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Abstract— With the large-scale commercialization of 5G, the
global industry has started the exploration of the next generation
mobile communication technology (6G). From mobile Internet,
to IoT, and then to the smart connection of everything, 6G
will transform from 5G’s service objects of people and things
to the intelligent networking of agent that supports human–
machine–object. 6G networks should have the characteristics of
ubiquitous intelligence and ubiquitous perception, which poses
challenges for 6G network construction. Therefore, we propose a
6G Semantic Communication Scheme based on Intelligent Fab-
rics for transportation in-cabin scenarios (6GSCS-IF), which can
provide senseless intelligent interaction in transportation in-cabin
environment through widely and flexibly deployed intelligent
fabrics, demonstrating the superiority of intelligent fabrics in
realizing human–machine–object intelligent sensory interaction.
Then, we propose a Deep Learning-based Semantic Communi-
cation Model for Time-series data (DL-SCMT), and use deep
learning for semantic sensing and information extraction to build
an end-to-end semantic communication system. The experimental
results show that the semantic communication services provided
by this model can achieve better signal reconstruction and
higher-order intelligent services compared with traditional com-
munication methods.
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I. INTRODUCTION

IN recent years, technology in the field of mobile com-
munication has developed rapidly, and the evolution from

1G to 5G has seen a disruptive iteration of mobile communi-
cation technology occur every decade [1]. Currently, relying
on the large-scale deployment of 5G commercialization, real-
time mobile communication has been empowered to smart
cities, autonomous driving, cloud medical consultation and
other fields. However, with the development of cloud-native,
artificial intelligence, big data, information fusion and other
information technologies, global mobile business data traffic
is exploding and is expected to far exceed the current commu-
nication service threshold of 5G in 2030 [2], [3]. Moreover,
the intelligence, energy saving and greening of communication
technologies are already the trend of social development. All
these will become 5G mobile communication bottlenecks.
Therefore, the next generation of mobile communication (6G)
should make some changes in response to these challenges.

The future sixth generation (6G) mobile communication
system will be compatible with 5G in the human–machine–
object interconnection of all things, pioneering the intelligent
connection of all things [2], [4]. 6G will integrate artificial
intelligence, big data, blockchain and other technologies to
realize the coupling of communication, perception, comput-
ing and network, finally completing the interconnection of
intelligent bodies and digital twin, and achieving intelligent
ubiquity and perception [5]–[8]. Under 6G communications,
smart bodies will make the leap to intelligent connectivity,
continuously improving the quality of people’s lives and pro-
moting high-quality development of social production methods
through intelligent interconnection and collaborative symbiosis
of people, machines and things. The 6G network will meet
the performance requirements of full area coverage, high
density, high reliability, low latency, high spectral efficiency,
large connectivity and intelligent communication [9], [10].
In particular, 6G’s “full domain coverage” encompasses two
different communication domains, extending outwards to the
air-space integration, and deepening inwards to new human-
computer interaction, i.e. providing new applications such
as future immersive cloud XR, holographic communication,
sensory interconnection, digital twin and metaverse. Therefore,
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6G should have the ability to sense individual states and
environmental contextual semantics in human-computer inter-
action, while meeting the characteristics of senseless ubiquity
and intelligent interactivity.

6G communication technology has been studied by a num-
ber of scholars from various perspectives, of which semantic
communication is an intelligent communication method that
focuses on data semantics and transmits the core content of
the batch information flow, which fits the intelligent interaction
characteristics of intelligent bodies and meets the develop-
ment needs of 6G [11]. Weng et al. [12] designed a semantic
communication system for speech signals in semantic com-
munication systems. Xie et al. [13] proposed a text-oriented
semantic communication system. The above semantic commu-
nication system studies ignore the core features of intelligent
perception, perceptual ubiquity and intelligent interactivity of
6G communication. It will be very meaningful and challenging
to design a relying carrier for intelligent perception, interaction
and computation in one under 6G communication, and to
realize semantic communication with application scenarios.

Flexible fabric materials are developing rapidly and are
widely used in medical and health, sports and fitness, and
living scenarios [14]–[16] with rich and unique use interaction
experience and scientific research value. Su et al. [17] devel-
oped a muscle fiber-excited piezoelectric nonwoven fabric with
adjustable mechanical properties for wearable physiological
monitoring. Michael and Howard [18] used the fabric to sense
athletes’ body movements and learn motor postures. Fabrics
support bending and stretching in use due to their mater-
ial properties and possess unbreakable characteristics. With
these advantages, intelligent fabrics, which combine artificial
intelligence and electrical properties, can be an important
medium for individual interaction and perception. Intelligent
fabrics are low-cost, can be deployed on a large scale and
are energy-efficient and support long-life operation. Compared
to traditional collection devices, intelligent fabrics embedded
with algorithms can filter and extract value from data, enabling
semantic extraction for individual states and environmental
contexts. Therefore, the properties of intelligent fabrics are in
line with the intelligent and senseless interaction and intelli-
gent ubiquitous characteristics of 6G communication, and have
the potential for semantic communication. As 6G communi-
cation deepens internally, intelligent fabrics can be used as a
carrier and solution for new human-computer interaction.

In this paper, considering the characteristic vision of 6G
communication technology in intelligent sensing, environmen-
tal contextual semantic awareness and intelligent ubiquity,
we propose a 6G semantic communication scheme for in-cabin
scenarios of transportation in combination with intelligent fab-
rics, and analyse in detail the components and functions of the
semantic communication system enabled by intelligent fabrics;
meanwhile, a deep learning-based semantic communication
model is designed for temporal data. The main contributions
of this thesis are the following:

1) We propose a 6G semantic communication scheme
based on intelligent fabrics for transportation in-cabin
scenarios. The scheme is oriented to transportation sce-
narios, such as airplanes, trains, where users perform

intelligent senseless interactions in an environment
where intelligent fabrics are widely deployed, the intel-
ligent fabrics cognize user behavior and environmental
context, complete semantic extraction, and then combine
with 6G communication network of the air-space-ground
integrated to obtain higher-order intelligent services.
At the same time, we introduce in detail the process
and service types of semantic communication in the
intelligent fabric scenarios from the communication data
processing level.

2) We propose a deep learning-based semantic communi-
cation model for time-series data. The model supports
semantic communication of time-series data under dif-
ferent signal-noise physical channels, chieve high quality
signal data reconstruction, and provides higher-order
deep learning services.

3) We carry out experiments to simulate communication
environments with different signal-to-noise ratios on real
data, and verify the function of the proposed seman-
tic communication model. Compared with traditional
communication methods, DL-SCMT has superior per-
formance in various performance indicators.

The remainder of this paper is organized as follows. First,
the 6GSCS-IF is described (Section II). Then, this is followed
by the description of DL-SCMT (Section III). Section IV
describes our experimental setup, presents the experimen-
tal results and analyzes them. Section V concludes this
paper.

II. 6GSCS-IF

6GSCS-IF combines the widely deployed intelligent fabrics
with 6G semantic communication, which can realize intelligent
and senseless interaction in multiple transportation in-cabin
scenarios, reflecting the advantages of 6G communication in
intelligent ubiquitous and intelligent interaction, and provid-
ing a new solution idea for semantic communication. In the
following, we will introduce 6GSCS-IF in detail from scene
communication level and data processing level respectively.

A. Scene Communication Level of 6GSCS-IF

6GSCS-IF consists of four parts: intelligent fabric envi-
ronment, intelligent fabric semantic sensing terminal, seman-
tic transmission channel, and remote artificial intelligence
platform, which connects from environmental information
collection, environmental contextual semantic sensing, seman-
tic information physical channel transmission to semantic
information deep learning service, as shown in Fig 1. The
intelligent fabric’s intelligent ubiquity and intelligent percep-
tion are fully empowered into the communication network,
breaking the physical and digital barriers, integrating individu-
als into the cyberspace, realizing the intelligent interconnection
of human–machine–object, and providing new ideas for 6G
network semantic communication.

Intelligent fabric environment aims to collect raw data
in the fabric space. Intelligent fabric uses electromagnetic,
capacitive, resistive and other basic signals to sense the state
changes of the scene individual and the environment, with its
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Fig. 1. The scene communication of 6GSCS-IF.

low-cost non-sensitive characteristics, support a wide range
of deployment, from multiple angles and multi-dimensional
three-dimensional perception of spatial conditions. Intelligent
fabric can be embedded into the carpet, cushion, table, wall,
etc. to form a fabric space, so that the individual becomes
part of the environment, every move can be captured by the
intelligent fabric. As the intelligent fabric has green low power
consumption, it can interact actively for a long time and
perceive the environment in all aspects.

The intelligent fabric semantic cognition terminal block is
intended to refine the information perceived by the fabric. The
semantic cognition function designs a matching deep network
according to the characteristics of the data flow, extracts the
perceived environmental data in real time, improves the gran-
ularity of data value, reduces the amount of communication
transmission data, and can also better provide timely services
for downstream delay-sensitive tasks.

The semantic information physical channel transmission
block architecture supports scene information transmission
and realizes end-to-end semantic information flow trans-
mission. The transmission of semantics at the physical
communication level involves air-space-ground joint commu-
nication, with data aggregated from the flight vehicle end
to the satellite in the airspace, and then connected to the
base station cluster at the ground end to complete high-speed
air-to-ground data transmission, and the ground base station
cluster distributes the semantics to the target cloud server
according to the optimal routing algorithm to provide con-
tinuous timing information for subsequent semantic metadata
processing.

The remote AI platform module can complete semantic
recovery and higher-order deep learning services for semantic
metadata. The semantic data reaching the intelligent plat-
form end of the cloud service can be restored according to

Fig. 2. The data processing of 6GSCS-IF.

information categories and scales to achieve end-to-end com-
munication of environmental semantic information; semantic
metadata can also be used as high-dimensional features of
information and directly input into deep learning models to
continue to carry out state sensing and intelligent services for
the environment or human body.

B. Data Processing Layer of 6GSCS-IF

Semantic communication data processing consists of four
parts: semantic information source, semantic information
transmitter, semantic information receiver, and semantic infor-
mation higher-order sensing end, as shown in Fig 2. The
semantic information source is derived from the intelligent fab-
ric environment and contains basic data types such as textual

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on July 25,2022 at 03:18:23 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

information, radio wave signal information and digital scalar
information. The semantic information transmitter encodes the
semantic information source into a physical channel signal.
The semantic information receiver reconstructs the physical
channel signal into the original signal. The semantic infor-
mation higher-order sensing end then reconstructs the sensory
state based on the restored signal; it can also perform higher-
order deep intelligence services based on the semantic source
code output from the channel decoder. In the following we will
describe the semantic information transmitter and semantic
information receiver in detail.

1) Transmitter: The semantic transmitter consists of a
semantic coder and a channel coder to realize the extraction
of semantic features of the source message. The semantic
coder accepts the perceptual multivariate information from
the intelligent fabric space, unlike the traditional compres-
sion methods that reduce the amount of data in bytes and
unrecorded semantics of the message; the semantic coder
can refine the expression features of the message in high
dimensions, which is the compression and recoding of the
semantics of the message. The channel coder accepts the
semantic source code information output from the semantic
coder and converts the semantic information into channel
code, while achieving compression of data volume in the data
dimension. The specific process is as

X = CEn (SEn(M)) , (1)

where M = [m1, m2, · · · , mL ] is the time-series infor-
mation perceived by the intelligent fabric, L denotes the
length of the time-series sequence; SEn (·) is the semantic
coder, we use multiple 1D-ResNets to extract semantic source
code; CEn(·) denotes the channel coder, we use a two-layer
fully connected neural network which decreasing number of
neurons, to achieve data compression and obtain the channel
code (X).

The channel code (X) is input into the physical channel for
transmission to the receiver side. The physical channel is an
overview of the physical communication link, where data from
the user’s end may pass through routers, various base stations,
and even satellites, etc. The data transmitted will no longer
be the raw symbolic encoded data of the past, but will be
semantic information with a high degree of privacy protection
and full value of information granularity. The physical channel
will also introduce some interference signals, resulting in noisy
semantic channel codes. The process is as

Y = Tc(X), (2)

where X = [x1, x2, · · · , xN ] is the channel code, Tc(·)
denotes the physical channel, different physical channels will
introduce different distributions of noise; Y is the channel code
transmitted to the receiver.

2) Receiver: The receiver consists of a channel decoder and
a semantic decoder to decode the semantic channel code and
restore the original information. The channel decoder accepts
the semantic channel code (Y ) containing noise and outputs
the semantic source code; the semantic source code can be
used by the higher-order services of deep learning, and can

Fig. 3. The network structure of DL-SCMT.

also be input to the semantic decoder for original information
restoration. The process is as

M−1 = CDe (SDe(Y )) , (3)

where Y = [y1, y2, · · · , yN ] is the channel code from the
physical channel with certain noise; CDe(·) denotes the chan-
nel decoder, which decompresses the channel code using two
fully-connected layers with increasing neuron count; SDe(·) is
the semantic decoder, which recovers the semantic code into
the input signal of the intelligent fabric for other subsequent
services; and M−1 is the recovered timing information.

III. DL-SCMT

To address the needs of 6GSCS-IF in semantic communi-
cation of intelligent fabrics, we propose a deep learning-based
semantic communication model for time-series data. The aim
is to achieve semantic communication of time-series informa-
tion. The model consists of three modules: the autoEncoder
(AE) semantic communication network, the noise reduction
network, and the classification network, as shown in Fig 3. The
three modules are trained in batches, with the AE semantic
communication network trained first; then the model is added
with noise and used as the training environment for the noise
reduction network; the classification network can be trained
in both noisy and noiseless environments using the previous
pre-trained model.

The AE semantic communication network completes the
basic data semantic encoding to semantic decoding process
and enables semantic communication of timing signals under
a noise-free physical channel. The noise reduction network is
connected behind the physical channel to remove the noisy
signals in the physical channel transmission. Then, we design
two classification networks, one can input the semantic source
code and the other can input the restored original data.

A. Model Description

1) AE Semantic Communication Network: The AE seman-
tic communication network, as the base model of semantic
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communication under the ideal physical channel, covers all
processes of the 6GSCS-IF data processing process and
enables semantic communication of intelligent fabric timing
data. The AE semantic communication network is divided
into encoder and decoder parts by the physical channel, which
distills the data from the original information into the physical
channel code, and then reverses the processing to restore the
original data.

The encoder module consists of the semantic encoding
network and the channel encoding network. The semantic
encoding network consists of multiple semantic ResNet mod-
ules that receive M ∈ RB×L and output the semantic code
(E ∈ RB×D×L). The semantic ResNet module invokes the
ResNet [19] idea of feeding variables into a one-dimensional
convolutional network and self-summing them to achieve
refining new information without losing the data features of
the original variables. The channel coding network is a two-
layer fully connected neural network, with input variables E ∈
RB×D×L and output X ∈ RB×N . The variable X ∈ RB×N

enters the physical channel for transmission to the receiver.
The decoder module contains the channel decoding network

and the semantic decoding network, and the process is inverse
to that of the encoder module. The channel decoder network
inputs the variable Y ∈ RB×N and outputs the semantic code
(E−1 ∈ RB×D×L). The semantic decoding network input
E−1 ∈ RB×D×L , is recovered to M−1 ∈ RB×L , where the
semantic ResNet is also used.

2) Noise Reduction Network and Classification Network:
The noise reduction network input from the physical channel
Y ∈ RB×N , Y ∈ RB×N may contain noise introduced in the
communication transmission, and the noise reduction network
output after the noise reduction V ∈ RB×N .

The classification network is used as a sample of higher-
order services for semantic communication, and the feasibility
of semantic communication services is demonstrated in a fun-
damental way. Subsequent deep-learning higher-order services
based on semantic communication can cover a wider and richer
range of application scenarios. The classification network can
discriminate the signal type based on the semantic source code;
it can also input the final recovered M−1 ∈ RB×L and then
output the signal classification.

B. Loss Design

The AE semantic communication network is trained to
converge with the input variable M ∈ RB×L and the output
M−1 ∈ RB×L . Since the input variable is a time-series signal,
we choose the cosine similarity to define the distance of the
time-series variable. The specific loss is calculated as

E DLoss
(

M, M−1
)

= 1 − cos
(

M, M−1
)

, (4)

where cos(·) calculates the cosine of the angle between the
two input vectors.

The goal in the training of the noise reduction network
is to convert the noisy Y ∈ RB×N into clean V ∈ RB×N ,
i.e., to make the output physical channel variables consis-
tent with the channel codes output by the encoder module.
In the debugging process, we found that the recovered original

information would fluctuate significantly by just constraining
the intermediate variables to be consistent, so we restore the
V ∈ RB×N output from the noise reduction network to
the original information M−1 ∈ RB×L and then follow the
corresponding input M ∈ RB×L . M ∈ RB×L to compare
the similarity, which enables the recovered timing signal to be
closer to the original timing signal with less fluctuations. Then,
in order to allow the noise reduction module to output high-
quality V ∈ RB×N even when processing noiseless signals,
this part of the requirement is also taken into account in the
training in this paper. The specific loss is calculated as

deNoiseLoss
(

X, V , M, M−1
)

= E DLoss (X, VdeNoise) + E DLoss
(

M, M−1
deNoise

)
+E DLoss (X, VnoNoise) + E DLoss

(
M, M−1

noNoise

)
,

(5)

where VdeNoise is the output of the noisy Y processed by the
noise reduction module; M−1

deNoise denotes the timing signal
of the AE semantic communication model according to the
output of VdeNoise. Similarly, VnoNoise and M−1

noNoise repre-
sent the corresponding data in the physical channel training
environment without noise, respectively.

The training goal of classification network is to be able to
distinguish various types of time-series signals, but it is too
ideal to classify only clean signals, which cannot meet the
robustness requirements of classifiers in practical scenarios.
Therefore, in this paper, we need to classify signals with
no noise, signals reconstructed with semantic communication
under target SNR value noise, and signals reconstructed with
semantic communication under small SNR value noise. The
specific loss is calculated as

Classi f icationLoss(clear_signal, target SN R_signal,

small Noise_signal, label)

= Cross EntropyLoss(clear_signal, label)

+Cross EntropyLoss(target SN R_signal, label)

+Cross EntropyLoss(small Noise_signal, label), (6)

where Cross EntropyLoss(·) is the cross-entropy loss func-
tion; label denotes the signal class.

C. Model Training and Testing

The semantic communication model designed in this paper
involves 3 networks, and the networks are trained sequentially.
The AE semantic communication network is trained first,
then the noise reduction network is trained, and finally the
classification network is trained. Each of the networks trained
first will be the training environment for the later networks,
and the classification network trained in this paper takes the
time-series signals as input.

1) Training Stage: The training process of the AE semantic
communication network is shown in algorithm 1. In one itera-
tion cycle, the AE semantic communication network receives
the timing data M sensed by the intelligent fabric, and gets
E from the semantic coder, the channel coder processes E to
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get X , then the channel decoder gets the semantic code E−1

according to X , then the semantic decoder restores E−1 to
timing information, and finally calculates the loss according
to M and M−1 to calculate the loss and update the network.

The noise reduction network training process is shown
in algorithm 2. The AE semantic communication network
parameters are fixed and do not participate in parameter
updates. In one iteration, the encoder module of the AE
network is used to output X , and then the noise reduction
network is passed under the noisy and noiseless physical chan-
nels, respectively, to finally output M−1

deNoise and M−1
noNoise .

Then, the loss is calculated using the formula 5 to calcu-
late the loss, and finally update the noise reduction network
parameters.

The classification network training process is shown in
algorithm 3. First, the parameters of the AE network and
the noise reduction network are fixed and not involved in the
training. Then the first reconstructed signal is obtained from
the direct input to the decoder module, followed by adding
noise with SNR value and less noise to make the data flow
into the DL-SCMT model to output the recovered time-series
signal M−1

goalS N R and M−1
smallS N R , and then calculate the loss

according to the formula 6, and finally update the classification
network parameters.

Algorithm 1: Training Algorithm of the AE Semantic
Communication Network in the Proposed DL-SCMT
Input: Time-series signal data sensed by intelligent

fabrics.
1 Initialize data loader;
2 Initialize training parameters;
3 for epoch do

// Encoder.
4 SEn(M) → E ;
5 CEn(E) → X ;

// Decoder.
6 CDe(X) → E−1;
7 SDe

(
E−1

) → M−1;
// Calculate loss.

8 loss = E DLoss
(
M, M−1

)
, by using Eq.4;

9 Update θAE with BGD;
10 end
11 Save the encoder model of the AE network and the

decoder model of the AE network;
Output: AE Semantic communication model.

2) Test Stage: In the testing phase, the AE semantic com-
munication model and the classification network that join the
noise reduction network need to be tested. A variety of channel
models can be used for the physical channel, and AWGN
channel is used in this paper. With different channel model
requirements, the noise reduction physics can be retrained
without training the AE semantic communication model. This
also reflects the compatibility of the DL-SCMT model we
designed with various physical channel models.

Algorithm 2: Training Algorithm of the Noise Reduction
Network in the Proposed DL-SCMT

Input: Time-series signal data sensed by intelligent
fabrics, physical channel noise function, fixed
SNR value.

1 Initialize data loader;
2 Initialize training parameters;
3 Load the encoder model of the AE network;
4 Load the decoder model of the AE network;
5 for epoch do

// Encoder.
6 SEn(M) → E ;
7 CEn(E) → X ;

// Processing in the case of a noisy signal.
8 Add Noise(X, SN R) → YdeNoise ;
9 deNoise (YdeNoise) → VdeNoise ;

10 CDe (VdeNoise) → E−1
deNoise ;

11 SDe

(
E−1

deNoise

)
→ M−1

deNoise ;

12 lossdeNoise = E DLoss (X, VdeNoise) +
E DLoss

(
M, M−1

deNoise

)
, by using Eq.4;

// Processing without noise signal.
13 deNoise (X) → VnoNoise ;
14 CDe (VnoNoise) → E−1

noNoise ;

15 SDe

(
E−1

noNoise

)
→ M−1

noNoise ;

16 lossnoNoise = E DLoss (X, VnoNoise) +
E DLoss

(
M, M−1

noNoise

)
, by using Eq.4;

// Calculate the total loss.
17 loss = lossdeNoise + lossnoNoise , by using Eq.5;
18 Update θdeNoise with BGD;
19 end
20 Save the noise reduction network model;

Output: Noise reduction network model.

D. Performance Metrics

The core point of semantic communication is the extraction
and reconstruction of information from the signal. The intro-
duction of noise in the physical channel causes the recon-
structed signal to deviate from the source signal, and the
use of metrics to scientifically characterise the differences
between signals helps in the optimisation and comparison of
models. In this paper, the metrics used are cosine similarity,
MSELoss, Source to Distortion Ratio (SDR) [20], and Log
Spectral Distance (LSD). Among them, the metric of cosine
similarity is the same as Eq. 4.

MSELoss measures the mean square error of the input
and output variables, and a smaller value indicates a better
reconstruction. The calculation formula is as

M SE Loss =
∑n

i=0

(
mi − m−1

i

)2

n
, (7)

SDR calculates the power of the difference between the
input signal and the reconstructed signal as the denominator,
and then uses the power of the input signal as the numerator.
It can reflect the influence of reconstruction error on the
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Algorithm 3: Training Algorithm of the Classification
Network in the Proposed DL-SCMT
Input: Time-series signal data sensed by intelligent

fabrics, physical channel noise function, fixed
SNR value.

1 Initialize data loader;
2 Initialize training parameters;
3 Load the encoder model of the AE network;
4 Load the decoder model of the AE network;
5 Load the noise reduction network model;
6 for epoch do
7 CEn (SEn(M)) → X ;

// Processing without noise signal.
8 SEn (CEn(X)) → M−1

clear ;
9 Classi f ication(M−1

clear ) → pridictclear ;
10 lossclear = Cross EntropyLoss(pridictclear , label);

// Processing when SNR is the target value.
11 add Noise(X, SN R) → YgoalS N R;
12 deNoise(YgoalS N R) → VgoalS N R;
13 SEn

(
CEn

(
VgoalS N R

)) → M−1
goalS N R ;

14 Classi f ication(M −1
goalS N R

)
→ pridictgoalS N R;

15 lossgoalS N R =
Cross EntropyLoss(pridictgoalS N R, label);
// Processing of signals with a small amount of

noise.
16 add Noise(X, smallSN R) → YsmallS N R ;
17 deNoise(YsmallS N R) → VsmallS N R ;
18 SEn (CEn (VsmallS N R)) → M−1

smallS N R ;
19 Classi f ication(M−1

smallS N R) → pridictsmallS N R;
20 losssmallS N R =

Cross EntropyLoss(pridictsmallS N R, label);
// Calculate the total loss.

21 loss = lossclear + lossgoalS N R + losssmallS N R , by
using Eq.6;

22 Update θClassi f icat ion with BGD;
23 end
24 Save the classification network model;

Output: Classification network model.

original signal. The larger the value, the better the signal recon-
struction effect, and the smaller the MSELoss. The calculation
is as

SDR = 10 log10
�M�2∥∥M − M−1

∥∥2 , (8)

LSD is the distance measure between two spectra, and the
smaller the value, the closer the two signals are, the better the
reconstruction effect. The calculation formula is

LSD =
√

1

2π

∫ π

−π

[
10 ∗ log10

P(st f t (M))

P(st f t (M−1))

]2

dw, (9)

where st f t (·) denotes the short-time Fourier transform func-
tion and P(·) is the spectral power function.

In addition to comparing the semantic communication qual-
ity of service in terms of signal reconstruction effects, we also

TABLE I

PARAMETERS OF TRADITIONAL COMMUNICATION BASELINES

Fig. 4. Classification accuracy of models trained under noisy physical
channels with different SNR values.

Fig. 5. Classification accuracy of DL-SCMT and conventional communica-
tion methods for physical channels with different SNR values.

take into account the downstream higher-order deep learning.
In this paper, a classifier is attached to the signal reconstruction
module to distinguish different signal types sensed by the intel-
ligent fabric. The accuracy of the classification is indicative of
the enhanced effect of semantic communication in real service
applications. The calculation formula is as

Accuracy =
∑n

i Equal(predict, label)

n
× 100%, (10)

where n is the amount of data; predict and label denote
the output category and the actual data category of the
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Fig. 6. Comparison of DL-SCMT and traditional communication methods in SDR, LSD, MSELoss and cosine similarity indicators.

classification network, respectively, and Equal(·) is the
numerical comparison function.

IV. EXPERIMENT

This section conducts experiments on our proposed seman-
tic communication model enabled by deep learning for tem-
poral data. The first part of the experiment compares the
performance of model groups of noise reduction and classifi-
cation networks trained in physical channel environments with
different SNR values on the classification task, and then selects
the parameters of the best noise reduction and classification
network models as the parameters of the DL-SCMT model
to support subsequent experiments. The second part of the
experiment compares the DL-SCMT model with traditional
communication methods in terms of classification accuracy,
cosine similarity, MSELoss, SDR and LSD metrics.

The data in this experiment are collected from the signals
sensed by intelligent fabrics. We simulate the behaviour of the
user on the intelligent fabric by using a linear module with a
fixed coil at different distances from the magnetic intelligent
fabric. The data is divided into 3 distances, i.e. 3 categories,
with each pull period being 4.5s, and the ST M32 is the
master control of the acquisition terminal and collects potential
signals at a sampling rate of 20H z, with potential signals in
the range of ±1000uV . There are roughly 10,000 acquisition
points for each type of signal, with 100 acquisition points per

signal frame. When training the model, 70% of the total data
is used as the training set, 10% as the validation set and 20%
as the test set. When used, we randomise the starting point of
the data frames to obtain the signal frames, in an attempt to
classify the interactions based solely on the random interaction
data determined by the length of the signal frames.

For the conventional communication, we designed two com-
munication baselines, as shown in Table I; the source coding
uses fixed-length coding (8-bit), and the data preprocessing
scales and shifts the potential signal value to 0-200, and one
byte can satisfy one signal characterization. Reed-Solomon
(RS) coding [21] and Turbo coding [22] are used for channel
coding. The maximum length of each block of RS is set to 255,
and the number of ecc symbols is set to 30. The turbo coding
rate is 1/3, and the modulation and demodulation method is
64-QAM. In the model training and comparison experiments,
the physical channels are used AWGN channels.

The performance of the noise reduction network and clas-
sification network trained under different SNR values of
the physical channel on the classification task is shown in
Fig 4. The accuracy of all models increases gradually as the
SNR value increases, i.e. the noise in the signal decreases.
Around SNR = 15 dB, the accuracies all reach near 100%.
The noise reduction and classification networks trained at
SNR = 6 dB have better robustness; at SNR = 1 dB, the
model achieves 82% accuracy; and at SNR values of 5 dB and
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7 dB, the accuracy of this model is the highest compared to
others. Therefore, we selected the noise reduction module and
classification network trained at SNR = 6 dB as the best model
parameters for semantic communication in this experiment,
so as to determine the parameters of the DL-SCMT model
and provide support for subsequent comparison experiments.

The classification accuracies of DL-SCMT and traditional
communication methods are shown in Fig 5 where AE is
the network with the noise reduction module deleted on
DL-SCMT as a way to show the effect of the noise reduction
network, and the subsequent experimental AE model repre-
sentation is consistent with this. The classification accuracy of
each communication method gradually increases as the noise
in the physical channel is reduced. The accuracy of DL-SCMT
is the highest for all SNR values from 1 dB to 7 dB; where
SNR = 1 dB, the accuracy is 82%; when SNR = 7 dB, the
accuracy is 98%. In the case of high physical channel noise,
the noise reduction network in DL-SCMT does improve the
classification accuracy compared to the AE model. At SNR
values of 9 dB and beyond, both the DL-SCMT and AE
models have nearly 100% accuracy, while the conventional
model can only reach 100% near SNR of 23 dB, indicating
that our proposed DL-SCMT model outperforms the conven-
tional model and the AE network also possesses good noise
robustness.

The comparison of DL-SCMT and conventional communi-
cation methods in terms of SDR, LSD, MSELoss and cosine
similarity index is shown in Fig 6. Fig 6(a) shows the com-
parison of the cosine similarity index, the smaller the value,
the better the reconstructed signal. The DL-SCMT keeps the
lowest value, and as the SNR value grows, the AE model
gets closer to the DL-SCMT and the value of the traditional
communication method decreases. Fig 6(b) shows the LSD
metrics, where DL-SCMT works best between SNR values
of 1 dB and 11 dB; the AE model works better at SNR
values of 13 dB and beyond, although the DL-SCMT effect
keeps decreasing continuously. This indicates that the noise
reduction network slightly affects the performance of the AE
model at larger SNR values, however, it still has perfor-
mance advantages compared to the traditional communication
method. Fig 6(c) shows the MSELoss metric, which is already
extremely low for DL-SCMT and AE networks at low SNR
values; however, the traditional communication method only
gradually decreases when the SNR value decreases. Fig 6(d)
shows the SDR metric, the larger the metric, the lower the
reconstructed signal noise power; between SNR values of 1 dB
and 15 dB, DL-SCMT maintains the highest value; at SNR
values of 16 dB and beyond, AE has a little better than
DL-SCMT; the traditional communication method has always
been negative, which indicates that the reconstructed signal
of baseline is noisier. In summary, DL-SCMT has a very
good performance in the physical channel environment with
different SNR values, which is far better than the traditional
communication method.

V. CONCLUSION

With 5G communication networks staying at the level
of Internet of Everything, it is no longer possible to meet

the communication requirements of users in the increasingly
rich Internet smart life. Therefore, 6G proposes a human–
machine–object intelligent interconnection, embedding people
into the network and combining individual awareness with
the network. However, current 6G research faces many chal-
lenges in terms of intelligent interconnection and intelligent
ubiquity. Therefore, we propose the 6G semantic commu-
nication scheme based on intelligent fabric in transportation
in-cabin scenarios, which empowers the senseless ubiquity and
intelligence of intelligent fabrics to traditional communication
and enhances the communication experience of users’ smart
interaction. Then we propose a deep learning-based semantic
communication model for time-series data, which provides
a semantic communication solution for the time-series data
sensed by intelligent fabrics in 6GSCS-IF. Finally, we experi-
mentally compare the performance metrics of our proposed
DL-SCMT model with traditional communication methods
in signal reconstruction, showing that the DL-SCMT model
is much better than the traditional communication model in
signal reconstruction and higher-order service effect, showing
that the model has good communication noise robustness.
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