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A B S T R A C T

VQA attracts lots of researchers in recent years. It could be potentially applied to the remote consultation
of COVID-19. Attention mechanisms provide an effective way of utilizing visual and question information
selectively in visual question and answering (VQA). The attention methods of existing VQA models generally
focus on spatial dimension. In other words, the attention is modeled as spatial probabilities that re-weights
the image region or word token features. However, feature-wise attention cannot be ignored, as image and
question representations are organized in both spatial and feature-wise modes. Taking the question ‘‘What is
the color of the woman’s hair’’ for example, identifying the hair color attribute feature is as important as
focusing on the hair region. In this paper, we propose a novel neural network module named ‘‘multimodal
feature-wise attention module’’ (MulFA) to model the feature-wise attention. Extensive experiments show that
MulFA is capable of filtering representations for feature refinement and leads to improved performance. By
introducing MulFA modules, we construct an effective union feature-wise and spatial co-attention network
(UFSCAN) model for VQA. Our evaluation on two large-scale VQA datasets, VQA 1.0 and VQA 2.0, shows that
UFSCAN achieves performance competitive with state-of-the-art models.
. Introduction

The development of deep learning has accelerated the advancement
f computer vision and natural language processing. Visual question
nswering (VQA) [1,2] requires simultaneous comprehension of visual
mages and natural language questions, it has become one of the most
ctive research areas in artificial intelligence.

VQA is a complex multimodal task that aims at automatically
nswering a textual question related to the content of a given image.
t is useful to help visually impaired subjects to realize the visual
nvironment and can be applied in entertainment, education. VQA also
an support remote consultation and cross-modal queries of medical
mages. For example, an unprofessional doctor could provide a chest X-
ay of a patient, and ask the VQA expert system about the condition of
he patient online. These can prevent spread and improve the diagnosis
fficiency in COVID-19. VQA requires a fine-grained understanding of
he semantics of both images and questions. Specifically, to produce a
orrect answer, visual information relevant to a question and textual
nformation related to the content of an image need to be extracted,
hich is referred to as vision-language cross-grounding problems.
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E-mail addresses: zhangmonkey@hust.edu.cn (S. Zhang), minchen2012@hust.edu.cn (M. Chen), jcchen@hust.edu.cn (J. Chen), fuhao_zou@hust.edu.cn

For tackling these problems, attention-based models [3–5] have
been extensively explored for VQA, where the visual attention mech-
anism typically produces a spatial map highlighting image regions
relevant to the question. Likewise, the question attention mechanism,
which focuses on core words of a sentence, has been considered along
with the visual attention [6–8]. However, these existing methods only
consider spatial attention, i.e., where to look or where to read. In this
paper, we argue that semantic feature attention (i.e., what to look at and
what to read) is equally important. For instance, to answer the questions
in Fig. 1 correctly, a model not only needs to locate the woman’s hair
or the ground in the image, but also needs to focus on the color feature
attribute of them.

How to assign more attention to important attributes? First, we
discuss how image and question representations reflect semantics at-
tributes. In VQA, image representation is generally obtained by using
CNN [5,7,9] (or Faster R-CNN [10–13]). Some methods use the feature
map with the size of 𝑊 × 𝐻 × 𝐶 from the last pooling layer of CNN,
which can retain spatial information of the original images. 𝑊 × 𝐻
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Fig. 1. Examples of visual question answering. The questions are related to attributes of objects in images in these examples. Specifically, the first question focuses on the color
attribute of the hair. The second question is related to the color attribute of the ground.
is the resolution of regions in the image representation (i.e. spatial
dimension). Each region includes 𝐶 feature values, which mean an
implied semantics (i.e. feature-wise dimension). For a question, we
generally apply Long Short-Term Memory [14] (LSTM) or Gated Re-
current Unit [15] (GRU) to extract its word-level representation, which
contains 𝑇 feature vectors of length 𝑁 . 𝑇 is the number of words
(i.e. spatial dimension). 𝑁 is the number of features for each word
and it depends on the number of LSTM (or GRU) cells (i.e. feature-wise
dimension).

Essentially, a feature is an activation response of neurons in a convo-
lution kernel or an LSTM cell. Each neuron actually detects an implied
semantic pattern. Therefore, a feature describes a certain semantic.
We can model feature-wise attention via assigning different weights
to these features. The feature-wise attention can highlight significant
semantic attributes and give less emphasis to unimportant ones [16],
so it can complement the spatial attention mechanism.

Motivated by the above observation, we construct the multimodal
feature-wise attention module (MulFA) for images and questions modal-
ities respectively. MulFA can perform both question-guided image
and image-guided question feature-wise attention. With simultaneous
image and question MulFA modules at its core, we introduce our union
feature-wise and spatial co-attention network (UFSCAN) model for
VQA. UFSCAN comprises a number of additional modules. It includes
a novel multimodal feature-wise co-attention module (referred to as
‘‘MulFCoA’’) to model feature-wise attention of image and question
modalities. We also design a visual spatial attention module (VSA) to
highlight image regions related to the question. We finally construct a
multimodal residual module (MulRM), which is a variant of multimodal
residual networks [17], to effectively fuse visual information from
spatial attention with textual information.

In summary, our contributions in this work are as follows:

1. We propose novel multimodal feature-wise attention mecha-
nisms: (a) question-guided image feature-wise attention and
(b) image-guided question feature-wise attention, and construct
MulFA modules to learn cross feature-wise attentions between
image and question modalities. These allow obtaining more dis-
criminative representations for image and question modalities.

2. We construct an UFSCAN model for VQA, which simultane-
ously models feature-wise co-attention and spatial co-attention
between image and question modalities, and adopts a MulRM to
combine visual and textual information.

3. Finally, we evaluate our proposed UFSCAN on the large-scale
and highly competitive datasets VQA 1.0 and VQA 2.0. Our
model achieves performance competitive with state-of-the-art
models on these VQA datasets. We also perform extensive ab-
lation experiments and demonstrate the effectiveness of our
proposed feature-wise attention mechanism.
2

2. Related work

VQA has aroused broad interests in recent years since the seminal
work of Antol et al. [1]. The task of VQA is extremely challenging.
VQA straddles the fields of computer vision and natural language
processing. It requires a fine-grained understanding of the semantics of
both images and questions, and reasoning over the combination of these
two modalities, sometimes on the basis of external or common-sense
knowledge. The VQA is closely related to image captioning [18–20],
which is also a task involving visual images and natural language
sentences.

To support the VQA task, there are generally the following three
issues that need to be addressed. First, we need to extract discrim-
inative representations for image and question information. Second,
we need to combine visual and textual representations to generate
the fused image–question features. Last, we need to train a multi-class
classifier for predicting the best matching answer correctly using the
fused image–question features. Furthermore, the attention mechanism
is widely explored for VQA to highlight core words of a question and
image regions relevant to the question. We next introduce related works
of VQA.

Fusion strategies. To generate expressive image–question fusion
features, high-level interactions between image and question repre-
sentations need to be carefully encoded into the model. Due to the
encoding of the full second-order interactions, the bilinear model is a
powerful approach for the fusion problem in VQA. Given two feature
vector 𝑣 ∈ R𝑛1 and 𝑞 ∈ R𝑛2 as input, the bilinear model can be
formulated as

𝑧 = 𝑊 [𝑣 ⊗ 𝑞] (1)

where ⊗ denotes outer product and [] indicates linearizing the matrix
in a vector, and 𝑊 is the learned parameter. The main drawback of
the bilinear model is that the number of parameters for 𝑊 , 𝑛1 × 𝑛2,
is massive and thus intractable. [21] proposes multimodal low-rank
bilinear pooling (MLB) to reduce the computational complexity of the
original bilinear model. However, the low-rank tensor structure in MLB
is equivalent to computing simple element-wise product between pro-
jection of visual and question representations. The multimodal Tucker
fusion (MUTAN) method in [9] combines a Tucker decomposition with
a low-rank matrix constraint as
𝑧𝑟 = ((𝑞𝑊𝑞)𝑀𝑟) × ((𝑣𝑊𝑣)𝑁𝑟)

𝑧 =
𝑅
∑

𝑟=1
𝑧𝑟

(2)

where 𝑊𝑞 ∈ R𝑛2×𝑡𝑞 , 𝑀𝑟 ∈ R𝑡𝑞×𝑡𝑜 , 𝑊𝑣 ∈ R𝑛1×𝑡𝑣 and 𝑁𝑟 ∈ R𝑡𝑣×𝑡𝑜 are
learned parameters. 𝑅 serves to balance the full bilinear interaction’s
complexity and accuracy.
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Fig. 2. Overview of the UFSCAN architecture for VQA. The image and question representations are extracted (Section 3). Then, MulFCoA (Section 3.2) is applied to provide
feature-wise attention features. VSA (Section 3.3) is modeled to locate the image regions related to the question and generate spatial attention fine-grained features for the image.
Finally, image features and question features are fused by MulRM (Section 3.4) and then passed through MLP to make answer predictions.
Attention. Many recent attention-based deep neural networks have
been proposed for VQA. The attention methods proposed in [5,9,
11,12,22] focus on solving the problem of visual spatial attention.
Specifically, these methods produce a spatial probability distribution
emphasizing image regions relevant to the question. Differently, in ad-
dition to reasoning about visual spatial attention, approaches proposed
in [6,7,13] also involve question spatial attention. Similarly, question
spatial attention highlights words including core meaning in a question
by generating a spatial probability distribution on words.

However, only taking into account spatial attention is inadequate. It
only addresses the problem of where need to focus on. In this work, we
propose multimodal feature-wise attention modules (MulFA) to model
feature-wise attention.

3. Network architectures for VQA

The goal of the VQA task is to answer a question according to the
content of an image. The UFSCAN network architecture is illustrated in
Fig. 2. Our model first harnesses Faster-RCNN [10] pre-trained using
Visual Genome [23] to extract representations of an image. Therefore,
we obtain 𝐾 object feature vectors including 𝑀 feature values. The
resulting visual features can be represented as 𝑉 ∈ R𝐾×𝑀 . The question
representation is extracted by GRU [24] network with 𝑁 hidden units.
We do not consider an attention on words, following [11]. Thus, we
get the sentence feature vector of questions, which can be defined as
𝑄 ∈ R1×𝑁 .

These features are then fed into MulFCoA module described in
Section 3.2, and it is composed of IMulFA and QMulFA modules in
Section 3.1. The MulFCoA generates feature-wise attention features,
where informative features are emphasized and less useful ones are sup-
pressed. This makes the features more discriminate and increases the
capability of fine-grained recognition. For image features including the
spatial dimension (i.e., object dimension), we use VSA in Section 3.3
to find out multiple image regions related to the question. Finally,
Section 3.4 shows how to fuse the region features and question features
to generate images–question feature 𝑢𝑔 . Thus, we call our network
architecture as union feature-wise and spatial co-attention network
(UFSCAN).

In VQA, most answers consist of a single word [1]. Therefore,
existing methods generally treat VQA as a classification problem. Ad-
ditionally, each question is associated with one or several answers.
Thus, we treat VQA as a multi-label classification task like previous
work [11,13]. We use the most frequent answers with more than eight
occurrences as candidate. We finally obtain 3,129 candidate answers.

We pass the images–question feature from MulRM through a Multi-
layer Perception (MLP) with a ReLU activation and then a 𝑠𝑖𝑔𝑚𝑜𝑖𝑑
activation to generate scores �̂� for the candidate answers:

�̂� = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑀𝐿𝑃 (𝑢𝑔)) (3)

The sigmoid function normalizes the scores into (0, 1). Because of multi-
ple labels for a question, our objective function is a binary cross-entropy
function in training phase, like

𝐿 = −
M
∑

N
∑

𝑠𝑖𝑗 𝑙𝑜𝑔(�̂�𝑖𝑗 ) − (1 − 𝑠𝑖𝑗 )𝑙𝑜𝑔(1 − �̂�𝑖𝑗 ) (4)
3

𝑖 𝑗
where the indices 𝑖 and 𝑗 run respectively over the M samples and
N candidate answers. In test phase, we select the candidate with the
highest score as the predicted answer.

3.1. Multimodal feature-wise attention modules

For a given image–question pair, most of the existing methods
have considered spatial cross-grounding. In other words, they predict
relevance between each spatial object of an image and a question. They
also learn the significance of each word in the question. However, these
attention models only focus on learning the spatial attention, while
completely ignore the attention of the feature channel dimension in the
image and question representations. Some other tasks of computer vi-
sion, e.g. classification [25] and image caption [20], have demonstrated
that incorporating the feature channel attention mechanism contributes
to better performance, because it allows the model to effectively learn
which feature channel is important.

In this section, we propose the Multimodal Feature-wise Attention
(referred to as MulFA) modules. MulFA is aimed at generating attention
weights to emphasize informative features and suppress less useful
ones. To generate attention weights, MulFA requires performing inter-
actions between visual and textual information. We apply a bilinear
model (abbreviated as BM) to complete the interactions. We design
different MulFA structures for image and question modalities, and
describe them in Sections 3.1.1 and 3.1.2 respectively.

3.1.1. Image multimodal feature-wise attention module
The entire process of image multimodal feature-wise attention (ab-

breviated as IMulFA) module includes four steps: (1) squeezing image
features, (2) fusing feature-wise statistics and question signal, (3) com-
puting feature-wise attention weight, and (4) feature-wise re-weighting
image features. Fig. 3 shows the high-level structure of IMulFA. We
describe each step of IMulFA in detail below.

It has been observed in previous works [20,25] that the interde-
pendencies among feature channels of the image features contribute
to modeling a feature-wise attention. Thus, we should obtain feature
channel descriptors of image features. The image features 𝑉 ∈ R𝐾×𝑀

includes 𝐾 object feature vectors of 𝑀 feature channels. Each of
𝑀 feature channels has an implicit semantics. Accordingly, we take
advantage of pooling operations to aggregate image features across the
object dimension 𝐾 (i.e., spatial dimension) to produce feature channel
descriptors as follows:

𝑧𝑎𝑣𝑒𝑟𝑎𝑔𝑒,𝑗 =
1
𝐾

𝐾
∑

𝑖=1
𝑉 (𝑖, 𝑗) (5)

where 𝑧𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ∈ R𝑀 denotes the average statistics of image features
with 𝑀 feature channels. Pooling across the object dimension of image
features masks out spatial distribution information.

In VQA, the image feature-wise attention is dependent on the ques-
tion, as the question decides which channel semantic attributes are
more important. Hence, we use a bilinear model (referred to as BM)
to combine the feature channel statistics and the question features:

𝑇 (6)
𝑓𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝐵𝑀(𝑧𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑄 )
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Fig. 3. The structure of the image multimodal feature-wise attention (IMulFA) module. The IMulFA includes four steps: (1) squeezing image features, (2) fusing the feature-wise
statistics and question signals, (3) computing feature-wise attention weight, and (4) feature-wise re-weighting the image features.
where 𝑄 ∈ R1×𝑁 denotes the question features, and 𝑓𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ∈ R𝐶 is the
fusion features.

Next, we pass the fusion features through a single-layer linear net-
work and then a 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 activation function to produce the feature-wise
attention weight vector:

𝛽𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊 𝑣
𝑎 𝑓𝑎𝑣𝑒𝑟𝑎𝑔𝑒) (7)

where 𝑊 𝑣
𝑎 ∈ R𝑀×𝐶 is a parameter matrix, and 𝛽𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ∈ R𝑀 are

the attention weight vector for feature channels of image features. The
𝑠𝑖𝑔𝑚𝑜𝑖𝑑 activation normalizes each attention weight between 0 and 1,
which could be interpreted as correlation between the feature semantic
attributes and the question. An attention value close to 0 denotes a low
degree of correlation and that close to 1 means a strong correlation.

Finally, the feature vector of each object is multiplied by the at-
tention weight vector 𝛽𝑎𝑣𝑒𝑟𝑎𝑔𝑒 in an element-wise multiplication way to
emphasize informative feature signals and suppress less useful ones:

𝑉 ′ = 𝛽𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ⊙ 𝑉 (8)

where 𝑉 ′ ∈ R𝐾×𝑀 is a feature-wise attention image features, and ⊙
denotes broadcast element-wise multiplication between a vector and
a matrix. Specifically, the element-wise multiplication is performed
between each row of the matrix and the vector. We define this IMulFA
as

𝑉 ′ = 𝐼𝑀𝑢𝑙𝐹𝐴(𝑉 ,𝑄) (9)

3.1.2. Question multimodal feature-wise attention module
The question multimodal feature-wise attention (abbreviated as

QMulFA) module includes three main steps: (1) fusing multimodal in-
formation to generate feature-wise attention weight vectors, (2) squeez-
ing attention weight vectors, and (3) recalibrating question feature.
Fig. 4 illustrates the structure of the QMulFA.

Similar to IMulFA, we first should obtain the feature channel statis-
tics of question features. Different from the image features, the ques-
tion representation is a vector instead of a matrix. Consequently, the
squeeze operation in spatial dimension for question features is unnec-
essary. In other words, the question features are treated as the feature
channel statistics directly. Moreover, the question feature-wise atten-
tion is also relevant to the visual signal. We fuse the visual signal and
the question feature channel statistics to produce the question feature-
wise attention weight vectors. The 𝑖th weight vector ℎ𝑖 is generated by
the 𝑖th object feature vector 𝑉𝑖 ∈ R𝑀 and the question features 𝑄 as
follows:
𝑓𝑖 = 𝐵𝑀(𝑉𝑖, 𝑄𝑇 )

ℎ𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊 𝑞
𝑓 𝑓𝑖)

(10)

where ℎ𝑖 ∈ R𝑁 , 𝑊 𝑞
𝑓 ∈ R𝑁×𝐶 is a parameter matrix of the single linear

layer, and 𝑓𝑖 ∈ R𝐶 denotes the fusion feature obtained by a bilinear
model.

The visual feature 𝑉 ∈ R𝐾×𝑀 includes 𝐾 objects, each of which
can guide the question feature-wise attention. Accordingly, we employ
4

an average pooling operation to integrate the effect of all objects as
follows:

𝛼 = 1
𝐾

𝐾
∑

𝑖=1
ℎ𝑖 (11)

where 𝛼 ∈ R𝑁 denotes the question feature-wise attention weight
vector.

Finally, we combine 𝑄 and the attention by element-wise multipli-
cation to recalibrate the question features as follows:

𝑄′ = 𝛼𝑇 ×𝑄 (12)

where 𝑄′ ∈ R1×𝑁 is the feature-wise attention features. We define this
QMulFA as

𝑄′ = 𝑄𝑀𝑢𝑙𝐹𝐴(𝑉 ,𝑄) (13)

3.2. Multimodal feature-wise co-attention module for VQA

We have developed feature-wise attention learning modules to
image and question modalities, as shown in Section 3.1.1 and Sec-
tion 3.1.2 respectively. To combine them, we propose three co-attention
mechanisms that differ in the order in which image and question
feature-wise attention are performed. The first two mechanisms, which
we call alternating co-attention, sequentially alternate between per-
forming image and question feature-wise attention, as below

𝑉 ′ = 𝐼𝑀𝑢𝑙𝐹𝐴(𝑉 ,𝑄), 𝑄′ = 𝑄𝑀𝑢𝑙𝐹𝐴(𝑉 ′, 𝑄)

𝑜𝑟

𝑄′ = 𝑄𝑀𝑢𝑙𝐹𝐴(𝑉 ,𝑄), 𝑉 ′ = 𝐼𝑀𝑢𝑙𝐹𝐴(𝑉 ,𝑄′)

(14)

The third mechanism, which we call parallel co-attention, generates
image and question attention simultaneously, defined as

𝑉 ′ = 𝐼𝑀𝑢𝑙𝐹𝐴(𝑉 ,𝑄)

𝑄′ = 𝑄𝑀𝑢𝑙𝐹𝐴(𝑉 ,𝑄)
(15)

We compare three different feature-wise co-attention mechanisms in
the ablation study in Section 4.4.

3.3. Multimodal spatial attention module

In VQA, in order to answer the question correctly, we need to focus
on the regions related to the question in an image. Thus, we construct
a visual spatial attention module (abbreviated as VSA).

Our visual spatial attention module employs multiple spatial atten-
tion heads (a.k.a. glimpses) to filter out noises and highlight the regions
that are highly relevant to the question. For each glimpse, we first fuse
the visual feature 𝑉 ′ ∈ R𝐾×𝑀 and the question feature 𝑄′ ∈ R1×𝑁

computed by the bilinear model and then feed the fusion features to a
softmax function to generate attention distributions over the regions of
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Fig. 4. The structure of the question multimodal feature-wise attention (QMulFA) module. The QMulFA includes three steps: (1) fusing the multimodal information to generate
feature-wise attention weight vectors, (2) squeezing the attention weight vectors, and (3) adjusting the question features.
the image as follows:

ℎ𝑖 = 𝐵𝑀(𝑉 ′
𝑖 , 𝑄

′𝑇 )

ℎ = [ℎ0, ℎ1,… , ℎ𝐾−1]

𝑝 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊 𝑣
ℎ ℎ)

𝑣𝑗 =
𝐾
∑

𝑖=1
𝑝𝑗,𝑖𝑉

′
𝑖 , 𝑗 ∈ {1, 2,… , 𝑔}

(16)

where 𝑉𝑖 denotes the 𝑖th object feature, ℎ𝑖 ∈ R𝐶 is the 𝑖th fusion
feature, [.] is the stacking operation between vectors, hence ℎ ∈ R𝐶×𝐾 .
𝑊 𝑣

ℎ ∈ R𝑔×𝐶 are a parameter matrix. 𝑝 ∈ R𝑔×𝐾 indicates 𝑔 image region
attention distributions, where 𝑔 is the number of glimpses. 𝑣𝑗 ∈ R𝑀

denotes the 𝑗th spatial attention visual feature.

3.4. Multimodal residual module

The visual spatial attention module generates multiple spatial atten-
tion features 𝑣𝑗 where 𝑗 ∈ {1,… , 𝑔}. And question features 𝑄′ ∈ R1×𝑁

are made up of a single feature vector. The traditional multimodal
feature fusion methods, e.g. element-wise product, sum and concatena-
tion, become invalid. So, it is difficult to effectively combine the visual
features with question features. The Multimodal Residual Networks
(MRN) [13,17] is inspired by residual structure to use shortcuts and
residual mappings for handling multiple modalities. But BM can more
effectively learn the multimodal representations than element-wise
multiplication used in the original MRN. So we introduce BM into MRN
and propose a multimodal residual module (abbreviated as MulRM)
to integrate the joint representations from the multiple glimpses and
question. The 𝑗 + 1th output of our MulRM is defined as follows:

𝑢𝑗+1 = 𝐵𝑀𝑗 (𝑣𝑗 , 𝑢𝑗 ) +𝑊 𝑚
𝑗 𝑢𝑗 , 𝑗 ∈ {1,… , 𝑔} (17)

where 𝑢𝑗 ∈ R𝐶 , 𝑢0 = 𝑄′𝑇 (if 𝑁 = 𝐶), 𝑣𝑗 is the attention feature vector
of the 𝑗th glimpse, and 𝑊 𝑚

𝑗 are parameters of a linear layer.

4. Experiments

In this section, we first describe the two datasets for evaluation,
VQA 1.0 and VQA 2.0, in Section 4.1 and hyperparameter settings in
Section 4.2. We present comparison results with the state-of-the-art
models for VQA 1.0 and VQA 2.0 in Section 4.3. Finally, we report
ablation results in Section 4.4.

4.1. Datasets

VQA 1.0. The VQA 1.0 dataset [1] contains over 204𝐾 images from
the Microsoft Common Objects in Context (MS COCO) dataset [26],
over 600𝐾 questions (at least 3 questions per image), and over 6
million answers (10 answers per question). The dataset is split into
three subsets: train (80K images and 240K question–answer pairs), val
(40K images and 120K question–answer pairs), and test (80K images
5

and 240K question–answer pairs). We use the tools provided by Antol
et al. [1] to evaluate the accuracy. Specifically, the VQA accuracy
metric is min(1, #ℎ𝑢𝑚𝑎𝑛𝑠 𝑡ℎ𝑎𝑡 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑡ℎ𝑎𝑡 𝑎𝑛𝑠𝑤𝑒𝑟∕3)

The test set is split into test-dev, test-standard, test-challenge, and
test-reserve following the same test split strategy as the MC COCO
dataset. The ground truth answers for the test set are unavailable, and
one must submit their results to a remote evaluation server to acquire
the testing scores.

VQA 2.0. The VQA 2.0 dataset [27] is an updated version of the
VQA 1.0 dataset, which reduces the language bias and requires the
VQA model to be equipped with stronger, fined-grained recognition
capability. VQA 2.0 is also larger in scale, containing over 204𝐾 images
from the MS COCO dataset, over 1 million question and over 11 million
answers. The dataset is composed of 443,757 pairs (image, question,
answer) for training, 214,354 for validation and 447,793 for testing.
The evaluation metric is the same as that in VQA 1.0.

4.2. Hyperparameters and regularization

The size of image features and question embeddings is 𝑀=2048 and
𝑁 =1280 respectively. Following the previous works (e.g. [12]), K is a
variable number and varies from 10 to 100, depending on the number
of objects in an image. The length of questions is 𝑇 = 14. Questions
shorter than 14 words are head-padded up to 14. The embedding layer
is initialized using 300-dimensional pre-trained Wikipedia+Gigaword
GloVe word embedding [28]. We also use the 300-dimensional
semantically-closed mixture of these embeddings to enhance Glove
word embedding as in [13]. So, the dimension of the word embedding
is 600. We choose MUTAN, which is a bilinear model proposed in [9],
as our multimodal feature fusion method. We choose all the projection
dimensions to be equal to each other: 𝑡𝑞 = 𝑡𝑣 = 𝑡𝑜 = 1280, and a
rank 𝑅 = 3 in MUTAN. Every linear mapping is regularized by Weight
Normalization and Dropout [29] (𝑝 = 0.2, except for the classifier with
𝑝 = 0.5). Our model and its several variants are end-to-end trained. The
Adamax optimizer [30], a variant of Adam based on infinite norm, is
used. The learning rate is gradually increased from 0.0005 to 0.002 in
the first four epochs. After 10 epochs, the learning rate is decayed by
1∕4 for every 2 epochs up to 13 epochs (i.e., 5𝑒−4 for the 11th epoch and
1.25𝑒−4 for the 13th epoch). We clip the 2-norm of vectorized gradients
to 0.25. Limited by computing resources, the batch size is always 256
for training and testing. Our model is trained in an end-to-end way.
All experiments are implemented in the PyTorch framework [31] and
performed on workstations with two NVIDIA TITAN Xp GPUs.

4.3. Results on VQA 1.0 and VQA 2.0

For easy reference, we briefly introduce several important models
used for comparison in the beginning of this section. A more detailed
discussion of related works can be found in Section 2.
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• Bottom-up [11] applies the bottom-up attention mechanism
(based on Faster R-CNN) proposed in [12], which enables regions
related to a question to be inferred at the level of objects.
Bottom-up is the basis of our UFSCAN model. The performance
improvements over Bottom-up are detailed in the ablation study.

• MLB (Multimodal low-rank bilinear pooling) [21] is proposed
to tackle the problem of the computational cost of the bilinear
model, while harnessing its sufficient representation capacity.

• MFH (Multimodal factorized high-order pooling) [7] extends
MLB with high-order pooling to fuse multimodal features. It uses
convolutional image features (based on the 152-layer ResNet
model [32]) and word-level question features (i.e., each word
with a corresponding feature). Furthermore, MFH simultaneously
considers keywords in a question and image regions related
to question. They are identified by question self-attention and
question-guided visual spatial attention respectively.

• BAN (Bilinear attention network) [13] adopts bottom-up atten-
tion on image features and word-level question features. BAN
generates an attention map by calculating bilinear interactions
among each pair of image and question features, which can be
understood as an affinity matrix between multimodal features. It
then fuses multimodal feature by the attention map to obtain the
joint representation.

• Counter [33] is specially developed for dealing with counting
questions, which are challenging and require a model to identify
which classes of objects to count, find where they are and add
them up. The Counter component is portable, and it is used in
BAN to enhance the ability of counting.

Table 1 shows our evaluation results on the VQA 1.0 test set. We
ompare our models with the results of a number of the state-of-the-
rt models, including the MFH model that is the current champion of
he VQA 1.0 Challenge. As shown in Table 1, Our model UFSCAN out-
erforms all the methods, including the VQA 1.0 challenge champion
FH [7]. It significantly outperforms all models except the three based

n MFH. For a fair comparison, the latest model MFH+CoAtt+Glove
(bottom-up) also uses the same bottom-up attention features as used
in UFSCAN and is trained with the same train set and val set. No-
tably, MFH incorporates the question spatial attention mechanism and
uses more question features than UFSCAN. Still, UFSCAN outperforms
the best-performing model of MFH, MFH+CoAtt+Glove (bottom-up),
demonstrating the advantages of our proposed MulFA. Moreover, with
data augmentation using the Visual Genome, our model UFSCAN + VG
achieves the overall best accuracy of 70.19% and 70.24% on the test-
dev set and test-standard set respectively. Therefore, UFSCAN achieve
a state-of-the-art performance on VQA 1.0.

Table 2 compares performance of our model on the VQA 2.0 dataset
with the current state-of-the-art models. Zhang et al. [33] proposed
a counting module, Counter, to focus on dealing with counting ques-
tions. Some works [13,33] have demonstrated that this module can
significantly improve the accuracy of answering counting questions.
For a clearer comparison, Table 2 is split into two parts: the first part
summarizes the methods without the counting module and the second
part contains the methods that incorporate the counting module. All
the models are trained on the same training and validation splits, and
use Visual Genome for data augmentation.

As can be seen in the first part of Table 2 (W/o Counter), our UFS-
CAN model outperforms all the strong baseline methods, and achieves
a state-of-the-art result in the case without the counting module. Al-
though the latest models, BAN and MFH+Bottom-Up, use the question
representation including features from each time step of the RNN,
UFSCAN still outperforms MFH+Bottom-Up by 1.07% and performs
better than BAN in all but the ‘‘Yes/no’’ category. The questions with
‘‘Number’’ and ‘‘Other’’ types of answers require more powerful fine-
grained recognition ability to answer correctly. For these two types,
UFSCAN outperforms the state-of-the-art model BAN by 0.32% on
6

‘‘Number’’ and 0.48% on ‘‘Other’’.
Table 1
Test-dev and test-standard accuracy (%) of single models on the VQA 1.0 test set
(Section 4.1), compared to state-of-the-art models. ‘‘–’’ indicates the result is not
available. ‘‘Att’’ indicates the visual spatial attention mechanism. ‘‘CoATT’’ indicates
the question and visual co-attention mechanism. ‘‘GloVe’’ indicates that the word
embedding method [28] is adopted. ‘‘VG’’ indicates that the model uses the Visual
Genome for data augmentation.

Model Test-dev Test-standard

LSTM Q + I [1] 57.8 58.2
SMem [4] 58.0 58.2
SAN [5] 58.7 58.9
FDA [34] 59.2 59.5
DMN+ [35] 60.3 60.4
HieCoAtt [6] 61.8 62.1
RAU [36] – 64.1
MCB + Att + GloVe + VG [22] 65.4 –
MLB + Att + StV + VG [21] 65.8 –
MFH + CoAtt + GloVe [7] 66.8 66.9
MFH + CoAtt + GloVe + VG [7] 67.70 67.5
MFH + CoAtt + GloVe (bottom-up)a 68.78 –

UFSCAN (ours) 69.06 69.34
UFSCAN + VG (ours) 70.19 70.24

aDetonets a model found in https://github.com/asdf0982/vqa-mfb.pytorch, which does
not seem to have been published.

The second part of Table 2 shows the results of state-of-the-art
models with the counting module incorporated. UFSCAN+counter im-
proves accuracy of the counting questions (i.e., ‘‘Number’’ type) over
UFSCAN by 4.01%. UFSCAN+counter significantly outperforms the
Counter model by 2.37% and is better than Ban+counter by 0.42%.
Notably, UFSCAN+counter performs better on the ‘Other’ and ‘Number’
types, outperforming BAN+counter by 0.82% and 0.95% respectively.
Overall, UFSCAN achieves a comparable performance on VQA 2.0 test
set.

4.4. Ablation study on VQA 2.0

In this section, we perform extensive ablation studies on the VQA
2.0 validation dataset to quantify the role of proposed components in
our model. The results are shown in Tables 3 and 4.

The Bottom-Up [11] uses the same image and question repre-
sentations as those in our model. In addition, Bottom-Up includes a
visual spatial attention method with 1-glimpse. It uses multimodal low-
rank bilinear pooling [21] to fuse multimodal features. Therefore, the
bottom-up model can be regarded as the baseline of our model. For a
fair comparison, we use the same training strategies and settings to re-
train this model with the same word embeddings. The result is reported
in first row of Table 3.

We design a set of experiments to evaluate the sensitivity of model
performance to each design choice. Specifically, we compare perfor-
mance of the following variants of our model:

• IMulFA alone, where we only add IMulFA to the baseline. The
goal of this comparison is to verify the effectiveness of IMulFA.

• QMulFA, where we only add QMulFA to the baseline.
• parallel MulFCoA, where we parallelly use both IMulFA and

QMulFA in the baseline.
• alternate MulFCoA1, where we first use IMulFA and then QMulFA

in the baseline.
• alternate MulFCoA2, where we first use QMulFA and then IMulFA

in the baseline.
• VSA-1, where we only use a 1-glimpse visual spatial attention

module with a bilinear model in the baseline.
• MulRM, where we only add MulRM to the baseline.
• UFSCAN-1, the full model that is the baseline added parallel
MulFCoA, VSA-1, and MulRM.

https://github.com/asdf0982/vqa-mfb.pytorch
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Table 2
Test-dev and test-standard accuracy of single-model on the VQA 2.0 dataset (Section 4.1). ‘‘–’’ indicates the result is not available.

Model Test-dev accuracy (%) Test-standard accuracy (%)

All Yes/no Number Other All Yes/no Number Other

W/o counter

Bottom-up [11] 65.32 81.82 44.21 56.05 65.67 82.2 43.9 56.26
MFH [7] 66.12 – – – – – – –
MFH+Bottom-up [7,13] 68.76 84.27 49.56 59.89 – – – –
BAN [13] 69.66 85.46 50.66 60.50 – – – –
UFSCAN (ours) 69.83 85.21 50.98 60.98 70.09 85.51 50.21 61.22

Counter
Counter [33] 68.09 83.14 51.62 58.97 68.41 83.56 51.39 59.11
BAN + counter [13] 70.04 85.42 54.04 60.26 70.35 – – –
UFSCAN + counter (ours) 70.46 85.52 54.99 61.08 70.73 85.87 54.37 61.30
Table 3 lists the comparison of our full model (UFSCAN) w.r.t these
blations on the VQA 2.0 validation set. As one must submit their test
esults to a remote evaluation server to acquire the testing scores, test
et is not recommended being used for such experiments.

We first evaluate the effectiveness of VSA that uses a bilinear model.
s shown in Table 3, VSA-1 improves the performance by 0.20%. This
esult demonstrates the advantage of the bilinear model on learning dis-
riminative multimodal fusion features. This observation is consistent
ith previous work [9].

We compare the performance of MulRM and the baseline, in Ta-
le 3. It increases the performance by 0.58%. For multiple glimpses, we
ompare MulRM (used in UFSCAN-2) with other aggregation method
i.e., feature concatenation, element-wise summation) in the bottom of
able 4. The result of the concatenation method obviously declines,
ith a drop of 0.85%. The performance of the element-wise sum-
ation method is worse than the UFSCAN-2 model by 0.68%. These

esults demonstrate the advantage of MulRM on learning the joint
epresentation from multimodal information.

We investigate the efficacy of the feature-wise attention mechanism.
s shown in Table 3, IMulFA and QMulFA both outperform baseline,
ith a rise of 0.68% and 0.67% respectively. It illustrates that the
ultimodel feature-wise attention mechanism is effective for both of

mage and question modalities. We hypothesize the feature-wise at-
ention mechanism can provide finer features to enhance fine-grained
ecognition ability of a model.

Next, we evaluate the MulFCoA. We compare our proposed three
o-attention mechanisms, i.e. two alternating co-attention mechanisms
nd one parallel co-attention mechanism. Their performances are not
uch different, while all are better than IMulFA or QMulFA used alone

y about 0.50%. These results indicate that the order of IMulFA and
MulFA has a small effect, and their efficacy can be superimposed.
y adding MulFCoA to baseline, the performance can be improved
y about 1.1%, which might be interpreted as that MulFCoA can
imultaneously highlight informative features of image and question
epresentations, and ignore unuseful ones. We select parallel MulFCoA
n the full model, because it performs well and stable.

The last row of Table 3 shows the result of the full model. The model
ses the parallel MulFCoA, 1-glimpse VSA and MulRM. Comparing
ith the baseline, the overall performance significantly increases by
.63%. This improvement could be interpreted as the superposition of
ffect from above three modules. This result demonstrates our proposed
odules are compatible with each other.

As shown in the middle part of Table 4, we investigate the influence
f the number of glimpses (including 1, 2, 3, and 4). The results
how the model with 3-glimpses performs best. We hypothesize that
his is because a question is related to multiple objects in image, but
vermuch glimpses introduce noise. Three glimpses embrace the best
eneralization ability.

The performance of a number of the state-of-the-art models on the
alidation set on VQA 2.0 is also summarized in the top of Table 2. The
irst row, Bottom-up, is the 2017 VQA Challenge winner architecture.
FSCAN-3 significantly outperforms it by 3.32% on average. The sec-
nd row, Counter, is a counting module that focuses on dealing with
7

Table 3
Ablations of a single network, evaluated on the VQA 2.0 validation set (Section 4.1). We
train each model with three different random seeds and report the mean and standard
deviation (±).

Component Setting Accuracy (%)

Baseline Bottom-upa [11] 64.60 ± 0.10

VSA-1 only 64.80 ± 0.01
MulRM only 65.18 ± 0.03

Multimodal feature-wise IMulFA only 65.28 ± 0.10
attention QMulFA only 65.27 ± 0.05

Multimodal feature-wise Parallel MulFCoA 65.70 ± 0.02
co-attention Alternate MulFCoA1 65.77 ± 0.07

Alternate MulFCoA2 65.73 ± 0.07

Full model UFSCAN-1 66.23 ± 0.15

aDenotes the result of bottom-up is obtained using the same word embeddings, training
strategies, and settings with our model.

Table 4
Validation scores on VQA 2.0 dataset for the state of the art and the different number
of glimpses of our proposed UFSCAN. The standard deviations are reported after ±
using three random initializations.

Model Accuracy

Bottom-up [11] 63.37 ± 0.21
Counter [33] 65.42 ± 0.10
BAN-1 [13] 65.36 ± 0.14
BAN-12 [13] 66.04 ± 0.08
DCAF [37] 65.7

UFSCAN-1 66.23 ± 0.15
UFSCAN-2 66.58 ± 0.12
UFSCAN-3 66.69 ± 0.11
UFSCAN-4 66.50 ± 0.06

UFSCAN-2 (add) 65.90 ± 0.15
UFSCAN-2 (concat) 65.73 ± 0.04

counting question. UFSCAN-3 significantly outperforms this module
by 1.27% on average. BAN-12 is the best-performing variant of BAN,
compare it based on 12 glimpses, our UFSCAN-3 still outperforms
BAN-12 by 0.65% on average. As can be seen, we achieve the best
performance on the VQA 2.0 validation set.

4.5. Qualitative analysis

To qualitatively valuate effectiveness of the feature-wise attention
mechanism, we calculate the mean and standard deviation of the
attention weights for each feature channel of 100 question–image pairs
from three typical types of questions: Yes/no, Sports and Color. As a
comparison, we also calculate the mean and standard deviation for a
number of randomly selected questions. Fig. 5 shows the percentage of
the number of feature channels whose mean and standard deviation fall
into each 0.05 interval respectively. From Fig. 5, we have the following
observations:

1. The mean of feature attention weight of image and question
features falls to various intervals in Fig. 5(e). This demonstrates
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Fig. 5. Frequency distribution histograms of the mean and standard deviation of visual and question feature-wise attention weights in a same feature channel. In each frequency
distribution histogram, the 𝑥-axis corresponds to the channel attention weight value bins and the 𝑦-axis corresponds to the percentage of frequency. First four figures denote
standard deviation histograms of feature-wise attention weight of a given question type. There are three question types from (a) to (c): ‘‘Color’’, ‘‘Yes/no’’ and ‘‘Sport’’. For clear
comparing, we randomly choose questions from different types in (d). The fifth sub-figure shows mean histograms of attention weight of ‘‘Sport’’ type question. The figure of other
two types of a question is similar. Best viewed in color.
Fig. 6. Examples of the visual attention of two-glimpse UFSCAN model on the VQA 2.0 validation data set. First row: four examples of correct predictions. Second row: four
incorrect examples. In each example, the image, question (Q), ground truth (A), and prediction (P) are presented. The top 5 object bounding boxes of attention weight for each
glimpse are drawn in each image. Red indicates the attention weight of the bounding box is relatively high in both of two glimpses. Blue and green denote the attention weight
only is high at a certain glimpse. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
different feature channels are assigned different weights. This
shows that the feature-wise attention blocks have learned to
emphasize informative feature signals and suppress less useful
ones.

2. Comparing the four histograms of standard deviation distribu-
tions in Fig. 5(a)–(d), the standard deviation of the specific types
of questions distributes across a smaller intervals, while that of
the randomly selected questions falls in larger intervals. This
demonstrates that the same feature channels for the same type
of questions have similar weights, which in turn illustrates that
a specific type of questions often entails some specific semantics.

To demonstrate the effects of visual spatial attention and explore
the weakness of our approach, we visualize the learned visual spatial
attention of some examples from validation data set in Fig. 6. The
examples are randomly picked from each question type. The visual
spatial attention generally can focus on the object relevant to the
question. From the negative examples, we can find several limitations
of our method. Firstly, our method fails to answer questions that
require some commonsense knowledge (e.g., first and fourth examples
8

at second row). Introducing an external knowledge base might improve
complex reasoning and alleviate this problem. Secondly, the perfor-
mance of our method is limited by the quality of the object detector
(e.g., second examples at second row). Duplicated and missed detection
would mislead the model to give an incorrect answer. Thirdly, since our
method is not designed to read, it will perform poorly if the answer
involves text in the image.

5. Conclusion

In this paper, we introduce a feature-wise attention mechanism
for VQA to emphasize on informative features and suppress irrelevant
ones, to extract more discriminative features for image and question
representations. We design novel modules to model the question-guided
image feature-wise attention and the image-guided question feature-
wise attention, and combine the visual spatial attention with feature-
wise attention to develop a new network model for VQA, the union
feature-wise and spatial co-attention network (UFSCAN). The attention
along multiple dimensions allows our VQA model to enjoy powerful
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fine-grained recognition ability. Our experimental results demonstrate
that our method has achieved the state-of-the-art performance on two
large-scale, real-world VQA datasets.
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