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Label-less Learning for Emotion Cognition
Min Chen , Senior Member, IEEE, and Yixue Hao

Abstract— In this paper, we propose a label-less learning for
emotion cognition (LLEC) to achieve the utilization of a large
amount of unlabeled data. We first inspect the unlabeled data
from two perspectives, i.e., the feature layer and the decision
layer. By utilizing the similarity model and the entropy model,
this paper presents a hybrid label-less learning that can automat-
ically label data without human intervention. Then, we design
an enhanced hybrid label-less learning to purify the automatic
labeled data. To further improve the accuracy of emotion
detection model and increase the utilization of unlabeled data,
we apply enhanced hybrid label-less learning for multimodal
unlabeled emotion data. Finally, we build a real-world test bed
to evaluate the LLEC algorithm. The experimental results show
that the LLEC algorithm can improve the accuracy of emotion
detection significantly.

Index Terms— Deep learning, emotion detection, label-less
learning, multimodal emotion cognition.

I. INTRODUCTION

W ITH the development of the smartphones, Internet
of Things (IoT), and cloud computing, more and

more people have been spending a lot of time on inter-
acting with the machines. Human–machine interaction has
become a nonnegligible part of our life. To realize a friendlier
and more natural human–machine interaction, the machine
should be able to understand user’s emotion. Therefore,
emotion detection plays a vital role in the human–machine
interaction [1]. In view of emotion recognition, an important
issue is the acquisition of emotional data. With the advances
on networking technology, the emotional data acquisition
via an online social network or a content provider, such as
text data for Twitter sentiment analysis and YouTube-based
video emotional data, has become more and more conve-
nient. In general, the emotion data include the facial expres-
sion, speech, text, physiological signals, and user’s behavioral
indicators [2], [3].

The speech and facial expression are the two most accessible
data modalities [4]. By the use of speech emotional data,
previous work typically recognizes emotion via extracting the
prosodic features, acoustic features, and voice quality features.
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On the other hand, in the view of facial expression data, emo-
tion detection is realized by extracting the appearance features
and geometrical features of a face [5]. In addition, some works
attempt to recognize the emotion by multimodal data [6].

However, most of the above works are based on the manual
feature extraction and cannot reflect the complex nonlinear
relevance among facial expression, speech, and human’s emo-
tional intentions accurately [7]. With the development of arti-
ficial intelligence (AI) [8], [9], the deep learning models have
achieved an outstanding performance in the feature extraction
in the aspects of image and speech [10], [11]. Recent works
mainly attempt to recognize the emotion using the deep
learning model.

The existing emotion detection deep models are mostly
based on a trained deep network model (e.g., Alex
network [12], and so on), followed by a fine tuning of the
decision based on a provisioning of the intermittent labeled
emotion data set. The growth of emotion cognition intelligence
would reach a plateau without such provisioning of labeled
data. Thus, the challenge of applying a deep learning model
into emotion detection is the lack of a large-scale labeled
data set [13]. In fact, although a large amount of emotion
data can be acquired through IoT technology whenever and
wherever possible, only a small part of emotion data is labeled.
Therefore, labeling the collected massive emotion data set is
a challenging issue.

Typically, there are two categories of emotion data set
labeling, i.e., manual labeling and automatic labeling. Manual
labeling is the most intuitive method. With the development
of crowdsourcing, volunteers can be recruited to label the
unlabeled data through a well-designed gaming interface.
However, the disadvantage of this scheme is opportunistic
and uncontrollable though some cost is saved by participatory
sensing. On the other hand, automatic labeling can be divided
into two types: the automatic labeling based on either different
domains or the same domain. The automatic labeling based on
different domains is mainly the automatic labeling based on
transfer learning [14].

In this paper, we pay attention to the automatic labeling
based on the same domain. The automatic labeling based on
the same domain includes active learning [15] and semisu-
pervised learning [16]. The active learning first screens the
massive unlabeled data by predicting the data uncertainty
and then performs the manual labeling. This method can
reduce the intensity of human labor but manual intervention
is still needed. The semisupervised learning (such as self-
training [17]) can conduct the automatic labeling of data.
However, the intrinsical feature of error accumulation hinders
its application scope. Therefore, the above methods cannot
be directly adopted for the purpose of the label-less emotion
cognition.
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To solve the aforementioned challenges, this paper proposes
an emotion detection algorithm based on automatic labeling by
using the multimodality of emotion data, named the label-less
learning for emotion cognition (LLEC). The main ideas are
to add the automatically labeled data with high confidence
to the train set by selecting the massive unlabeled emotion
data and further enhance the accuracy of emotion detection.
Specifically, we first consider the unlabeled data from two
perspectives, i.e., the feature layer and the decision layer.
By utilizing the similarity and entropy models, a hybrid
automatic label strategy is proposed to handle unlabeled data.
To further enhance data confidence, we screen the automatic
label data again. Finally, we build a test bed and verify the
validity of the proposed LLEC algorithm.

In summary, the main contributions of this paper are as
follows.

1) For a large number of unlabeled data, we propose a new
LLEC algorithm to explore the value of unlabeled data
from the decision layer and the feature layer.

2) A hybrid automatic labeling strategy is presented to
purify the automatically labeled data to increase the
correctness of automatic labels, and thus preventing error
propagation.

3) We verify the proposed algorithm by a real-world test
bed of emotion detection and interaction. The exper-
imental results indicate that the proposed algorithm
outperforms other algorithms in terms of accuracy of
emotion detection.

The remainder of this paper is organized as follows. The
LLEC is introduced in Section II. The design issues of LLEC
are given in Section III. Section IV presents the experimental
setup and results for the LLEC. Finally, Section V concludes
this paper.

II. LABEL-LESS LEARNING FOR EMOTION COGNITION

In this section, we first introduce emotion detection and
emotion cognition. Then, the learning methods relevant to
label-less learning is presented. Finally, the proposed LLEC
is explained in detail.

A. From Emotion Detection to Emotion Cognition

In this paper, we use the multimodal data to recognize
emotion in terms of speech data and facial expressions. The
traditional method of emotion detection is to train the labeled
data by machine learning and finally derive user’s emotion
label, as shown in the left-hand side of Fig. 1. In this figure,
taking AlexNet deep convolution neural network (DCNN) as
an example, we present emotion detection based on deep
learning. The emotion detection based on the DCNN archi-
tecture has the ability to reach the higher emotion detection
accuracy. Since the architecture not only automatically extracts
the features of the speech data and facial data by means of deep
learning but also combines the two modal data sets [12], [18].

However, emotion detection based on deep learning requires
a large number of labeled data. To enable the deep learning to
exhibit more effectiveness in emotion detection, it is manda-
tory to reduce its dependence on the large-scale labeled data.

TABLE I

DIFFERENCE BETWEEN EMOTION DETECTION AND EMOTION COGNITIVE

In other words, it is required to maximize the utilization of
unlabeled data without human intervention. Thus, we propose
the LLEC. Furthermore, as shown in Table I, we introduce the
differences between emotion detection and emotion cognition.
From the table, we can obtain that the emotion cognition
includes emotion detection.

B. Evolution of Label-Less Learning

Typically, the emotional big data have the following two
main characteristics.

1) It includes a large amount of unlabeled data. To address
this issue, existing works mainly adopt active learning,
positive and unlabeled learning (i.e., PU learning), and
self-training.

2) It exhibits the feature of multimodality. In order to match
such feature, multimodal data learning is introduced,
such as the cotraining [19].

Based on the above features, we give the specific introduc-
tion of the following four algorithms (i.e., active learning,
PU learning, self-training, and cotraining) using unlabeled
data.

Active learning is able to interactively query a user to obtain
the desired output for new data [15]. The learning process is
shown as follows. First, the labeled data set is denoted by L,
and let U represent the unlabeled data set. Then, a subset C
of a data set U is founded by selecting the unlabeled data
with the most abundant information using the information on
data set L, making the labeling request to the experts. Finally,
after the experts label a data set C , it is added to data set L.
Such iteration can be continued with the labor-intensive work
by the experts.

According to the above analysis, the active learning typi-
cally needs manual intervention. However, a user’s emotion
status is very sensitive to human intervention, which is a must
for the traditional labeling process. Human intervention may
also cause the emotion data contaminated. Thus, label-less
learning without human intervention is critical to an emotion
detection system in terms of sustainability. For this reason,
the active learning is not applicable to the emotion cognition.

PU learning refers to the training data set consisting of a
small amount of labeled positive data and a large amount of
unlabeled data [20]. Furthermore, PU learning is a machine
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Fig. 1. Emotion detection with DCNN and label-less learning.

learning method that classified the unlabeled data into two
categories, i.e., positive and negative. The purpose of PU
learning is to utilize a small amount of labeled positive data
and a large amount of unlabeled data to construct the classifier
and predict whether the unlabeled data are positive or not.
However, in the emotion detection, due to the diversity of
the emotion data labels, the PU learning algorithm cannot be
directly applied to the emotion data set with a large amount
of unlabeled data.

Self-training is a common algorithm for inductive semi-
supervised learning [16], [17], [21], and it can automatically
label the unlabeled data without manual intervention. The
main idea of self-training is as follows. First, the existing
label data (i.e., initial training set) are used to train and
form the classifier, and the unlabeled data are labeled by the
classifier. Then, the unlabeled data with high confidence are
added to the initial training set, and the data with predicted
labels are added to the original training set and then deleted
from the unlabeled data set. Finally, the updated data set is
utilized to retrain the classifier. This process is repeated until
the predefined goals are met. However, the above method
generally fails to judge whether the automatic label is correct.
After adding the wrong automatically labeled data to the train-
ing set, the error accumulation and propagation are caused.

Thus, self-training cannot be directly applied to label the
emotion data.

Cotraining is a common semisupervised learning from
the multi-view perspective [22]. It refers to utilizing the
multi-view information (such as multimodal data) of the same
object to realize the data learning. For instance, in the case
of emotion data, the emotion can be recognized from two
modalities, the facial expression and speech data of a user.
Specifically, in this paper, we consider the data set only with
two modalities. Namely, we first develop two classification
models F1 and F2 that are in accordance with two labeled data
sets (X1, Y1) and (X2, Y2), respectively, where X1 represents
the facial expression data, X2 represents the speech data, and
Y1 and Y2 represent the corresponding labels. Then, these two
classification models are utilized to label the unlabeled data.
Finally, the high-confidence data predicted by F1 classifier are
added to the X2 training data set, and the high-confidence data
predicted by F2 classifier are added to the X1 training data
set. In addition, the newly labeled data set is deleted from the
unlabeled data set. This process is repeated until the predefined
iterations are met. Cotraining can validate each other among
multimodal data and can enhance the confidence level of
the new labeled data to some extent. However, selection of
unlabeled data has the limitation [23].
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Fig. 2. Illustration of LLEC.

C. Introduction to Label-Less Learning for
Emotion Cognition

To use the unlabeled data better, we propose the LLEC.
The LLEC denotes a learning method for recognizing a
large amount of unlabeled multimodal emotion data, which is
intended to enhance the emotion detection accuracy. Specifi-
cally, the label-less learning considers the unlabeled data from
two perspectives: the feature layer and the decision layer.
By utilizing the similarity model and the entropy model,
we propose an automatic labeling strategy for unlabeled data
through a hybrid model. To further enhance the confidence of
selected data, we propose an enhanced hybrid model to select
the automatically labeled data.

The specific LLEC flow shown in the right-hand side of
Fig. 1 can be divided into the following five steps.

1) Define and acquire the emotion-related data, such as
facial expression and speech.

2) In view of a small amount of labeled multimodal data,
use the machine learning to train the model and enhance
the emotion detection accuracy as much as possible.

3) For the unlabeled data, based on the similarity model
and the entropy model, the hybrid model is used to label
the unlabeled data, and the data are then added to the
original labeled data set.

4) To further enhance the confidence of the added data,
the newly added data are selected.

5) Retraining the model with the new labeled data.

In conclusion, the LLEC is used to label the unlabeled data
and add the automatically labeled data to the training model.
Thus, the label-less learning is achieved, and the automatically
labeled data are obtained so as to reduce the dependence on
label data and wasting of human and material resources during
labeling. However, in the LLEC, it is necessary to solve two
challenging problems: 1) how to label the unlabeled data and
add it to the training set and 2) in the case of the multimodal
data, how to realize the mutual authentication of a multimodal
data set.

III. METHODS OF LABEL-LESS LEARNING

FOR EMOTION COGNITION

In this section, we explain the LLEC method in detail,
as shown in Fig. 2. First, we train the machine learning model
(e.g., deep learning model) using a small amount of labeled

data. Then, the unlabeled data are labeled automatically using
the hybrid LLEC model. Finally, we design the enhanced
hybrid algorithm to further increase the accuracy of emotion
detection and utilize the unlabeled data.

A. Label-Less Learning

In this section, we explain how the unlabeled emotion
data are labeled automatically. The labeled data are xl =
(xl

1, xl
2, . . . , xl

n), where n is the number of labeled data
sets. The unlabeled data are xu = (xu

1 , xu
2 , . . . , xu

m), where
m is the number of unlabeled data sets. We assumed that
the corresponding label of the labeled data set is y =
(yxl

1
, yxl

2
, . . . , yxl

n
). In this article, we assume that the amount

of unlabeled data is larger than the labeled data, i.e., m > n.
We aim to label the unlabeled data set automatically and select
the new labeled data to be added to the training set to enhance
the emotion detection accuracy.

For this purpose, the unlabeled data are first considered
from two perspectives: the feature layer and the decision
layer, and then the hybrid label-less learning is utilized to
label the unlabeled data automatically, and the newly added
data are reselected to enhance the accuracy of labeling of the
newly added data. The specific label-less learning process is
shown in Fig. 2. In this paper, we set our emotional labels to
discrete labels, which include anger, disgust, fear, joy, sadness,
and surprise. Furthermore, the decision layer-based label-less
learning and feature layer-based label-less learning need to
make use of existing emotion detection models. For emotion
detection model, traditional machine learning algorithms or
deep convolutional neural networks can be used to extract
features and recognize emotions.

1) Decision Layer-Based Label-Less Learning: In the deci-
sion layer-based label-less learning, the strategy of uncertainty
prediction is adopted as a criterion for selecting new labeled
data, i.e., the unlabeled data with only lower prediction
uncertainty are selected. To assess the prediction uncertainty,
we adopt the entropy as a measure. By using the labeled
data, based on the machine learning model, we can obtain
the prediction probability of unlabeled data xu

i as

pxu
i

= {
p1

xu
i
, p2

xu
i
, . . . , pc

xu
i

}
(1)

where p j
xu

i
denotes the probability of the unlabeled data xu

i
predicting into the emotional class j and c is the number
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of classes. The probability entropy E(pxu
i
) predicted by the

unlabeled data xu
i is defined by

E
(

pxu
i

) = −
c∑

j=1

p j
xu

i
log

(
p j

xu
i

)
. (2)

In (2), it can be seen that at smaller entropy, the new labeled
data have lower prediction uncertainty. Thus, the entropy can
be regarded as a criterion of new labeled data selection in the
decision layer. When utilizing the entropy and determining
whether the unlabeled data are added, it is required to set the
threshold value δE , and when entropy E(pxu

i
) is smaller than

a given threshold value δE , the unlabeled data xu
i are added

to the new training set, but not vice versa.
2) Feature Layer-Based Label-Less Learning: In the feature

layer-based label-less learning, the label-less learning is based
on the similarity model. Denote the labeled emotion data set
of class j as Sj , j = 1, 2, . . . , c, where c is the number of
classes. For instance, Sj can be labeled as all emotion data
sets of happy. We define the similarity Sim(xu

i , Sj ) between
the unlabeled data xu

i and the labeled data set Sj as follows:

Sim
(
xu

i , Sj
) =

∑

xl
j ∈S j

e−
∥∥φ

(
xu

i

)
−φ

(
xl

j

)∥∥
2 (3)

where φ(xu
i ) is the feature vector of the unlabeled data xu

i
and φ(xl

j ) is the feature vector of the labeled data xl
j . || · ||2

is two-norm operation, describing the similarity between the
unlabeled and the labeled data.

In (3), we can see that the closes xu
i are to the labeled

emotion data set Sj , the smaller the value of Sim(xu
i , Sj )

is, and vice versa. Therefore, the similarity model can be
utilized to describe the feature layer-based label-less learning.
The similarity model describes the similarity (or distance)
between the unlabeled data xu

i and labeled data from the
perspective of the feature layer. Similar to the entropy-based
model, this strategy needs setting the threshold value δSim.
When Sim(xu

i , Sj ) is smaller than a given threshold value δSim,
the unlabeled data are added to the training set, but not vice
versa.

3) Hybrid Label-Less Learning: The entropy-based
measure and the similarity measure provide the method
of automatic labeling of unlabeled data and adding it to
the training set in the decision layer and the feature layer,
respectively. However, the disadvantage of these two schemes
is a need for manual setting of the thresholds δE and
δSim. In the following, based on the entropy-based measure
and similarity measure, the hybrid label-less learning is
introduced. The specific process of hybrid label-less learning
is as follows. First, the most similar class j to the unlabeled
data xu

i is determined in accordance with the similarity
measure and denoted as δ. The class δ is defined as

δ = argmin
j

Sim
(
xu

i , Sj
)
. (4)

Then, according to the minimum entropy principle, it is
decided whether to add the unlabeled data xu

i and its label
δ to the origin training set. It is judged whether the entropy

of pδ
xu

i
is smaller than that of p j

xu
i
, j ∈ {1, 2, . . . , c}, j �= δ,

as shown in the following:
pδ

xu
i

log
(

pδ
xu

i

)
� p j

xu
i

log
(

p j
xu

i

)
j∈{1,2,...,c}, j �=δ

. (5)

Thus, hybrid label-less learning is obtained. In (4) and (5),
we can see that the hybrid label-less learning can overcome
the manual setting threshold value, maximize the utilization
of labeled data and unlabeled data in the feature layer and
decision layer, and enhance the confidence of the unlabeled
data while adding it to the training set.

4) Enhanced Hybrid Label-Less Learning: The hybrid
label-less learning can enhance the confidence of added data
to a certain degree. However, if deeming the added unlabeled
data based on the hybrid label-less learning strategy as being
fully credible and retraining the model as the new training
data set, the error accumulation of the training model may be
caused. This is because the hybrid label-less learning may be
labeled wrongly, leading to a noise of added data set and an
training error.

To overcome the above problems, we propose the enhanced
hybrid label-less learning. In other words, when the auto-
matically labeled data based on the hybrid label-less learn-
ing is added to the training set, the newly added data
should be reassessed, rather than confiding the newly labeled
data. Specifically, the assessment algorithm is as follows.
First, the automatically labeled data set based on the hybrid
label-less learning is labeled as z. Then, in the enhanced
hybrid label-less learning, the k automatically labeled data sets
are authenticated, and the data added to the enhanced hybrid
label-less learning each iteration each class is denoted as s j .
Thus, |s| = k, where | · | is the number of elements. The
enhanced hybrid label-less learning strategy is as follows. For
any samples xu

i ⊆ s and samples (xu
i )� ⊆ (z j −s j ), data added

to the enhanced hybrid label-less learning at each iteration
should meet the following condition:

E
(

pxu
i

)
∀xu

i ⊆s j

≤ E
(

p(
xu

i

)�
)

∀
(

xu
i

)�⊆(z j −s j )

j ∈ {1, 2, . . . , c}. (6)

In other words, the wrongly labeled data are corrected
by reassessment. During the specific experimental process,
to keep the class balance, the same amount of data are added
to each class at each iteration. In addition, the data selected
at each iteration are arranged in the incremental order.

B. Method of Label-Less Learning for Emotion Cognition

In the emotion cognition, according to the discussion pre-
sented in Section II, the speech and facial expression are two
important modalities for emotion detection. The multimodal
emotion detection based on speech and facial expression
can not only utilize the information of speech and facial
expression but can also utilize the information of other parties.
Thus, the LLEC based on the multimodal data can enhance
the emotion detection accuracy. However, the automatically
labeled multimodal data are more complex, because the labels
given by different modal data may be inconsistent. Thus,
the labeling of the unlabeled data is a challenging problem.
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The method of LLEC is as follows. We assume the facial
expression data set is xf , and the speech data set is xs.
Then, we can denote the labeled multimodal data set as
xl = (xf l , xsl), and the unlabeled multimodal data set as xu =
(xfu, xsu). Using the hybrid label-less learning, the unlabeled
multimodal data are automatically labeled. First, we denote the
most similar classifications of facial expression unlabeled data
x f u

i and speech unlabeled data xsu
i as δ1 and δ2, respectively,

and they are defined as

δ1 = argmin
j

Sim
(
x f u

i , S f j
)

(7)

δ2 = argmin
j

Sim
(
xsu

i , Ss j
)
. (8)

Then, we adopt the minimum joint entropy strategy for the
automatic labeling of the unlabeled multimodal data. Given
j as the classification of unlabeled multimodal data x f u

i and
xsu

i , the joint entropy can be defined by

Ē
(

p j
xu

i

) = −p j
x f u

i
log

(
p j

x f u
i

) − p j
xsu

i
log

(
p j

xsu
i

)
. (9)

Based on the similarity measurement, the most similar clas-
sifications of the unlabeled multimodal data x f u

i , xsu
i can

be obtained as δ1 and δ2, respectively. According to the
measurement of a minimum joint entropy, we can obtain the
most possible classification of the unlabeled multimodal data
x f u

i , xsu
i , which is denoted as δ, and defined by

δ = argmin
[
Ē

(
Pδ1

xu
i

)
, Ē

(
Pδ2

xu
i

)]
. (10)

Finally, we decide whether the unlabeled multimodal data
x f u

i , xsu
i and their classification label, δ, should be added to

the training set or not. It is important to evaluate whether the
joint entropy of pδ

x f u
i

and pδ
xsu

i
is smaller than the joint entropy

of other classifications

Ē
(

pδ
xu

i

)
� Ē

(
p j

xu
i

)
, j ∈ {1, 2, . . . , c}, j �= δ. (11)

Using the above strategy, we can not only avoid the prediction
conflict arising out of the multimodal data but also increase
the correctness of automatic labeling data selection.

Furthermore, similar to the enhanced hybrid label-less learn-
ing, the new added data are reselected. According to (6),
the reselection criterion for class j of each iteration is given
by

Ē
(

pδ
xu

i

)
∀xu

i ⊆s j

≤ Ē
(

p(
xu

i

)�
)

∀xu
i ⊆(z j −s j )

(12)

where the sample xu
i ⊆ s and s denotes the added unlabeled

multimodal data after the enhanced hybrid label-less learning.
(xu

i )� ⊆ z − s, z denotes the added unlabeled multimodal
data after the hybrid label-less learning. Based on the above
methods, after the unlabeled multimodal data are selectively
added to the train set, they are further purified. The specific
solving algorithm is shown in Algorithm 1.

Algorithm 1 LLEC Algorithm
Require:

The number of labeled data, n;
The number of unlabeled data, m;
Multimodal labeled data, xl = (x f l , xsl);
Multimodel unlabeled data, xu = (x f u, xsu);

Ensure:
New label data, xl ;

1: % Hybrid label-less learning
2: for i = 1 to m do
3: % obtain the δ1 and δ2 based on the feature layer;
4: δ1 = argmin

j
Sim(x f u

i , S f j );

5: δ2 = argmin
j

Sim(xsu
i , Ss j );

6: % obtain the δ based on the decision layer;
7: δ = argmin

[
Ē(Pδ1

xu
i
), Ē(Pδ2

xu
i
)
]

8: if Ē(Pδ
xu

i
) ≤ Ē(P j

xu
i
)

j∈{1,2,...,c}, j �=δ

then

9: z = z + {xu
i , δ}

10: end if
11: end for
12: % Enhanced hybrid label-less learning
13: I = �si ze(z)/k	
14: for i = 1 to I do
15: for j = 1 to c do
16: Copy s j from z j , si ze(s j ) = k
17: if Ē(pδ

xu
i
)

∀xu
i ⊆s j

≤ Ē(p
(x j

i )�)

∀xu
i ⊆(z j −s j )

then

18: xl = xl + {xu
i , j}

19: end if
20: end for
21: end for

C. Emotion Detection Based on the Edge Cloud

In the real emotion detection system, due to the network
bandwidth, it is not practical to offload all the unlabeled data
to the cloud that cause the long delay. Thus, in this paper,
we use the edge cloud to reduce the time delay [24]. This
is because the edge cloud computing can provide users
with short-delay and high-performance computing services
by deploying computing servers at the edge of the network,
to meet users’ requirements for delay-sensitive tasks [25], [26].

Specifically, we design the LLEC system using the edge
cloud, as shown in Fig. 3. The details are as follows. First,
the collected unlabeled multimodal data are offload to the edge
cloud through a cellular network or Wi-Fi. On the edge cloud,
based on label-less learning, the unlabeled data are labeled and
selected. The communication delay is much lower, because the
edge cloud is close to users’ devices. Second, the edge cloud
offloads the preliminary selected data to the remote cloud for
processing. Through the preliminary selecting of unlabeled
data on the edge cloud, the amount of data are greatly reduced
and the data include only the most useful information. Thus,
the accuracy of emotion detection in the remote cloud is also
increasing.
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Fig. 3. LLEC method using the edge cloud.

Fig. 4. Test bed of label-less learning for emotion cognition using edge cloud.

IV. LABEL-LESS LEARNING FOR EMOTION

COGNITION SYSTEM

In this section, we design the robot-based LLEC system and
apply the label-less learning method for the emotion detection
and interaction. We first explain the test bed and data collection
(including speech and facial expression) and then provide the
result and analysis from two perspectives of emotion detection
accuracy and communication delay.

A. System Test Bed

1) Robot-Based Emotion Detection and Interaction Sys-
tem: The robot-based emotion detection system test bed is
as shown in Fig. 4. The system includes the robot with
sensing multimodal emotional data, edge cloud, and inspur
data center [27]. This test bed can detect user’s emotion. The
emotion cognition is as follows. First, the labeled speech and

facial expression data are used to train the machine learning
model. In this experiment, we adopt AlexNet DCNN as the
machine learning model. Then, the trained DCNN model is
employed to predict the label, in view of unlabeled speech
and facial expression data. Finally, the unlabeled data are
added to the new model in accordance with the proposed
LLEC algorithm. Thus, a small amount of labeled data
are needed.

2) Emotion Data Collection and Detection: In this paper,
we use two emotional data: first, we use the existing multi-
modal emotion data set (i.e., enterface05 data set). Second,
we use the data set collected by the WebChat. For the
multimodal emotion data, we first adopt the enterface05 data
set [28]. The enterface05 data set includes 1290 sections of
videos, including 43 different speakers and speech contents
in English. The set included six basic emotions, i.e., anger,
disgust, fear, joy, sadness, and surprise. The audio sample
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Fig. 5. Emotion detection using DCNN model.

rate is 48 kHz, and the dual audio track is of 16-bit
precision. The emotions are performed by the participants.
The video frame frequency is 25 frames/s, and the image size
is 368 × 240 × 3 pixel.

For the above video data, we first derive the speech and
facial expression from video. Then, we perform data pre-
processing on speech and facial data, respectively. To be
specific, for speech data, we convert a speech into a 2-D
spectrum (i.e., an image) using the method in [6], and finally,
we can turn the speech signal into the log Mel-spectrogram
with the size of 64 × 64 × 3 containing three channels (static,
δ, and δ − δ), which is the input of the DCNN. In the case of
facial expressions, similar to the speech emotions and method
in [6], we can obtain the facial expression. In this experiment,
we use an average of face expression sequence and regarded
it as an input of the DCNN.

Then, for the emotion cognition model, we first use AlexNet
DCNN to extract the features of the above processed speech
and facial data, next combine the extracted features, and,
finally, emotion label will be acquired, as shown in Fig. 5.
The AlexNet DCNN architecture includes five convolution
layers (Conv1-Conv2-Conv3-Conv4-Conv5), two maximum
pooling layers (Pool1-Pool2), and two fully connected layers.
In this paper, the DCNN is trained by the stochastic gradient

descent (SGD) training method. Owing to a small volume of
speech and facial expression emotion data, the initial network
is trained on the large-scale ImageNet data set. The specific
training process is as follows. First, the AlexNet network
parameters are initialized, and then the network parameters
are fine-adjusted by the enterface05 data set.

Furthermore, we collect the facial expression labeled data
using a WebChat application, as shown in Fig. 6. In Fig. 6,
it can be seen that the WeChat includes five parts, game home
page, prompt page, opening the camera and tasking the photos,
facial expression collection, and game score. Using WeChat,
we collected users’ facial expression and corresponding labels.
Specifically, we derive the facial expressions data collected by
Wechat and process them using the method of facial expression
in Fig. 5.

B. Experimental Results and Analysis

Based on the LLEC system test bed, we give the experi-
mental results and analysis from the following three aspects,
i.e., emotion detection with labeled data and unlabeled data,
the evaluation of LLEC method, and average time delay. The
first and second are using the collected emotion data. The
third is using the robot-based emotion detection and interaction
system.
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Fig. 6. Facial Emotion data collection. (a) Game home page. (b) Prompt page. (c) Opening the camera and taking the photos. (d) Facial expression collection.
(e) Game score.

Fig. 7. Experiment results. (a) Confusion matrix of the original labeled data set. (b) Confusion matrix after adding the unlabeled data to the data set using
LLEC.

1) Emotion Detection With Labeled Data and Unlabeled
Data: In this experiment, we randomly divide the data instance
in the enterface05 data set into a training set and a test set. The
ratio of the training set to the test set is 3:1. For the data in
the training set, we randomly divide it into labeled data and
unlabeled data, where the ratio of labeled data to unlabeled
data is 1:2. To be specific, labeled data are used to train the
initialization model, and the unlabeled data are labeled based
on the initialization model and the LLEC algorithm. The test
set is utilized to evaluate the accuracy of the model.

The emotion detection accuracy using only the labeled
data is presented in Fig. 7(a), where the x-axis is the actual
emotional label, and the y-axis represents the predicted emo-
tional label. The diagonal line in Fig. 7(a) represents the
probability of emotion detection accuracy, and other parts
show the probability of emotion detection error. In Fig. 7(a),
it can be seen that the accuracy of angry detection is 0.81.
The probability of recognizing anger as happiness is 0.16 and
the probability of recognizing anger as neutral emotion is
0.03. The emotion detection accuracy after using the LLEC
algorithm is presented in Fig. 7(b), wherein it can be seen that

the accuracy of emotion detection is improved. For instance,
the detection accuracy of angry is 0.84, which is a better result
than when the LLEC is not used. Thus, through the use of
unlabeled data, we improve the accuracy of emotion detection.

2) Evaluation of LLEC Method: We give the comparison of
emotion detection accuracy between the following four LLEC
algorithms: decision layer-based LLEC, feature layer-based
LLEC, hybrid LLEC, and enhanced hybrid LLEC. In this
experiment, we first train the model with 323 labeled data in
the training set of the enterface05 data set. Then, in each time,
we add 100 unlabeled data instances from enterface05 data set
and WeChat data set into training set, and use the four algo-
rithms mentioned above to label the unlabeled data. The new
labeled data are added to the new training set, and the accuracy
of emotion detection is based on the DCNN algorithm. The
result is shown in Fig. 8. The x-axis represents the number of
unlabeled data instances, and the y-axis represents the average
accuracy of the six emotional classes.

From Fig. 8, we can conclude that enhanced hybrid
LLEC has the highest emotion detection accuracy. Hybrid
LLEC, decision layer-based LLEC, and feature layer-based

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on July 08,2020 at 06:08:51 UTC from IEEE Xplore.  Restrictions apply. 



CHEN AND HAO: LLEC 2439

Fig. 8. Emotion detection accuracy comparison among decision layer-based
LLEC, feature layer-based LLEC, hybrid LLEC, and enhanced hybrid LLEC
under different numbers of unlabeled data instances.

Fig. 9. Emotion detection accuracy comparison among active learning, self-
training, cotraining, and LLEC under different numbers of unlabeled data
instances.

LLEC have little difference. This is because decision
layer-based LLEC and feature layer-based LLEC give the
labels of unlabeled data at the decision layer and the feature
layer, respectively, which may cause a wrong label. Hybrid
LLEC can make full use of the decision layer and the feature
layer, so the utilization of unlabeled data is further enhanced.
Enhanced hybrid LLEC not only makes full use of the hybrid
LLEC but also can further filter the newly added label data;
thus, the accuracy of its emotional detection is the highest.

Furthermore, we compare the enhanced hybrid LLEC algo-
rithm proposed in this paper with active learning, self-training,
and cotraining, and give the accuracy of emotion detection
under different numbers of unlabeled data. From Fig. 9, we can
see that the LLEC algorithm proposed in this paper is the
best. This is because the proposed LLEC has two advantages:
1) it can validate emotion data from two modalities of face
and image and 2) it can further filter the unlabeled data of
automatic labeling to validate the accuracy of the label data.

3) Average Delay Comparison: We give the average delay
of the LLEC algorithm in the following two situations,
i.e., LLEC in edge cloud and LLEC in the cloud.

Fig. 10. Time average delay comparison of LLEC algorithm in edge cloud
and cloud.

1) LLEC in edge cloud: as shown in Fig. 3, the LLEC algo-
rithm runs in the edge cloud, and the DCNN algorithm
runs in the cloud. Specifically, we regard robot as the
sensing node, small server as the edge cloud, and regard
inspur data center as the remote cloud.

2) LLEC in cloud: the LLEC and DCNN algorithms run
in the cloud. We give the average delay of 10 times
running of LLEC in the edge cloud and LEC in the
cloud under different numbers of unlabeled data. From
Fig. 10, we can obtain that the average delay of LLEC
in edge cloud is lower than that of LLEC in cloud. This
is because LLEC in edge cloud can filter unlabeled data,
thus reducing transmission delay of unlabeled data.

V. CONCLUSION

Due to a large amount of unlabeled data in emotion detec-
tion, we propose a new method for emotion cognition called
the LLEC. The proposed LLEC first trains the neural network
model by using a small amount of multimodal labeled data.
Then, it labels the unlabeled data automatically and adds it to
the training set using the enhanced hybrid label-less learning,
to further improve the model detection accuracy. The proposed
method is validated by the real test bed. The experimental
results show that the LLEC algorithm can improve the emotion
detection accuracy significantly. In our future work, we will
consider reducing the complexity of the LLEC algorithm and
further improve the accuracy of emotion detection by using
deep reinforcement learning [29] for emotion detection.
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