Markov chain fastest mixing
problem [34], [35] and gossip matrix fastest convergence
problem [28], [36], which can be solved by the interior point
method [37]. It is worth mentioning that a similar result was
derived in [38], but the proposed approach based on Laplacian
matrix is based on the assumption that the weights contributed
by one’s neighbours are equal, which is not required in our
analysis.

B. Case Study

To answer how to construct efficient overlay networks to
connect PSes, we study five specific cases.

Figures 3(a)-3(e) show five topologies formed by PSes.
Each dot represents an PS and each edge indicates that two
connected PSes can communicate with each other. The five
cases are very popular and have been extensively investigated
by previous works. Therefore, we use them for our case study.

• Complete: Complete topology is a special case of mesh
topology, which provides redundant data paths between
nodes and is often used in large backbone networks to
ensure reliability. In Fig. 3(a), nodes are fully connected.

• 2d-Torus: Torus topology is also a commonly used
topology in parallel computer systems [39]. Nodes are
arranged in a high-dimensional linear array. As shown in

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on May 10,2022 at 21:03:44 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE III

THE COMPARISON UNDER DIFFERENT PS OVERLAY TOPOLOGIES WITH M PSES AND K PARTICIPATING CLIENTS

Fig. 3(b), PSes are connected to their nearest neighbors
in each axis, and the corresponding PSes on the opposite
side of the array are also connected.

• Ring: In the ring topology, each PS is connected with two
other PSes to form a ring as shown in Fig. 3(c).

• Balanced tree: In the balance tree topology, PSes are
arranged in a hierarchical manner, as shown in Fig. 3(d).

• Barbell: Barbell topology is commonly used to simulate
congestion control [40] and it consists of two cliques
(each with m1 nodes) connected by a path (m2 nodes).
Fig. 3(e) shows a barbell topology with m1=3 and m2=3.

Recall that the number of neighbor PSes of a particular PS
i is Li0 − 1. For the case study, we simply assign wii� =

1
max{�Li�0−1,�Li��0−1})+1 if Lii� = and i �= i�, and wii =
1 − ∑

i� �=i wii� . This assignment of wii� can ensure that W
satisfies Assumption 5 and it is easy to compute the value p
for each case [41]. The computed p is listed in Table III.

To examine the pros and cons of each topology, we compare
the performance of P-FedAvg in these topologies in Table III,
which are also explained as follows.

1) Comparison of Convergence Rates: According to The-
orems 1 and 2, the convergence rate of the P-FedAvg algo-
rithm has two terms absent from that of FedAvg, which are
O

(
E2G2

p2

)
and O

(∑M
i=1

E2G2

M2Ki

)
. To ease our comparison,

we name the former one as the Convergence to Consensus
(C2C) and the latter one as the Parallel Engagement (PE)
hereafter.

• Complete: Complete topology has the fastest convergence
rate because p = 1. For this case, the C2C term
O

(
1
T E2G2

)
is irrelevant to the number of PSes M .

• 2d-Torus: There is a tradeoff between the C2C term and
the PE term. The C2C term O

(
1
T M2E2G2

)
increases

with the square of the number of PSes M while the PE
term O

(∑M
i=1

E2G2

M2Ki

)
decreases because more PSes can

engage more clients into each round of iteration.
• Ring: It is obvious that the C2C term of the ring topology

is O
(

1
T M4E2G2

)
, and its convergence rate is low for a

PFL system with a large number of PSes.
• Balanced tree: For the balanced tree topology we can

also observe that the C2C term O
(

1
T M2E2G2

)
increases

with the number of PSes, though its growth rate with M
is much lower than that of ring.

• Barbell: It is notable that the C2C term of barbell is
O

(
1
T M9E2G2

)
indicating that its convergence rate will

be low with a large number of PSes.
2) Comparison of Communication Traffic: The communica-

tion traffic includes the communication traffic between PSes,

and between each PS and its clients. Supposing that N clients
are equally distributed across M PSes, the peak and total
communication traffic of different topologies in P-FedAvg are
listed in Table III, from which we can observe:

• The communication traffic of the complete topology is
the heaviest. Its peak communication traffic and the total
communication traffic are proportional to M and M2,
respectively. This result manifests that complete topology
may not be the best one in practice due to its heavy
communication traffic.

• Ring, 2d-torus and balanced tree have lighter com-
munication traffic because their sparser connections
between PSes. The peak communication traffic is only
proportional to O(K

M) indicating that they can effec-
tively improve the training efficiency if being deployed
properly.

• For the barbell topology, its communication traffic
depends on the value of m1 where 2m1 + m2 = M .
Since the peak communication traffic is proportional to
O(K

M + m1), its communication traffic is comparable to
that of 2d-torus, balanced tree and ring if m1 is small.
Otherwise, it is similar to complete topology.

3) Comparison of Communication Time: We further com-
pare the communication time cost of each topology by lever-
aging Theorem 3 and using a node-capacitated network model.
The comparison using edge-capacitated network model can be
conducted in a similar way.

We assume that clients and PSes are homogeneous in the
PFL system. The communication capacity of each client (or
PS) is b (or B) to simplify the comparison of the communi-
cation time cost.

From this comparison, we can find that the communication
time cost of the complete topology is the highest because of its
heavy communication traffic among PSes. The communication
time cost of each global iteration for ring, 2d-torus and bal-
anced tree is much lower. Again, the communication time cost
of the barbell topology depends on m1. If m1 approaches M ,
it is similiar to complete topology with heavy communication
time cost, otherwise if m1 approaches 0, its communication
time cost becomes low.

4) Comparison of Robustness: In reality, it is possible that
a PS may crash down and cannot provide aggregation service
any more or the links between a few PSes are disconnected.
A system is robust if it can still work when some PSes
leave the system. We define the disconnection tolerance as
the number of links that can be removed without making the
network disconnected. The disconnection tolerance of each
topology is listed in Table III.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on May 10,2022 at 21:03:44 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: ACCELERATING FL VIA PARALLEL SERVERS: THEORETICALLY GUARANTEED APPROACH 11

From the comparison of disconnection tolerance, we can
observe that complete topology is the most robust one,
in which PSes are still connected if a large portion of links
are removed from the system. 2d-torus is the second-best one
for tolerating the removal of links. PSes in 2d-torus are still
connected if at most 4 links are removed from the system.
Thus, 2d-torus is better than other topologies, which is still
connected if more than 2 links are removed.

In summary, the PS overlay topology design for a PFL
system should jointly consider convergence rate, communi-
cation traffic, communication time and robustness. System
designers should consider how to balance these factors. Based
on our case study, 2d-torus is the best topology for implement-
ing the PFL system achieving the best overall performance.
Dislike complete, 2d-torus will not incur significant commu-
nication traffic between PSes. Therefore, its communication
traffic and communication time cost are comparable to other
topologies. Meanwhile, its convergence rate in terms of the
number of iterations and its robustness are better than other
topologies.

VII. EXPERIMENTS

In this section, we conduct experiments to verify our theo-
retical analysis.

A. Experimental Settings

1) Datasets: We use three datasets for our experiments.
• MNIST [42] dataset, which contains 69,035 handwritten

digital images of 0-9, and the data is divided among
1000 clients. In order to simulate a non-iid setting, each
client can only own samples of only 2 digits.

• FEMNIST dataset is the federated version [43] of
EMNIST [9], which consists of 805,263 samples of
digits and English characters (62 classes in total). The
dataset is split among 3,550 unbalanced clients based
on character writers. The different writing styles across
clients guarantee the non-iid distribution of samples.

• CIFAR10 dataset [10], which consists of 60,000 color
images in 10 classes. We distribute the data among
200 clients in an non-iid manner where each client owns
images with only 2 classes.

2) Models: We implement a multi-layer perceptron (MLP)
to perform classification tasks on the MNIST. The MLP model
contains 1 hidden layer with 512 units. CNN models are
implemented to classify images in FEMNIST and CIFAR10.
The CNN model contains two layers followed by a pooling
layer and a final dense layer. The models we adopt are the
same as the one used in [43] and [42] for FEMNIST and
CIFAR10, respectively. The details of model parameters are
listed in Table IV.

We tune the algorithm hyperparameters through grid search
on different datasets. And we set the batch size for local
iterations as 32 when comparing with baseline algorithms. The
number of local iterations E is set as 20 for the models. The
learning rate is set as a decreasing function with the number
of iterations being ηt = η0

1+t/10 .

TABLE IV

MODEL DETAILS. THE AVERAGE COMPUTATION TIME IS OBTAINED ON
NVIDIA TESLA V100 FOR 100 ITERATIONS

3) Baseline Algorithms: We compare our algorithm with the
following baseline algorithms:

• FedAvg, which in fact is a special case of our P-FedAvg
when deploying a single PS in PFL [5]. In our experi-
ments, we set E = 20 and K = 36 in FedAvg.

• HierFAVG [44], which is a three-level FL training algo-
rithm. The root is a single PS and the leaves are
clients. The middle layer is constructed by a number of
intermediate servers. In each round, intermediate servers
activate K clients to perform E1 local iterations before
a partial aggregation. The root node performs a global
aggregation after every E2 partial aggregation. In our
experiments, to ensure the same number of local iterations
and activated clients, we use 9 intermediate servers and
set E1 = 10, E2 = 2 and K = 9.

• DPSGD [7], which takes all clients as PSes. Clients can
directly communicate with their neighbors to exchange
parameters. In each round, each client performs 20 local
iterations, and then exchanges model parameters with
neighbor clients.

4) Clients and PSes: In our experiments, we implement five
topologies. To conduct a fair comparison, we deploy 9 PSes for
PFL and each PS activates 4 clients for each global iteration.
Moreover, we consider heterogeneous computation resources
among clients, dynamic network connections between PS and
clients and different PS overlay network models. The settings
are summarized as follows:

• Heterogeneous Clients: we use GPU benchmarks data 6

to measure the relative difference of clients’ computation
performance. The reference computation time is obtained
by training models on NVIDIA Tesla V100 and for each
client the time is randomly expanded or reduced.

• Network Connections between PS and Clients: We use the
4G network traces in [45] to simulate network bandwidth
between PS and its clients. To communicate with multi-
ple clients simultaneously, orthogonal frequency-division
multiple access (OFDMA) is adopted and each OFDM
subcarrier is 15kHz.

• Network Connections between PSes: We generate the
overlay topology of PSes based on the method used
in [46] for simulating edge-capacitated (Géant) and
node-capacitated (Exodus) networks, respectively. In the
edge-capacitated network, the upload and download com-
munication capacity between each PS is 1Gbps while
the average communication capacity between PSes is
100Mbps. In contrast, for the node-capacitated network,
the capacity for upload and download between PSes is

6https://lambdalabs.com/gpu-benchmarks

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on May 10,2022 at 21:03:44 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 4. The comparison of model accuracy over the number of conducted
global iterations for P-FedAvg under different topologies.

100Mbps. The communication capacity between PSes is
820Mbps. Our settings are consistent with the measure-
ment results reported in [47].

B. Experimental Results

1) Evaluating Convergence Rates: In Theorems 1 and 2,
we have proved that p can significantly influence the conver-
gence rate of P-FedAvg. To verify this point, we implement
the P-FedAvg algorithm in five topologies to evaluate its con-
vergence rate in terms of the number of conducted iterations.
According to Assumption 5, the values of p are 1.0, 0.84, 0.29,
0.12 and 0.08 for the complete, 2d-torus, ring, balanced tree
and barbell topologies, respectively.

We conduct experiments on the MNIST and CIFAR10
datasets and the results are presented in Fig. 4. From the
experiment results, we can observe that the convergence rate
is different with the overlay network topology indicating that
p can influence the final model accuracy of FL. It is worth
noting that both complete topology and 2d-torus can achieve
faster convergence than other topologies. Barbell is the slowest
one and its model accuracy is much worse than that of other
topologies.

We compare the convergence rate of P-FedAvg with other
baselines in terms of the number of conducted iterations in
Fig. 5. We use the FEMNIST and CIFAR10 datasets for
this experiment, and adopt the 2d-torus and ring topology
for P-FedAvg and DPSGD, respectively. As we can see from
Fig. 5, the convergence rate of P-FedAvg is very close to that
of FedAvg. DPSGD is the worst one due to the following
reasons: 1) The data distributed on clients is non-iid and highly
divergent; 2) Each client only exchanges parameters with a few
number of adjacent clients (e.g., 2 in the ring topology) with
no aggregation in the PS. Thus its convergence rate is very
slow.

If algorithms are merely evaluated in terms of the number
of iterations, FedAvg is the best one because P-FedAvg and
other parallel algorithms consume additional cost to mix para-
meters on different PSes. However, P-FedAvg is only slightly
influenced since the gap between P-FedAvg and FedAvg is
very small when 2d-torus is adopted.

2) Evaluating Performance Over Time: In practice, it is
more reasonable to compare the performance of different
algorithms over the training time because time cost of each
global iteration can be various for different algorithms. There-
fore, we further compare P-FedAvg with other baselines in

Fig. 5. The comparison of convergence rate versus global iterations of
different algorithms.

Fig. 6. The comparison of model accuracy over training time for different
algorithms on FEMNIST and CIFAR10 under the node-capacitated network.

TABLE V

THE COMPARISON OF TIME COST (MILLISECOND) OF DIFFERENT

ALGORITHMS IN A GLOBAL ITERATION

Fig. 6. Again, we use the FEMNIST and CIFAR10 datasets
for this experiment, and adopt 2d-torus and ring topology
for P-FedAvg and DPSGD, respectively. In Fig. 6, x-axis
represents the consumed training time while y-axis represents
the model accuracy on the test dataset.

In Fig. 6, it is observed that P-FedAvg achieves the highest
model accuracy and the fastest convergence. The reason is
that P-FedAvg can effectively reduce the time cost of each
global iteration by distributing the communication traffic from
a centralized PS to multiple parallel PSes.

3) Evaluating Time Cost per Global Iteration: To further
demonstrate the advantage of P-FedAvg, we compare the time
cost of a global iteration for different algorithms in Table V.
For P-FedAvg and HierFAVG, we implement two kinds of
network models, namely edge-capacitated network (Géant)
and node-capacitated network (Exodus).

As we can see from Table V, the time cost of DPSGD is
the lowest. However, without a PS aggregating parameters,
the model accuracy of DPSGD is the worst. The time cost of
P-FedAvg is much lower than that of other algorithms for both
datasets under both kinds of networks because of its parallel
communication mode. Although its time cost is higher than
that of DPSGD, its convergence rate has been guaranteed by

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on May 10,2022 at 21:03:44 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: ACCELERATING FL VIA PARALLEL SERVERS: THEORETICALLY GUARANTEED APPROACH 13

Fig. 7. Training time for reaching the expected test accuracy (80%) of
P-FedAvg on the MNIST dataset under different network models.

our Theorems 1 and 2. and thus P-FedAvg can finally achieve
the highest model accuracy.

4) Evaluating Topologies: To evaluate the performance of
each topology, we conduct experiments to compare the con-
sumed time to reach the target model accuracy (80%) on the
MNIST dataset in order to explore which topology should
be adopted in practice. In Fig. 7(a), we vary the average
link capacity, i.e., A(i, i�), from 1Mbps to 100Mbps; while
in Fig. 7(b), the communication capacity of each PS is varied
from 1Mbps to 100Mbps.

From the results presented in Fig. 7(a) and Fig. 7(b), we can
observe that 2d-torus is almost the best in all cases that can
reach the target model accuracy with a low time cost, which
is consistent with our insights of the case study in Sec. VI.
It is worth mentioning that the complete topology performs
very well in the edge-capacitated network because its p value
is 1 and more links can always lower the communication time
cost in the edge-capacitated network as we have analyzed in
Theorem 3. However, the complete topology cannot be used
in node-capacitated networks due to too heavy communication
traffic. In contrast, barbell is always the worst one in all cases.
The p value of barbell is the lowest. The result implies that
the extremely low value of p can always severely compromise
the final model accuracy.

5) Evaluating Mixing Weights: We empirically study the
influence of the mixing matrix by using a randomly generated
topology according to the previous work [48]. We set the
sampling probability to 0.5 for each edge, and the average
degree of the generated matrix is 4. We compare three mixing
matrices: optimal, uniform and random. The optimal weights
are determined by (21). For uniform (or random), each PS
evenly (or randomly) allocates mixing weights among its
neighbors. Given the three mixing matrices, we can compute
their p values, which are 0.4036 for optimal, 0.2418 for
uniform and 0.0288 for random respectively. According to
our analysis, the convergence is faster if the p value is larger.
Therefore, the optimal one should be the best one achieving
the highest convergence rate.

We conduct experiments in Fig. 8 using the MNIST and
CIFAR10 datasets with batch size of 32. The results indeed
verify our analysis that the optimal one always achieves the
highest convergence rates on different datasets. In contrast,
the convergence rate of random is the worst one. Uniform is
a good sub-optimal choice, and its convergence performance
is rather close to that of optimal.

Fig. 8. Comparison of convergence rates with different mixing matrices.

VIII. CONCLUSION

To overcome the bottleneck of the centralized PS in tra-
ditional FL, we proposed the PFL framework by deploy-
ing a number of decentralized PSes with a newly designed
P-FedAvg algorithm. We proved the convergence rate of
P-FedAvg with non-iid samples under both full and partial
client participation modes. We also analyzed the communica-
tion traffic and the communication time cost in theory between
FL and PFL. The influence of overlay topology formed
by PSes on model accuracy was explored, and the optimal
mixing weights were determined through solving a convex
optimization problem to achieve the highest convergence rate.
Through a case study, we illustrated that PFL can significantly
accelerate the convergence rate, especially when the system
scales in terms of client population is large. In the end,
we conducted extensive experiments on MNIST, FEMNIST
and CIFAR10 datasets to verify our analysis. In the future,
we will study the influence of dynamic network topology on
the convergence rate by theoretical analysis and experiments.

REFERENCES

[1] Z. Zhong et al., “P-FedAvg: Parallelizing federated learning
with theoretical guarantees,” in Proc. IEEE Conf. Comput. Com-
mun. (INFOCOM), Vancouver, BC, Canada, May 2021, pp. 1–10, doi:
10.1109/INFOCOM42981.2021.9488877.

[2] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How
to backdoor federated learning,” in Proc. 23rd Int. Conf. Artif. Intell.
Statist. (AISTATS), Sicily, Italy, Aug. 2020, pp. 2938–2948.

[3] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: A client level perspective,” 2017, arXiv:1712.07557.

[4] A. Bhowmick, J. Duchi, J. Freudiger, G. Kapoor, and R. Rogers, “Pro-
tection against reconstruction and its applications in private federated
learning,” 2018, arXiv:1812.00984.

[5] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. 20th Int. Conf. Artif. Intell. Statist. (AISTATS), Fort
Lauderdale, FL, USA, Apr. 2017, pp. 1273–1282.

[6] P. Vanhaesebrouck, A. Bellet, and M. Tommasi, “Decentralized collab-
orative learning of personalized models over networks,” in Proc. 20th
Int. Conf. Artif. Intell. Statist. (AISTATS), Fort Lauderdale, FL, USA,
Apr. 2017, pp. 509–517.

[7] X. Lian, C. Zhang, H. Zhang, C. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? A case
study for decentralized parallel stochastic gradient descent,” in Proc.
Adv. Neural Inf. Process. Syst., Annu. Conf. Neural Inf. Process. Syst.,
Long Beach, CA, USA, Dec. 2017, pp. 5330–5340.

[8] T. Nishio and R. Yonetani, “Client selection for federated learning with
heterogeneous resources in mobile edge,” in Proc. ICC - IEEE Int. Conf.
Commun. (ICC), Shanghai, China, May 2019, pp. 1–7.

[9] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “EMNIST: Extending
MNIST to handwritten letters,” in Proc. Int. Joint Conf. Neural Netw.
(IJCNN), May 2017, pp. 2921–2926.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on May 10,2022 at 21:03:44 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/INFOCOM42981.2021.9488877

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

[10] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” Univ. Toronto, Toronto, Ontario, Tech. Rep. TR-
2009, 2009.

[11] S. U. Stich, “Local SGD converges fast and communicates little,” in
Proc. 7th Int. Conf. Learn. Represent. (ICLR), New Orleans, LA, USA,
May 2019, pp. 1–17.

[12] H. Yu, S. Yang, and S. Zhu, “Parallel restarted SGD with faster con-
vergence and less communication: Demystifying why model averaging
works for deep learning,” 2018, arXiv:1807.06629.

[13] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the con-
vergence of FedAvg on non-IID data,” in Proc. 8th Int. Conf. Learn.
Represent. (ICLR), Addis Ababa, Ethiopia, Apr. 2020, pp. 1–26.

[14] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in Proc. Mach.
Learn. Syst. (MLSys), Austin, TX, USA, Mar. 2020, pp. 429–450.

[15] A. Khaled, K. Mishchenko, and P. Richtárik, “First analysis of local GD
on heterogeneous data,” 2019, arXiv:1909.04715.

[16] Y. Huang et al., “Personalized cross-silo federated learning on non-
iid data,” in Proc. 35th AAAI Conf. Artif. Intell., AAAI, 33rd
Conf. Innov. Appl. Artif. Intell., IAAI, 11th Symp. Educ. Adv.
Artif. Intell. (EAAI), Feb. 2021, pp. 7865–7873. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/16960

[17] Y. Sun, S. Zhou, and D. Gündüz, “Energy-aware analog aggrega-
tion for federated learning with redundant data,” in Proc. IEEE
Int. Conf. Commun. (ICC), Dublin, Ireland, Jun. 2020, pp. 1–7, doi:
10.1109/ICC40277.2020.9148853.

[18] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning
on non-IID data with reinforcement learning,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Toronto, ON, Canada, Jul. 2020,
pp. 1698–1707.

[19] C. T. Dinh et al., “Federated learning over wireless networks:
Convergence analysis and resource allocation,” IEEE/ACM
Trans. Netw., vol. 29, no. 1, pp. 398–409, Feb. 2021, doi:
10.1109/TNET.2020.3035770.

[20] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized
parallel stochastic gradient descent,” in Proc. 35th Int. Conf. Mach.
Learn. (ICML), Stockholm, Sweden, Jul. 2018, pp. 3049–3058.

[21] J. Wang and G. Joshi, “Cooperative SGD: A unified framework for the
design and analysis of communication-efficient SGD algorithms,” 2018,
arXiv:1808.07576.

[22] J. Wang, A. Kumar Sahu, Z. Yang, G. Joshi, and S. Kar, “MATCHA:
Speeding up decentralized SGD via matching decomposition sampling,”
2019, arXiv:1905.09435.

[23] A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. U. Stich,
“A unified theory of decentralized SGD with changing topology and
local updates,” 2020, arXiv:2003.10422.

[24] S. Li, Q. Qi, J. Wang, H. Sun, Y. Li, and F. R. Yu, “GGS: General
gradient sparsification for federated learning in edge computing∗ ,” in
Proc. IEEE Int. Conf. Commun. (ICC), Dublin, Ireland, Jun. 2020,
pp. 1–7.

[25] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani,
“Fedpaq: A communication-efficient federated learning method with
periodic averaging and quantization,” in Proc. Int. Conf. Artif. Intell.
Statist., 2020, pp. 2021–2031.

[26] L. Liu, J. Zhang, S. H. Song, and K. B. Letaief, “Client-edge-cloud
hierarchical federated learning,” in Proc. IEEE Int. Conf. Commun.
(ICC), Dublin, Ireland, Jun. 2020, pp. 1–6.

[27] S. Wang, Y. Ruan, Y. Tu, S. Wagle, C. G. Brinton, and C. Joe-Wong,
“Network-aware optimization of distributed learning for fog computing,”
IEEE/ACM Trans. Netw., vol. 29, no. 5, pp. 2019–2032, Oct. 2021.

[28] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Syst. Control Lett., vol. 53, no. 1, pp. 65–78, 2004.

[29] M. Salehi and E. Hossain, “Federated learning in unreliable and
resource-constrained cellular wireless networks,” IEEE Trans. Commun.,
vol. 69, no. 8, pp. 5136–5151, Aug. 2021.

[30] L. Cui, X. Su, Y. Zhou, and Y. Pan, “Slashing communication traffic
in federated learning by transmitting clustered model updates,” IEEE
J. Sel. Areas Commun., vol. 39, no. 8, pp. 2572–2589, Aug. 2021.

[31] M. M. Amiri, T. M. Duman, D. Gündüz, S. R. Kulkarni, and
H. V. P. Poor, “Blind federated edge learning,” IEEE Trans. Wireless
Commun., vol. 20, no. 8, pp. 5129–5143, Aug. 2021.

[32] S. Zhang, M. Chen, Z. Li, and L. Huang, “Optimal distributed
broadcasting with per-neighbor queues in acyclic overlay networks
with arbitrary underlay capacity constraints,” in Proc. IEEE Int.
Symp. Inf. Theory, Istanbul, Turkey, Jul. 2013, pp. 814–818, doi:
10.1109/ISIT.2013.6620339.

[33] H. A. David and H. N. Nagaraja, Order Statistics (Wiley Series in
Probability and Statistics), 3rd ed. Hoboken, NJ, USA: Wiley, 2003.
[Online]. Available: https://doi.org/10.1002/0471722162

[34] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing Markov chain on a
graph,” SIAM Rev., vol. 46, no. 4, pp. 667–689, 2003.

[35] O. Cihan and M. Akar, “Fastest mixing reversible Markov chains on
graphs with degree proportional stationary distributions,” IEEE Trans.
Autom. Control, vol. 60, no. 1, pp. 227–232, Jan. 2015.

[36] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1,
pp. 215–233, Jan. 2007.

[37] H. Wolkowicz, R. Saigal, and L. Vandenberghe, Handbook of Semidefi-
nite Programming: Theory, Algorithms, and Applications, vol. 27. New
York, NY, USA: Springer, 2012.

[38] J. Wang, A. K. Sahu, Z. Yang, G. Joshi, and S. Kar, “MATCHA:
Speeding up decentralized SGD via matching decomposition sampling,”
in Proc. 6th Indian Control Conf. (ICC), Dec. 2019, pp. 299–300.

[39] I. Raicu and S. Palur, “Understanding torus network performance
through simulations,” in Proc. Greater Chicago Area Syst. Res. Work-
shop, 2014, pp. 1–2.

[40] S. Floyd and V. Jacobson, “Random early detection gateways for con-
gestion avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4, pp. 397–413,
Aug. 1993, doi: 10.1109/90.251892.

[41] D. J. Aldous, “Lower bounds for covering times for reversible Markov
chains and random walks on graphs,” J. Theor. Probab., vol. 2, no. 1,
pp. 91–100, Jan. 1989.

[42] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[43] S. Caldas et al., “LEAF: A benchmark for federated settings,” 2018,
arXiv:1812.01097.

[44] M. S. H. Abad, E. Ozfatura, D. Gündüz, and O. Ercetin, “Hierarchical
federated learning ACROSS heterogeneous cellular networks,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Barcelona,
Spain, May 2020, pp. 8866–8870.

[45] J. van der Hooft et al., “HTTP/2-based adaptive streaming of HEVC
video over 4G/LTE networks,” IEEE Commun. Lett., vol. 20, no. 11,
pp. 2177–2180, Nov. 2016.

[46] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “Inferring link
weights using end-to-end measurements,” in Proc. 2nd ACM SIGCOMM
Workshop Internet Meas. (IMW), 2002, pp. 231–236. [Online]. Avail-
able: https://www.microsoft.com/en-us/research/publication/inferring-
link-weights-using-end-end-measurements/

[47] X. Zhang et al., “Towards reliable (and Efficient) job execu-
tions in a practical geo-distributed data analytics system,” 2018,
arXiv:1802.00245.

[48] B. Yin, X. Lu, J. Huang, and Y. Kang, “Analysis of topology dynamics
for unstructured P2P networks,” Comput. Commun., vol. 80, pp. 72–81,
Apr. 2016.

Xuezheng Liu received the M.S. degree from Sun
Yat-sen University, Guangzhou, China, in 2016,
where he is currently pursuing the Ph.D. degree
with the School of Computer Science and Engi-
neering, under the supervision of Prof. D. Wu.
His research interests include federated learning and
edge computing.

Zhicong Zhong received the B.Eng. degree from the
School of Computer Science and Engineering, Sun
Yat-sen University, in 2021. He is currently pursuing
the Ph.D. degree with the Department of Computer
Science and Engineering, The Chinese University
of Hong Kong. His research interests include high
performance computing and database system for
persistent memory and multicore processor.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on May 10,2022 at 21:03:44 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/ICC40277.2020.9148853
http://dx.doi.org/10.1109/TNET.2020.3035770
http://dx.doi.org/10.1109/ISIT.2013.6620339
http://dx.doi.org/10.1109/90.251892

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: ACCELERATING FL VIA PARALLEL SERVERS: THEORETICALLY GUARANTEED APPROACH 15

Yipeng Zhou (Member, IEEE) received the bache-
lor’s degree in computer science from the University
of Science and Technology of China (USTC) and
the M.Phil. and Ph.D. degrees from the Information
Engineering (IE) Department, The Chinese Univer-
sity of Hong Kong (CUHK). He was a Post-Doctoral
Fellow with the Institute of Network Coding (INC),
CUHK, from August 2012 to August 2013. From
September 2013 to September 2016, he was a Lec-
turer with the College of Computer Science and
Software Engineering, Shenzhen University. From

August 2016 to February 2018, he was a Research Fellow with the Institute
for Telecommunications Research (ITR), University of South Australia. He is
currently a Senior Lecturer in computer science with the School of Computing,
Macquarie University. He has published more than 90 papers, including
IEEE INFOCOM, ICNP, IWQoS, IEEE/ACM TRANSACTIONS ON NET-
WORKING, IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS,
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, IEEE
TRANSACTIONS ON MOBILE COMPUTING, and IEEE TRANSACTIONS ON

MULTIMEDIA. His research interests lie in distributed/federated learning,
privacy protection, and networking. He was a recipient of ARC DECRA in
2018.

Di Wu (Senior Member, IEEE) received the B.S.
degree from the University of Science and Tech-
nology of China, Hefei, China, in 2000, the M.S.
degree from the Institute of Computing Technol-
ogy, Chinese Academy of Sciences, Beijing, China,
in 2003, and the Ph.D. degree in computer sci-
ence and engineering from The Chinese Univer-
sity of Hong Kong, Hong Kong, in 2007. He was
a Post-Doctoral Researcher with the Department
of Computer Science and Engineering, Polytechnic
Institute of New York University, Brooklyn, NY,

USA, from 2007 to 2009, advised by Prof. K. W. Ross. He is currently
a Professor and an Associate Dean with the School of Computer Science
and Engineering, Sun Yat-sen University, Guangzhou, China. His research
interests include edge/cloud computing, multimedia communication, internet
measurement, and network security. He was a recipient of the IEEE INFO-
COM 2009 Best Paper Award and IEEE Jack Neubauer Memorial Award.

Xu Chen received the Ph.D. degree in informa-
tion engineering from The Chinese University of
Hong Kong in 2012. He is currently a Full Professor
with Sun Yat-sen University, Guangzhou, China, and
the Vice Director of the National and Local Joint
Engineering Laboratory of Digital Home Interactive
Applications. He was a Post-Doctoral Research
Associate with Arizona State University, Tempe,
USA, from 2012 to 2014; and a Humboldt Scholar
Fellow with the Institute of Computer Science, Uni-
versity of Goettingen, Germany, from 2014 to 2016.

He was a recipient of the Prestigious Humboldt Research Fellowship awarded
by Alexander von Humboldt Foundation of Germany, the 2014 Hong Kong
Young Scientist Runner-Up Award, the 2017 IEEE Communication
Society Asia–Pacific Outstanding Young Researcher Award, the 2017 IEEE

ComSoc Young Professional Best Paper Award, the Honorable Mention
Award of 2010 IEEE international conference on Intelligence and Security
Informatics, the Best Paper Runner-Up Award of 2014 IEEE International
Conference on Computer Communications (INFOCOM), and the Best Paper
Award of 2017 IEEE International Conference on Communications. He is
currently an Area Editor of IEEE OPEN JOURNAL OF THE COMMUNICA-
TIONS SOCIETY; and an Associate Editor of the IEEE TRANSACTIONS
WIRELESS COMMUNICATIONS, IEEE INTERNET OF THINGS JOURNAL, and
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS Series on
Network Softwarization and Enablers.

Min Chen (Fellow, IEEE) has been a Full Pro-
fessor with the School of Computer Science and
Technology, Huazhong University of Science and
Technology (HUST), since February 2012. He is
also the Director of the Embedded and Pervasive
Computing Laboratory and the Data Engineering
Institute, HUST. Before HUST, he was an Assistant
Professor with the School of Computer Science and
Engineering, Seoul National University. His Google
Scholar Citations reached more than 33,480 with an
H-index of 88. His top paper was cited 3,745 times.

He was selected as a Highly-Cited Researcher from 2018 to 2021. He is an
IEEE Fellow for his contributions to data-driven communication, caching, and
computing. He received the IEEE Communications Society Fred W. Ellersick
Prize in 2017 and the IEEE Jack Neubauer Memorial Award in 2019. He is the
Founding Chair of IEEE Computer Society Special Technical Communities
on Big Data. He is the Chair of IEEE Globecom 2022 eHealth Symposium.

Quan Z. Sheng (Member, IEEE) received the Ph.D.
degree in computer science from the University of
New South Wales (UNSW). He is currently a Full
Professor and the Head of the School of Computing,
Macquarie University. Before moving to Macquarie,
he spent ten years at the School of Computer Sci-
ence, The University of Adelaide, serving in senior
leadership roles, such as the Acting Head of the
school and the Deputy Head of the school. He was
a Post-Doctoral Research Scientist at CSIRO ICT
Centre. From 1999 to 2001, he also worked at

UNSW as a Visiting Research Fellow. Prior to that, he spent six years as
a Senior Software Engineer in industries. His research interests include the
Web of Things, the Internet of Things, big data analytics, web science, service-
oriented computing, pervasive computing, and sensor networks. He is ranked
by Microsoft Academic as one of the Most Impactful Authors in Services
Computing (ranked top 5 all time worldwide). He was a recipient of the
AMiner Most Influential Scholar Award on IoT (2019), ARC Future Fel-
lowship (2014), Chris Wallace Award for Outstanding Research Contribution
(2012), and Microsoft Research Fellowship (2003).

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on May 10,2022 at 21:03:44 UTC from IEEE Xplore. Restrictions apply.

