
2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2020.3047417, IEEE
Transactions on Network Science and Engineering

1

Intelligent Task Caching in Edge Cloud via
Bandit Learning

Yiming Miao, Yixue Hao, Hamid Gharavi, Life Fellow, IEEE,
Min Chen, Fellow, IEEE, Kai Hwang, Life Fellow, IEEE

Abstract—Task caching, based on edge cloud, aims to meet the latency requirements of computation-intensive and data-intensive
tasks (such as augmented reality). However, current task caching strategies are generally based on the unrealistic assumption of
knowing the pattern of user task requests and ignoring the fact that a task request pattern is more user specific (e.g., the mobility and
personalized task demand). Moreover, it disregards the impact of task size and computing amount on the caching strategy. To
investigate these issues, in this paper, we first formalize the task caching problem as a non-linear integer programming problem to
minimize task latency. We then design a novel intelligent task caching algorithm based on a multi-armed bandit algorithm, called
M-adaptive upper confidence bound (M-AUCB). The proposed caching strategy cannot only learn the task patterns of mobile device
requests online, but can also dynamically adjust the caching strategy to incorporate the size and computing amount of each task.
Moreover, we prove that the M-AUCB algorithm achieves a sublinear regret bound. The results show that, compared with other task
caching schemes, the M-AUCB algorithm reduces the average task latency by at least 14.8%.

Index Terms—Edge Caching, Task Caching, Edge Cloud Computing, Bandit learning

F

1 INTRODUCTION

W ITH the development of cloud computing technologies,
mobile devices are capable of offloading computing tasks

to a remote cloud in order to overcome the limitation of a
mobile device’s computing ability and battery capacity [1], [2].
In addition, the increasing popularity of applications, such as
virtual reality and augmented reality, demands more computing
and storage resources for mobile devices. These applications are
generally delay-sensitive and computation-intensive [3]. Thus,
when utilizing traditional mobile cloud computing technologies, it
cannot meet the necessary requirements to offload these applica-
tions. In particular, due to long network distances and congestion
of back-bone networks, offloading tasks to the cloud can cause a
substantial delay that can impact the quality of service (QoS) [4].

Fortunately, by offering computing and storage capabilities
on access networks, edge computing can play a crucial role
in executing computing-intensive and data-intensive tasks at the
network edge [5]. Thanks to a shorter distance between the edge
server and mobile device, edge computing enables low delay,
as well as better exploitation of users’ information. Caching the
tasks or contents requested by a mobile device on the edge cloud
would make it possible to meet the requirements of delay-sensitive
tasks [6], [7]. Given virtual reality scene rendering as an example,
we can cache the scene rendering and popular videos on an edge

• Y. Miao and Y. Hao are with School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China
(yimingmiao@hust.edu.cn, yixuehao@hust.edu.cn).

• M. Chen is with School of Computer Science and Technology, Huazhong
University of Science and Technology, Wuhan 430074, China and the
Shenzhen Institute of Artificial Intelligence and Robotics for Society,
Shenzhen 518172, China. (minchen2012@hust.edu.cn).

• H. Gharavi is with National Institute of Standards and Technology (NIST),
Gaithersburg, MD 20899-8920 USA.(hamid.gharavi@nist.gov).

• K. Hwang is with the Shenzhen Institute of Artificial Intelligence and
Robotics for Society, and with School of Data Science (SDS), The Chinese
University of Hong Kong, Shenzhen (CUHK-SZ), Shenzhen 518172, China.
(hwangkai@cuhk.edu.cn).

cloud during a non-peak period that can reduce the latency of a
mobile device to obtain the contents.

Specifically, there are two categories of caching in edge
clouds: content caching and task caching. Content caching refers
to caching contents such as popular videos on the edge cloud [8],
[9]. For instance, when a mobile device requests contents, edge
cloud can directly deliver the requested content to the user’s device
given that such content has already been cached on the edge
cloud. Consequently, this reduces the latency of a mobile device
to obtain its requested contents. Content caching has been widely
investigated, including where to cache [10], what to cache [11],
and how to cache [12], [13].

The task caching aspect of the edge cloud is concerned mainly
with caching the code and the processing environment needed for
task execution on the edge cloud [6], [14]. Furthermore, existing
research indicates that caching a task on the edge cloud reduces
the task duration as well as the energy consumption of mobile
devices [15], [16]. Nonetheless, despite recent progress, the task
caching strategies are still facing a number of challenges.

• Unknown Task Demand: Existing works in task caching
either assume the task demand is known a prior [17],
or using the existing prediction schemes based on the
contents [18]. By comparison, we assume the task de-
mands are unpredictable. This is because, in contrast to
the content caching, a task request mode depends highly
on the users operational environments (such as users’
personalized task demand, time, users’ location), which
are hard to predict. Moreover, the network environment is
dynamic and the transmission of tasks can not be predicted
accurately.

• Task Heterogeneity: Different tasks have diverse size and
required computations, resulting in different task latency.
Thus, the task caching scheme needs to take into consid-
eration both the size of a task and its computation amount.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on December 27,2020 at 02:41:41 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2020.3047417, IEEE
Transactions on Network Science and Engineering

2

• Limited Computing and Caching Resource: While the
edge cloud has the advantage over mobile devices in terms
of caching capacity and computing power, this would be
at the expense of not being able to cache all types of
computing tasks.

To address the above challenges, in this paper, we investigate
the online task caching scheme under a realistic assumption of
not knowing the task request pattern of a mobile device, while
incorporating the influence of the heterogeneous task and the
limited resource of the edge cloud. In our approach, we initially
formalize the task caching problem on the edge cloud as a non-
linear integer programming problem to minimize task latency.
Then, to solve the problem we propose an intelligent task caching
algorithm based on a multi-armed bandit algorithm, called M-
adaptive upper confidence bound (M-AUCB). This algorithm can
achieve an optimal compromise between exploration (i.e., to cache
the task with unknown latency to learn the task request pattern)
and exploitation (i.e., to cache the task with high estimated user
demand to minimize the task latency). We further analyze the
bound losses of the M-AUCB algorithm and its closeness to
the optimal caching strategy (i.e., with prior knowledge of the
task demand). Finally, we present the results by verifying the M-
AUCB’s ability to minimize the delay of the computing task.

In summary, the main contributions of this paper include:

• Formalizing the task caching problem in order to minimize
the task latency as a non-linear integer programming
problem. The problem will factor in the task request
pattern, which is usually unknown at the edge cloud. It
also incorporates the effect of the task size and computing
amount.

• Developing an intelligent task caching algorithm, called
M-AUCB algorithm. The proposed caching strategy is
capable of learning the pattern of task request from a
mobile device online. In addition, it provides an ability
to adjust the caching strategy dynamically according to
the size and computing amount of a task. Furthermore, we
prove the boundedness of the algorithm and it is closeness
to the optimal caching strategy.

• Carrying out experiments to evaluate the performance of
the intelligent task caching schemes. The experimental
results indicate that our scheme can reduce the average
task latency by at least 14.8%.

The rest of the paper is organized as follows. In Section 2, we
review related works. The system model and problem formulation
are presented in Section 3. In Section 4, we give the intelligent
task caching scheme. Our experimental results and discussions are
given in Section 5. Finally, Section 6 presents the conclusion of
the paper.

2 RELATED WORK

With the rapid growth of mobile devices and new mobile appli-
cations (e.g., augmented reality and autonomous driving), remote
cloud centric systems have difficulty in meeting the computing
requirements of low-latency applications. Fortunately, with the
development of edge cloud, the servers deployed on the edge of
the network are close to the users, and have certain storage and
computing capabilities, which can meet the application with low
latency. Therefore, the code and running environment required
by mobile applications can be cached in edge cloud (i.e., task

caching) in advance in off-peak hours, which can achieve localized
task processing and reduce the latency. For example, for the
augmented reality application, visual recognition models can be
cached in the edge cloud in advance, so that visual classification
can be performed before the augmented information is delivered
to the user.

Specifically, task caching refers to cache the code and running
environment needed for task execution. Task caching is also
known as task deployment, service caching and service placement.
For task caching, a key issue is which tasks are cached in the
edge cloud to minimize the delay for user. To solve this problem,
in [14], through joint optimization of task caching and offloading,
the energy efficient scheme is proposed. Furthermore, considering
the limited storage, communication and computing resources of
the edge cloud, it cannot cache all tasks. The authors of [20]
and [19] use sub-modular optimization to give the near-optimal
service placement and request scheduling scheme. For upcom-
ing computations, Mohan et al. [21] propose an efficient task
deployment scheme using the edge and fog resource. Although
the limitation of storage, communication and computing resources
of the edge cloud is considered in these works, it is assumed that
the user’s request to the task is the static request mode (i.e., the
probability of the user’s request to different tasks is constant and
known). In practice, different users’ requests for different tasks
vary with time (i.e., dynamic request mode). In other words, the
user’s request pattern for tasks is priori unknown and time-varying.

Considering that the user’s requests for tasks are priori un-
known and time-varying, it is a challenge to cache which tasks
in the edge cloud. In order to solve this problem, there are two
schemes that exist of dynamic request pattern in content caching:
(i) predict the request pattern; (ii) use an online algorithm to make
decisions based on observed user’s requests in the edge cloud. For
the first scheme, a lot of works have designed a content caching
scheme through the prediction of content popularity. However,
this scheme needs a training set with known content popularity
and can only learn the content popularity in the training phase.
Furthermore, compared with the content, task requirements are
more difficult to predict because they are more diverse and time-
varying. Therefore, this scheme is not suitable for task caching.

Considering the second scheme, an optimal task caching
scheme is achieved through online learning of content requests.
Multi-armed bandit learning (MAB) is an effective online learning
strategy and it has been widely used in wireless networks, such as
content caching in edge cloud, online network slice broker and
mobility management in ultra dense networks. This is because
MAB can make nearly optimal online decisions for uncertain
information (such as user’s request pattern) by balancing explo-
ration and exploitation, that is, by learning unknown information
(i.e., exploration) and using learned information (i.e., exploration).
For example, for content caching, Pascos et al. [22] designed an
online gradient ascent content caching scheme for non-stationary
file requests. It can minimize the learning regret and ensure the
system’s performance. The authors give context-aware proactive
content caching using the contextual MAB algorithm in [13]. For
service caching, considering that the service provider needs to
pay edge cloud for service placement, Chen et al. [23] designed
a spatio-temporal edge service placement scheme by using bandit
learning, which can maximize the maximum utility of the service
provider.

As opposed to existing works, in this paper, we model the task
caching problem as a MAB problem. We not only consider task

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on December 27,2020 at 02:41:41 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2020.3047417, IEEE
Transactions on Network Science and Engineering

3

TABLE 1
Comparison of several task caching schemes

Scheme in Online/ Size-aware Computation Demand Category
References Offline Learning -aware uncertain
[19] Offline Yes Yes No Task caching

[20] Offline Yes Yes No Task caching

[21] Offline Yes No No Task caching

[14] Offline Yes No No Task caching

[22] Online Yes No Yes Content caching

[13] Online Yes No Yes Content caching

[23] Online No No Yes Task caching

M-AUCB Online Yes Yes Yes Task caching

demand as prior unknown, but also consider the heterogeneity of
task, including the size and computing amount. By observing the
number of user requests to the tasks in real time, our algorithm
can learn the request pattern of tasks online, and adapt to the task
size and computing amount. Furthermore, we give a comparison
between the scheme proposed in this paper and the related works,
as shown in Table 1. From the table, we can see that the M-AUCB
scheme has better performance.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we give the system model and problem for-
mulation. Specifically, we give the task caching model under
consideration the limitation of the computing and storage capacity
of edge cloud, and the unknown task request pattern of mobile
devices.

3.1 System Overview

In this paper, we consider task caching in an edge computing
ecosystem that includes multiple mobile devices communicating
with an edge cloud over a wireless channel. To explain task
caching in edge cloud more clearly, we give an example, as shown
in Fig. 1. In this figure, we assume the remote cloud (i.e., cloud
service) has four tasks (i.e., services). Considering the limited
computing and storage capacity of the edge cloud, it can only
cache one task. There are two mobile device users within the
coverage of edge cloud, Alice and Bob, where Alice requests tasks
1 and 2, and Bob requests tasks 1 and 3. When task 1 is cached on
edge cloud, Alice and Bob can obtain the requested task 1 through
edge cloud. The requested tasks 2 and 3 need to be processed in
the remote cloud. Thus, when the edge cloud receives the user’s
task request, it needs to decide which task to cache on the edge
cloud, which can minimize the latency of task acquisition.

Specifically, each mobile device requests a computing task,
e.g., video streaming, virtual reality, and/or mobile gaming. Con-
sidering that these computational tasks are computing-intensive
and data-intensive tasks and the computing capacity and battery
life of mobile devices are limited, we assume that mobile devices
themselves cannot handle this task. Thus, similar as the works
in [19], [20], in this paper we only consider task caching and
processing on edge cloud or remote cloud. We assume that the
edge computing system consists of N mobile devices, K tasks
in the remote cloud (e.g., augmented reality) and one on the
edge cloud. We denote the set of mobile devices and tasks by

TABLE 2
The summary table of importation notations

Notation Meaning
N set of mobile devices
K set of tasks
ωk computation amount of the task Qk

sk input data size of the task Qk .
atk indicates whether the task Qk is cached on the edge cloud.
dtn,k the number of request of mobile device n for the task Qk in

time slot t.
Nt the number of mobile devices that can access the edge cloud

at time slot t.
λtk the number of request for task Qk at time slot t.
fkec the CPU frequency of the edge cloud assigned to the task

Qk .
fkrc the CPU frequency of the remote cloud assigned to the task

Qk .
τ t the wireless transmission rate.
rt1 the backbone transmission rate.
rt2 the round-trip time to the remote cloud.
C the maximum storage capacity of edge cloud.
Fec the maximum processing power of edge cloud.

N = {1, 2, · · · , N}, K = {1, 2, · · · ,K}, respectively. Further-
more, we describe the main notations used in this paper in Table 2.

We should point out that, compared with the remote cloud,
the edge cloud has a limited computing and storage capacity.
Furthermore, with respect to offloading the computation tasks,
the edge cloud needs to have sufficient computing and storage
resources in order to execute them. Therefore, we assume that
the edge cloud cannot execute all the tasks requested by a mobile
device (i.e., when a service requires handling a task, which is not
cached on the edge cloud and the task cannot be executed). Under
these conditions, such a task will be referred to the remote cloud
for offloading and processing. Therefore, to reduce task latency
as much as possible, we need to identify which task should be
cached on the edge cloud. Finally, for the sake of implementation,
we consider that the task caching system operates in discrete time
t = 1, 2, · · · , T , where T denotes the finite time horizon.

3.2 Computation Task Caching

We first give the description of the computation task where we
consider an independent task caching. According to [24], [25],

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on December 27,2020 at 02:41:41 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2020.3047417, IEEE
Transactions on Network Science and Engineering

4

Tasks

Remote cloud

Bob

Task 1 is cached and processed on the edge

cloud. Task 2,3 is not cached and has to be

offloaded to cloud.

3 41 2

Edge cloud

Cache Task 1

 in edge cloud

Wireless link
Backbone

Mobile devices

Alice

1

Fig. 1. An example of task caching in edge cloud.

each task, Qk, can be described by two parameters: required
computation amount ωk and input data size sk, where ωk [cycles]
is the computing amount of the task (i.e., the total number of CPU
cycles needed to complete the task) and sk (in bits) is the size of
the computation task input data (i.e., the amount of data content,
such as the processing code and data to be delivered to the edge
cloud or cloud). Moreover, we can obtain the value of ωk and
sk through profiling the task execution [26]. For example, as for
video transcoding, ωi is the computing resource needed in video
transcoding and si is the data size of video.

Furthermore, compared to the remote cloud, which can process
all computing tasks, the edge cloud has limited computing and
storage capacity. Therefore, it can only cache some of the tasks.
Under these assumptions, a user’s task cached on the edge cloud
is processed by the edge cloud. When the task is not cached on
the edge cloud, it needs to be processed in the remote cloud. Thus,
we define the integer task caching decision variable at time slot t
as atk ∈ {0, 1}, where,

atk =

{
1 The task k is cached on edge cloud in time slot t,
0 The task k is not cached on edge cloud in time slot t.

(1)
Because of the limitation of the storage capacity of edge cloud,

we assume that edge cloud has storage capacity C (in bits) that
can be used to store the code and data. Therefore, task caching
decisions are constrained by the following edge cloud storage
capacity.

K∑
k=1

atksk ≤ C, ∀t. (2)

3.3 Task Latency

Considering the mobility of users, based on the [17], we assume
that the number of users connecting to the edge cloud in different
time slots is different, while the number of users in the same time
slot is constant due to the low mobility of users with shorter time
slots. Thus, let Nt denote the number of mobile devices that can
access the edge cloud at time slot t. Moreover, let dtn,k denote the
number of requests of mobile device n for the task Qk at time slot
t. Therefore, we can obtain the number of requests for task Qk on
edge cloud at time slot t λtk is:

λtk =
Nt∑
n=1

dtn,k. (3)

Although the user’s request can be predicted by well-studied
learning algorithm, the number of mobile devices accessing the

edge cloud Nt is not the same in different time slots due to the
users’ mobility. Thus, in real systems, it is difficult to predict
the number of requests from edge clouds, so we assume that the
number of requests from edge clouds prior is unknown.

Next, we introduce the total task latency by dividing it into the
following two parts, i.e., communication latency and computation
latency, as shown in the Fig. 2. Specifically, the communication
latency includes a delay for offloading a computation task to the
edge cloud through wireless link or remote cloud through wireless
and wired link. Moreover, the communication delay from a mobile
device to the edge cloud is much shorter than that to the remote
cloud. For wireless link, let τ t denote the wireless transmission
rate at time slot t. For wired link, let rt1 denote the backbone
transmission rate at time slot t and rt2 denote the round-trip time to
the remote cloud at time slot t. Thus, when the task Qk is cached
on edge cloud, the communication latency is sk/τ t. Otherwise,
the communication latency is (sk/r

t
1 + rt2).

However, due to the dynamic nature of the network environ-
ment, the data transmission rate can not be precisely estimated.
Furthermore, computation latency corresponds to the time that is
required to execute a task on the edge cloud or remote cloud.
Let fkec and fkrc represent the CPU frequency of the edge cloud
and remote cloud assigned to the task Qk, respectively. Note
that under the same load conditions, the CPU frequency of the
cloud is usually greater than the frequency of the edge cloud.
Hence, similar to [4], [25], we consider that fkrc > fkec. Thus, the
computation latency of task Qk processed in the edge cloud and
the remote cloud is ωk/f

k
ec and ωk/f

k
rc, respectively.

According to the above discussion, if a task is not cached
on the edge cloud, it cannot be executed. Consequently, the
computation task should be offloaded to the remote cloud. More
specifically, only when atk = 1, the computation task can be exe-
cuted on the edge cloud. Otherwise (atk = 0), the computation task
will be offloaded to the remote cloud for processing. Therefore, the
task latency of mobile device n at time slot t can be expressed as:

Dt
n(atk) =

K∑
k=1

dtn,k

(
wk

fkec
+
sk
τ t

)
if atk = 1,

K∑
k=1

dtn,k

(
wk

fkrc
+
sk
τ t

+
sk
rt1

+ rt2

)
if atk = 0.

(4)
Furthermore, considering the limitation of edge cloud com-

puting capacity, we assume the maximum processing power of
edge cloud is Fec (in CPU cycles). When tasks are cached on
edge cloud, task caching decisions are limited by the following

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on December 27,2020 at 02:41:41 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2020.3047417, IEEE
Transactions on Network Science and Engineering

5

Communication latency Computation latency

Communication

latency

Tasks

1 2

Cloud Server

 Mobile devices send task request to cloud server i f the edge cloud does not cache the requested

task

3 41 2
 Request

Edge cloud

Backbone

Mobile
devices

Task cached latency

Mobile devices can send task request to nearby edge cloud if the edge cloud

caches the task.

Task not cached latency

Computation
latency

1

The challenge of task
caching in edge cloud :

· Unknown task demand
· Limited caching capacity

and computing power
· Heterogeneous data size

and computing amount

Fig. 2. The illustration of task latency model.

computational capability:

K∑
k=1

atkf
k
ec ≤ Fec, ∀t. (5)

3.4 Problem Formulation

For task caching decision making, our approach is based on
minimizing the task latency by taking the caching and computing
capacity of the edge cloud into consideration. Thus, the problem
can be expressed as:

P1 :minimize
1

T

T∑
t=1

Nt∑
n=1

Dt
n(atk) (6)

subject to C1 :
K∑

k=1

atksk ≤ C,∀t ∈ T . (7)

C2 :
K∑

k=1

atkf
k
ec ≤ Fec, t ∈ T . (8)

C3 : atk ∈ {0, 1},∀t ∈ T ,∀k ∈ K (9)

where the objective function computes the minimal task latency.
The first constraint (C1) signifies that task caching cannot exceed
the maximum caching capacity. The second constraint (C2) indi-
cates the computing resources allocated to tasks should not exceed
the total computing resources of edge cloud whereas constraint
(C3) shows that the task is cached on the edge cloud or not.

For the above optimization problem P1, assuming that we
already know all the variables, the above optimization problem is
a traditional 0-1 optimization problem, which can be solved by
the traditional algorithm [25]. However, in practice, edge cloud
does not know the request pattern of user tasks, so the traditional
algorithm is not applicable. In this paper, we will use online
learning strategy to solve the optimization problem.

4 INTELLIGENT TASK CACHING SCHEME

In order to solve the above optimization problem, we use the MAB
theory to develop an intelligence task caching scheme, called the
M-AUCB algorithm, and also analyze the bound of the M-AUCB
algorithm.

4.1 M-AUCB Algorithm

In order to solve the optimization problem P1, we transform the
task caching problem to the MAB problem. To explain this, we
first give the description of the MAB problem. The MAB problem
refers to a situation where a gambler faces with a slot machine
with multiple arms, and when each arm of the machine is played,
a reward from unknown statistical functions is obtained. At the
beginning, the gambler does not know anything about the reward
for the arms. Each time the gambler plays, he makes a decision to
play one of the arms, and the machine gives him a reward. The
purpose of gambler is to maximize the reward.

Lemma 1. The task caching problem (P1) can be match to the
MAB model with new variations, i.e., (i) multi-players, (ii)
limited budget (i.e., limited storage and computing capacity
of edge cloud), and (iii) adaptive to the size and computing
amount of the task.

Proof: The task caching problem matches the MAB model.
Specifically, we first give the similarities between task caching
and MAB model. Each task is equivalent to an arm. When the
task is cached on the edge cloud, it is equivalent to the arm being
played by the gambler. The caching agent (i.e., intelligent task
caching algorithm deployed on the edge cloud) is equivalent to
the gambler. And at time slot t, caching agent does not know
the number of task requests and the corresponding rewards, which
corresponds to the fact that the gambler does not know the benefits
of each arm. In addition, when the task is cached on edge cloud,
the delay can be reduced. Thus, our goal is to minimize the task
latency same as maximizing the reward of MAB model.

Then, we give the differences between task caching and MAB
model. (i) Edge cloud can cache multiple tasks at a time, so it
is equivalent to multi-players playing the arm at the same time,
which corresponds to the constraint C3 in optimization problem
P1. (ii) Considering the limited storage and computing capacity
of edge cloud, it can only cache the limited task at a time, which
corresponds to the constraint C1 and C2 in optimization problem
P1. (iii) Since different tasks have different sizes and required
computation amount, we need to consider the effect of task size
and computing amount on the caching strategy (i.e., the algorithm
can adapt to the size and computing amount of the task).

The main objective of the proposed MAB-based task caching
scheme is to cache M tasks out of K tasks on the edge cloud
within each time slot by exploiting the UCB algorithm, where
M is the maximum number of tasks that satisfy the edge cloud

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on December 27,2020 at 02:41:41 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2020.3047417, IEEE
Transactions on Network Science and Engineering

6

Caching agent

Task

demand

Caching decision

Task size

Observation of task demand, task size and computation amount

Minimize task

 latency

Computing

amout

Edge cloudTask state

Bandit learning

Time

Time

Time

t

t

t

Reward

Fig. 3. The framework of intelligent task caching in edge cloud.

computing and storage capacity. Fig. 3 illustrates the framework of
intelligent task caching on edge cloud. As shown in the Fig. 3, the
caching agent observes the task demand, task size and computation
amount, and decides a caching decision on the edge cloud using
MAB theory. Then, the caching agent receives the task latency
(i.e., reward) based on the objective. In this paper, our goal is to
minimize the task latency, so the less reward, the better. Next, we
describe the M-AUCB task caching algorithm in detail.

Given a total number of time slots T and discrete time t ∈
{1, 2, · · · , T}, for time slot t, we denote Dt

j =
∑Nt

n=1D
t
n(atj =

1) as the total latency of all tasks as soon as the j-th task is cached
on the edge cloud within the tth time slot. Thus, the Dt

j can be
expressed as:

Dt
j =

Nt∑
n=1

Dt
n(atj = 1) =

Nt∑
n=1 K∑

k=1,k 6=j

dtn,k

(
wk

fkrc
+
sk
τ t

+
sk
rt1

+ rt2

)
+ dtn,j(

wj

f jec
+
sk
τ t

)

 .
(10)

Next, we describe the M-AUCB algorithm. In the initialization
stage, M-AUCB guarantees that each of the total K tasks will be
cached on the edge cloud at least once. This is mainly to make
sure that each task can be explored. After the initialization, in the
tth time slot, the M-AUCB algorithm calculate the average task
delay cached on the edge cloud in the previous time slots (i.e.,
from time slot 1 to t− 1). Accordingly, we can show the average
task latency for task Qj Dt−1,j as:

Dt−1,j =

∑t−1
i=1 D

i
j

Nt−1,j
, (11)

where Nt,j is the number of times that task Qj has been selected
in the last t time slots. Furthermore, in order to consider the impact
of task size and computation amount on the task caching, we
classify tasks and normalize them to (0.5, 2

3) [27]. This is because
when the task size is larger or the computational requirement of
the task is larger, caching it will result in longer task latency. To
be specific, we denote ŝj and ω̂j as follows:

ŝj = max(0.5 + ε1,
sj

1.5 maxj∈K sj
), (12)

ω̂j = max(0.5 + ε2,
ωj

1.5 maxj∈K ωj
), (13)

where the parameters ε1 and ε2 are constant, and ε1, ε2 ∈ (0, 0.1).
These parameters represent the sensitivity of our algorithm to the

size and computation requirement of the task, e.g., when ε1 is
small, the algorithm will be more sensitive to the size of the task.

Second, in the caching stage, the aim is to chooseM out of the
K tasks in order to minimize the total task latency. Specifically,
we select M tasks based on the D̂t,j , which is defined as:

D̂t−1,j = Dt−1,j −

√
2ŝjω̂j log (Mt)

Nt−1,j
. (14)

This formula is based on the traditional UCB arm selection
formula [27]–[29]. It shows the balance between exploration and
exploitation, i.e., the task caching scheme balances the exploita-
tion of a known user’s task latency in the past and the exploration
of the upcoming user’s request. To be specific, from the above
formula, we can see that a smaller Dt−1,j (i.e., the average time
delay of the task Qj) or Nt−1,j (i.e., the number of times that the
task Qj is selected) can result in a smaller D̂t−1,j . Under these
conditions, the task Qj can be easily selected. This indicates that
the M-AUCB algorithm can be invoked to minimize the average
task latency (i.e., exploiting a cache strategy that minimizes
latency). Consequently, this formula allows the tasks which have
not been explored (i.e., when Nt−1,j is small) sufficiently to
be executed. Therefore, by choosing a suitable M tasks which
produces the smallest D̂t−1,j , a better task caching scheme can
be exploited.

Furthermore, our algorithm can adaptively take into account
the size and computing amount of each task. This is because
from (14), we can observe that when the task size or the required
computing amount is large, exploring this task will consume more
edge cloud resources. So we reduce its number of explorations and
increase exploitations frequency. Thus, heterogeneous tasks have
different caching strategies.

Further details of the M-AUCB algorithm is shown in Algo-
rithm 1 (i.e., steps 1-17). As indicated, a task j (i.e., task Qj)
is selected to be cached in each time slot by updating Dt

j and
Nt−1,j . To be specific, steps 2-5 are the initialization stage. In
steps 7-8, we calculate the value of D̂t,j according to (14) for
choosing a task. In step 9 and step 14, we denote at,i as the i-th
task chosen among K tasks in time slot t, and choose M task to
minimize the task latency D̂t,j .

4.2 Regret Analysis
In this section, we analyze the regret of M-AUCB algorithm and
its upper bound. Consider that user request tasks are independent
of each other, thus, we assume that the losses brought by each

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on December 27,2020 at 02:41:41 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2020.3047417, IEEE
Transactions on Network Science and Engineering

7

Algorithm 1 M-AUCB Algorithm for Task Caching
Input: T , M
1: for t = 1, · · · , T do
2: if Any task j ∈ K has not been cached on the edge cloud

then
3: cache task j on the edge cloud
4: update Nt,j = Nt−1,j + 1

5: update Dt,j =
Dt−1,jNt−1,j+Dt,j

Nt,j

6: else
7: Calculate the selection function of each candidate task

j ∈ K
D̂t−1,j = Dt−1,j −

√
2ŝj ω̂j log (Mt)

Nt−1,j

8: atj = arg min
j

D̂t−1,j

9: while
∑K

j=1 a
t
jsk ≤ C and

∑K
j=1 a

t
jf

k
ec ≤ Fec do

10: M=1
11: ati = arg min

at
i∈K\∪

i−1
j=1a

t
i

D̂t−1,at
i

12: update Nt,at
i

= Nt−1,at
i

+ 1

13: update Dt,at,i =
Dt−1,at

i
Nt−1,at

i
+Dt,at

i

Nt,at
i

14: update M=M+1
15: end while
16: end if
17: end for

task are independent and identically distributed (i.i.d.) over time
and are independent of each other. Furthermore, we denote the
expectation of Dt

j as EDt
j) = µj . Furthermore, we define µ∗ and

j∗ as:

µ∗ = min
j∈K

µj , (15)

j∗ = arg min
j∈K

D̂t,at
i
, (16)

where the j∗ is the optimal caching task.
Based on the above, we define learning regret (i.e., the

difference between the latency of the selected caching task and
the minimum latency achieved by the optimal caching task) Rt as
follows:

Rt =
K∑
j=1

Nt,j(D
t
j − µ∗). (17)

Thus, the expected learning regret E (Rt) can be expressed
as:

E (Rt) =
K∑
j=1

E (Nt,j) ∆j , (18)

where ∆j = µj − µ∗ indicates the gap between the optimal
caching task and task Qj .

Furthermore, we can obtain the expected cumulative learning
regret as follows:

RT =
T∑

t=1

E(Rt) (19)

Then, we can obtain the upper bound of the algorithm accord-
ing to the following theorem:

Theorem 1. The expected cumulative learning regret of the M-
AUCB algorithm has an upper bound as:

E (Rt) 6
K∑
j=1

(
8(ŝjω̂j)

2
log (Mt)

∆j
+O(1)

)
. (20)

Proof: See Appendix A.
From Theorem 1, we can see that the M-AUCB algorithm is

bounded. Furthermore, we can obtain that as the number of task
(i.e., K) and the maximum number of tasks that the edge cloud
can cache (i.e., M) increase, the learning regret of the M-AUCB
increases.

5 PERFORMANCE EVALUATION

In this section, we evaluate the learning regret, cumulative learning
regret and task latency of the proposed M-ACUB algorithm
through experiments.

5.1 Experiment Setup
In our experiments, we consider a system that contains an edge
cloud and a set of mobile devices performing computation-
intensive tasks. The edge cloud is deployed near a wireless access
point (e.g., cellular base station or Wi-Fi access points). The
mobile devices connect to the edge cloud via wireless channel.
According to [30], we set the wireless transmission rate as
τt = 1/

(
log2(1 + ptht/

√
d3
t)
)

, where pt is the transmission
power at time slot t, ht is the noise power at time slot t, and
dt is the distance between user and edge cloud. The edge cloud
connects to the remote cloud through the Internet. According
to [25], we set the backbone transmission rate is [2, 6] Mb/s and
the the round-trip time is 200 ms.

For the task, we give the evaluation results by a real-world
video stream analysis [31]. Specifically, the video stream includes
500 video tasks. We select Full HD video with 1920 × 1080
video resolution. Moreover, for the number of requests for a task,
we use the real application request data set [32]. It collect data
from 10208 mobile users requesting 23 mobile applications. In
this experiment, we chose 20 mobile applications and assume that
these applications are requests for video task (i.e., we randomly
select 20 video tasks). Moreover, we assume that the mobile users
are uniform distributed over the edge cloud, and the user trajectory
is generated by the random movement model.

For computing resource, according to [17], we set the com-
puting capability of the edge cloud and remote cloud to be 10
GHz and 100 GHz, respectively. Furthermore, we set the storage
capacity of edge cloud to 500 GBs [19]. The caching agent
deployed on the edge cloud dynamically decides which tasks to
cache on the edge cloud. We run the experiment for 400 time
slots (i.e., T = 400). For each time slot, we use data sets for 100
experiments, and calculate the average value as the experimental
results. In our experiments, we focus on measuring the task
latency, learning regret and cumulative learning regret.

5.2 Comparison Algorithm
The proposed M-AUCB algorithm is compared with four task
caching schemes, which are briefly described below:

• Optimal caching scheme: In each time slot t, the optimal
caching scheme is aware of the expectation of total task

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on December 27,2020 at 02:41:41 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2020.3047417, IEEE
Transactions on Network Science and Engineering

8

latency for each caching task. Under this condition we
choose M tasks with the smallest task latency. In other
words, the optimal caching scheme has a prior knowledge
of the task demand pattern, task size and computing
amount.

• Random caching scheme [8]: In each time slot t, the
scheme randomly chooses M tasks to cache. Under this
caching strategy, some tasks with fewer requests may be
cached on the edge cloud, resulting in a larger task latency.

• UCB caching scheme [28]: In each time slot t, we use
the traditional UCB caching scheme to cache one task on
the edge cloud, and the other M − 1 tasks are cached
randomly. The following two equations are used to select
the first task:

D̂t,j = Dt,j −

√
2 log (t)

Nt,j
, (21)

ati = arg min
at
i

D̂t,at
i
. (22)

• M-UCB caching scheme: This algorithm is also proposed
in this paper. The details are as follows: in each time slot
t, M tasks are chosen to be cached, which is based on the
number of previously cached tasks and their averaged de-
lay. The M-UCB algorithm can sufficiently exploit caching
tasks with smaller task latency, as well as exploring tasks
that are less frequently cached. More specifically, we
choose M tasks for caching by using the following two
equations:

D̂t,j = Dt,j −

√
2 log (Mt)

Nt,j
, (23)

ati = arg min
at
i∈K\∪

i−1
j=1a

t
i

D̂t,at
i
. (24)

5.3 Performance Analysis
5.3.1 Regret analysis
In our experiments, we first evaluate the learning regret and
cumulative learning regret of five different task caching schemes
(including the proposed M-AUCB algorithm). The results are
shown in Fig. 4. As can be seen from Fig. 4(a), when the time
slot T ≤ 20, the learning regret of all schemes is in the initial
stage. When T ≥ 150, the learning regret of the M-AUCB caching
scheme becomes relatively more stable (i.e., the change of learning
regret is not obvious). This can be explained by that the M-AUCB
algorithm has learned the user’s task request pattern after a period
of exploration and exploitation.

Moreover, Fig. 4(a) and Fig. 4(b) show that the optimal
caching algorithm has the minimum learning regret and cumula-
tive learning regret, this can be explain as the optimal caching
algorithm knows the expectation of total task delay when the
task is caching. Furthermore, we can observe that the learning
regret and cumulative learning regret brought by the proposed M-
AUCB caching scheme are larger than that brought by optimal
task caching scheme. This is because the optimal caching scheme
assumes that the request pattern for the task is known, while M-
AUCB assumes that the task request pattern is unknown to the
edge cloud.

We also observe that the learning regret and cumulative learn-
ing regret brought by the M-AUCB caching scheme are slightly

smaller than that brought by C-UCB caching. At the same time, it
is far better than those of the UCB and random caching schemes.
This is because the random caching scheme selects tasks randomly
for caching at each time slot, neither considering the task request
pattern, nor considering the impact of task size and computation
amount on caching. Thus this caching scheme brings the biggest
learning regret and cumulative learning regret. Both the M-AUCB,
M-UCB and UCB learn different request pattern of tasks, but the
UCB caching scheme only uses the traditional UCB algorithm to
cache one task in edge cloud at each time slot, while the other m-
1 tasks are still randomly selected. Although the M-UCB caching
scheme selects m tasks for caching according to the number of
task requests at each time slot, it is not adaptive to the task size
and computing amount. Our M-AUCB algorithm not only attempts
to learn the user demand patterns, but also takes into account the
effect of the task size.

5.3.2 Task latency

0 50 100 150 200 250 300 350 400
Time Slot

13

14

15

16

17

18

Ta
sk
 L
at
en

cy

M-AUCB
M-UCB
UCB
Random

Fig. 5. Task latency analysis under different task caching schemes.

Next, we analyze the task latency under different task caching
schemes. Fig. 5 depicts the task latency of each task caching
scheme. We can clearly see that after the initialization stage, the
task latency of each algorithm tends to gradually become stable.
Furthermore, we observe that the M-AUCB caching scheme sig-
nificantly reduces the task latency compared to M-UCB caching
scheme, UCB caching scheme and random caching scheme. Com-
pared to the M-UCB algorithm (i.e., the optimal baseline), the M-
AUCB algorithm decreases the task delay by 14.8%. This result
further shows that our caching scheme has good performance.

5.3.3 Edge cloud capacity
We also analyze the impact of edge cloud caching capacity on
the task latency and learning regret. In these experiments, we run
100 experiments to produce the results and each run includes 400
time slots. Moreover, the cache capacity of the edge cloud varies
from 300 Mbits to 700 Mbits. From Fig. 6(a), we can obtain the
learning regret increases as the caching capacity of the edge cloud
increases. This is obviously consistent with the conclusion given
in Theorem 1. Furthermore, from Fig. 6(b), we can see that when
the caching capacity of the edge cloud increases, the task latency
decreases. This is because a larger caching capacity would allow

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on December 27,2020 at 02:41:41 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2020.3047417, IEEE
Transactions on Network Science and Engineering

9

0 50 100 150 200 250 300 350 400
Time slot

2

3

4

5

6

Le
ar
ni
ng

 re
gr
et

M-AUCB
M-UCB
UCB
Random
Optimal

(a) Learning regret under different task caching schemes.

0 50 100 150 200 250 300 350 400
Time Slot

0

500

1000

1500

2000

Cu
m
ul
at
iv
e
le
ar
ni
ng

 re
gr
et

M-AUCB
M-UCB
UCB
Random
Optimal

(b) Cumulative learning regret under different caching schemes.

Fig. 4. Learning regret and cumulative learning regret under different task caching schemes.

300 350 400 450 500 550 600 650 700
Edge cloud capacity

2

4

6

8

10

12

Le
ar
ni
ng

 re
gr
et

M-AUCB
M-UCB
UCB
Random

(a) Learning regret under different task caching schemes when increasing the
edge cloud capacity.

300 350 400 450 500 550 600 650 700
Edge cloud capacity

10

11

12

13

14

15

16

17
 T

as
k

La
te

nc
y

M-AUCB
M-UCB
UCB
Random

(b) Task latency under different task caching schemes when increasing the edge
cloud capacity.

Fig. 6. The impact of edge cloud capacity on different task caching schemes.

more users to get their tasks through the edge cloud causing a
reduction in the task latency.

5.3.4 Number of tasks

We further evaluate the impact of the task numbers on the task
latency and learning regret. In these experiments, we set T = 400
with the number of tasks ranging from 10 to 30. From Fig. 7,
we can observe that when the number of tasks increases, both the
task latency and learning regret become larger. This is because
when the number of tasks becomes larger, users can request more
tasks when the caching capacity of edge cloud is fixed. As a
consequence, some tasks that require more time cannot be cached,
resulting in larger task latency and learning regret. Moreover, we
find that M-AUCB algorithm is superior to other task caching
scheme in different number of tasks. This indicates that our
algorithm has stronger robustness when the system changes. We
attribute this performance improvement to the adaptive design of
the task caching scheme.

6 CONCLUSION AND FUTURE WORK

In this paper, we first analyze the problem of task caching on
the edge cloud by formalizing it under the circumstance of not
having any prior knowledge of the task request pattern. Then,
we propose a caching scheme, referred to as M-AUCB, which is
capable of learning the task request pattern. In addition, it takes
into consideration the impact of different task sizes on the edge
cloud. The experimental results indicate that our proposed scheme
can effectively minimize the task latency.

Though the M-AUCB task caching algorithm can not only
make caching decisions online according to the number of task
requests, but also adapt to the size and computing amount of the
task, our model has some limitations. For example, in this paper,
we design the M-AUCB task caching algorithm from the perspec-
tive of edge cloud and assume that the user obtains tasks only
from one edge cloud. However, from the perspective of the user,
the user can communicate with multiple edge clouds to obtain
the requested task. In this case, the task caching problem is the

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on December 27,2020 at 02:41:41 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2020.3047417, IEEE
Transactions on Network Science and Engineering

10

10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0
Number of Task

2

3

4

5

6

7
Le

ar
ni
ng

 re
gr

et
M-AUCB
M-UCB
UCB
Random

(a) Learning regret under different task caching schemes when increasing the
number of tasks.

10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0
Number of Task

2

4

6

8

10

12

14

Ta
sk

 la
te
nc

y

M-AUCB
M-UCB
UCB
Random

(b) Task latency under different task caching schemes when increasing the
number of tasks.

Fig. 7. The impact of task numbers on different task caching schemes.

cooperative task caching. In addition, our main focus in this paper
was based on designing an independent task caching. However,
in the case of dependencies among tasks, our proposed algorithm
can also be applied using a graphical model. In the future work,
we will consider a mobile device can request tasks from multiple
edge clouds, and design the cooperative task caching scheme.

ACKNOWLEDGEMENT

This work was supported by National Key R&D Program of
China under Grant 2018YFC1314600, Nature Science Foundation
of China under Grant 61802138, Shenzhen Institute of Artificial
Intelligence and Robotics for Society, and in collaboration with the
Advanced Network Technology Division (ANTD) of the National
Institute of Standards and Technology (NIST), USA.

REFERENCES

[1] S. Jošilo and G. Dán, “Selfish decentralized computation offloading for
mobile cloud computing in dense wireless networks,” IEEE Transactions
on Mobile Computing, vol. 18, no. 1, pp. 207–220, 2019.

[2] J. L. D. Neto, S.-Y. Yu, D. F. Macedo, M. S. Nogueira, R. Langar, S. Secci
et al., “Uloof: a user level online offloading framework for mobile edge
computing,” IEEE Transactions on Mobile Computing, vol. 17, no. 11,
pp. 2660–2674, 2018.

[3] T. X. Tran, D. V. Le, G. Yue, and D. Pompili, “Cooperative hierarchical
caching and request scheduling in a cloud radio access network,” IEEE
Transactions on Mobile Computing, vol. 17, no. 12, pp. 2729–2743,
2018.

[4] T. He, H. Khamfroush, S. Wang, T. La Porta, and S. Stein, “It’s hard to
share: Joint service placement and request scheduling in edge clouds with
sharable and non-sharable resources,” in 2018 IEEE 38th International
Conference on Distributed Computing Systems (ICDCS). IEEE, 2018,
pp. 365–375.

[5] L. Wang, L. Jiao, T. He, J. Li, and M. Mühlhäuser, “Service entity
placement for social virtual reality applications in edge computing,” in
IEEE INFOCOM 2018-IEEE Conference on Computer Communications.
IEEE, 2018, pp. 468–476.

[6] T. Zhao, I.-H. Hou, S. Wang, and K. Chan, “Red/led: An asymptotically
optimal and scalable online algorithm for service caching at the edge,”
IEEE Journal on Selected Areas in Communications, vol. 36, no. 8, pp.
1857–1870, 2018.

[7] L. E. Chatzieleftheriou, M. Karaliopoulos, and I. Koutsopoulos, “Jointly
optimizing content caching and recommendations in small cell network-
s,” IEEE Transactions on Mobile Computing, vol. 18, no. 1, pp. 125–138,
2019.

[8] L. Qiu and G. Cao, “Popularity-aware caching increases the capacity of
wireless networks,” IEEE Transactions on Mobile Computing, 2019.

[9] L. Pu, L. Jiao, X. Chen, L. Wang, Q. Xie, and J. Xu, “Online resource
allocation, content placement and request routing for cost-efficient edge
caching in cloud radio access networks,” IEEE Journal on Selected Areas
in Communications, vol. 36, no. 8, pp. 1751–1767, 2018.

[10] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. C. Leung, “Cache in the
air: Exploiting content caching and delivery techniques for 5g systems,”
IEEE Communications Magazine, vol. 52, no. 2, pp. 131–139, 2014.

[11] K. Poularakis, G. Iosifidis, V. Sourlas, and L. Tassiulas, “Exploiting
caching and multicast for 5g wireless networks,” IEEE Transactions on
Wireless Communications, vol. 15, no. 4, pp. 2995–3007, 2016.

[12] S. Zhang, P. He, K. Suto, P. Yang, L. Zhao, and X. Shen, “Cooperative
edge caching in user-centric clustered mobile networks,” IEEE Transac-
tions on Mobile Computing, vol. 17, no. 8, pp. 1791–1805, 2018.

[13] S. Müller, O. Atan, M. van der Schaar, and A. Klein, “Context-aware
proactive content caching with service differentiation in wireless net-
works,” IEEE Transactions on Wireless Communications, vol. 16, no. 2,
pp. 1024–1036, 2017.

[14] Y. Hao, M. Chen, L. Hu, M. S. Hossain, and A. Ghoneim, “Energy
efficient task caching and offloading for mobile edge computing,” IEEE
Access, vol. 6, pp. 11 365–11 373, 2018.

[15] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading for
mobile edge computing in dense networks,” in IEEE INFOCOM 2018-
IEEE Conference on Computer Communications. IEEE, 2018, pp. 207–
215.

[16] M. Chen, Y. Hao, L. Hu, M. S. Hossain, and A. Ghoneim, “Edge-cocaco:
Toward joint optimization of computation, caching, and communication
on edge cloud,” IEEE Wireless Communications, vol. 25, no. 3, pp. 21–
27, 2018.

[17] Y. Sun, S. Zhou, and J. Xu, “Emm: Energy-aware mobility management
for mobile edge computing in ultra dense networks,” IEEE Journal on
Selected Areas in Communications, vol. 35, no. 11, pp. 2637–2646, 2017.

[18] P. Yang, N. Zhang, S. Zhang, L. Yu, J. Zhang, and X. S. Shen, “Con-
tent popularity prediction towards location-aware mobile edge caching,”
IEEE Transactions on Multimedia, 2018.

[19] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Joint service placement and request routing in multi-cell mobile edge
computing networks,” in IEEE INFOCOM 2019-IEEE Conference on
Computer Communications. IEEE, 2019, pp. 10–18.

[20] V. Farhadi, F. Mehmeti, T. He, T. La Porta, H. Khamfroush, S. Wang, and
K. S. Chan, “Service placement and request scheduling for data-intensive
applications in edge clouds,” in IEEE INFOCOM 2019-IEEE Conference
on Computer Communications. IEEE, 2019, pp. 1279–1287.

[21] N. Mohan, P. Zhou, K. Govindaraj, and J. Kangasharju, “Managing
data in computational edge clouds,” in Proceedings of the Workshop on
Mobile Edge Communications. ACM, 2017, pp. 19–24.

[22] G. S. Paschos, A. Destounis, L. Vigneri, and G. Iosifidis, “Learning to

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on December 27,2020 at 02:41:41 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2020.3047417, IEEE
Transactions on Network Science and Engineering

11

cache with no regrets,” in IEEE INFOCOM 2019-IEEE Conference on
Computer Communications. IEEE, 2019, pp. 235–243.

[23] L. Chen, J. Xu, S. Ren, and P. Zhou, “Spatio–temporal edge service
placement: A bandit learning approach,” IEEE Transactions on Wireless
Communications, vol. 17, no. 12, pp. 8388–8401, 2018.

[24] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 1, pp. 856–868, 2018.

[25] L. Chen, P. Zhou, L. Gao, and J. Xu, “Adaptive fog configuration
for the industrial internet of things,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 10, pp. 4656–4664, 2018.

[26] L. Yang, J. Cao, H. Cheng, and Y. Ji, “Multi-user computation partition-
ing for latency sensitive mobile cloud applications,” IEEE Transactions
on Computers, vol. 64, no. 8, pp. 2253–2266, 2014.

[27] Y. Sun, X. Guo, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, “Learning-based
task offloading for vehicular cloud computing systems,” in 2018 IEEE
International Conference on Communications (ICC). IEEE, 2018, pp.
1–7.

[28] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2-3, pp.
235–256, 2002.

[29] L. Chen and J. Xu, “Task offloading and replication for vehicular
cloud computing: A multi-armed bandit approach,” arXiv preprint arX-
iv:1812.04575, 2018.

[30] Y. Xiao and M. Krunz, “Qoe and power efficiency tradeoff for fog
computing networks with fog node cooperation,” in IEEE INFOCOM
2017-IEEE Conference on Computer Communications. IEEE, 2017,
pp. 1–9.

[31] A. Anjum, T. Abdullah, M. Tariq, Y. Baltaci, and N. Antonopoulos,
“Video stream analysis in clouds: An object detection and classification
framework for high performance video analytics,” IEEE Transactions on
Cloud Computing, 2016.

[32] S. L. Lim, P. J. Bentley, N. Kanakam, F. Ishikawa, and S. Honiden,
“Investigating country differences in mobile app user behavior and
challenges for software engineering,” IEEE Transactions on Software
Engineering, vol. 41, no. 1, pp. 40–64, 2014.

[33] A. Asadi, S. Müller, G. H. Sim, A. Klein, and M. Hollick, “Fml:
Fast machine learning for 5g mmwave vehicular communications,” in
IEEE INFOCOM 2018-IEEE Conference on Computer Communications.
IEEE, 2018, pp. 1961–1969.

[34] S. Bubeck, N. Cesa-Bianchi et al., “Regret analysis of stochastic and
nonstochastic multi-armed bandit problems,” Foundations and Trends R©
in Machine Learning, vol. 5, no. 1, pp. 1–122, 2012.

APPENDIX A
PROOF OF THE THEOREM 1

Before providing the proof, we use the Chernoff-Hoeffding in-
equality to obtain the confidence interval as:

P
(
Dt,j +

√
2ŝj ω̂j log (Mt)

Nt,j
6 µj

)
6 (Mt)−4(ŝj ω̂j)2 , (25)

P
(
Dt,j −

√
2ŝj ω̂j log (Mt)

Nt,j
> µj

)
6 (Mt)−4(ŝj ω̂j)2 . (26)

Now, we present the proof. From Algorithm 1, we can see that
the selection of task j (i.e., Qj) in the tth time slot, also satisfies:

D̂t−1,j 6 D̂t−1,j∗ . (27)

According to (14), it can be expressed as

Dt−1,j −

√
2ŝjω̂j log (Mt)

Nt−1,j
6 Dt−1,j∗ −

√
2ŝjω̂j log (Mt)

Nt−1,j∗
.

(28)

Based on the above, to satisfy D̂t−1,j 6 D̂t−1,j∗ , at least one
of the following three equations should be satisfied [33], [34]:

µj − 2

√
2ŝjω̂j log (Mt)

Nt−1,j
6 µ∗, (29)

Dt,j +

√
2ŝjω̂j log (Mt)

Nt−1,j
6 µj , (30)

Dt,j∗ −

√
2ŝj∗ ω̂j∗ log (Mt)

Nt−1,j∗
> µ∗. (31)

Since ∆j = µj − µ∗, according to (28), we can obtain the
following formula:

Nt−1,j 6
8(ŝjω̂j)

2
log (Mt)

∆2
j

. (32)

To analyze (29), (30), (31), let us denote NT,j as the j-th task
being cached within time slot T . We can then prove that the event
{NT,j ≥ 8(ŝj ω̂j)2 log (Mt)

∆2
j

} has a small probability so that each

sub-optimal j-th task cannot be cached more than 8(ŝj ω̂j)2 log (Mt)
∆2

j

plus a small constant value. As for any integer u, we can obtain
the following equation:

NT,j 6 u+
T∑

t=u+1

C∑
i=1

1
{
ati = j,Nt−1,j > u

}
6 u+

T∑
t=u+1

1
{
∃Nt,j : u 6 Nt,j 6 t,∃Nt,j∗ : 1 6 Nt,j∗ 6 t, D̂t,j 6 D̂t,j∗

}
6 u+

T∑
t=u+1

t∑
Nt,j=u+1

t∑
Nt,j∗=1

1
{
D̂t,j 6 D̂t,j∗

}
,

(33)
where 1{·} is an indicator function, i.e., 1{·} = 1 if condition is
true, otherwise 1{·} = 0. ait as the i-th task is chosen from the K
in time slot t.

If we assumed that u =
8(ŝj ω̂j)2 log (Mt)

∆2
j

. Then, ∀σ, u < σ <

T , and according to (31), we can obtain the following expression:

µj − 2

√
2ŝjω̂j log (Mt)

σ
> µ∗. (34)

Although we observe that (29) is not satisfied, at least one
of (30) or (31) will be satisfied. For the sake of mathematical
convenience, we define the symbols, zt,j and zt,j∗ :

zt,j = Dt,j +

√
2ŝjω̂j log (Mt)

Nt,j
,

zt,j∗ = Dt,j∗ −

√
2ŝj∗ ω̂j∗ log (Mt)

Nt,j∗
.

Therefore, (33) can be re-written as:

NT,j 6
8(ŝjω̂j)

2
log (Mt)

∆2
j

+
T∑

t=u+1

t∑
Nt,j=u+1

t∑
Nt,j∗=1

(1 {zt,j 6 µj}+ 1 {zt,j∗ > µ∗}) .

(35)

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on December 27,2020 at 02:41:41 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2020.3047417, IEEE
Transactions on Network Science and Engineering

12

Then, according to (25) and (26), taking the expectation value
of both sides of (33), we can get the average number of caching
task j, E (NT,j), as:

E (NT,j) 6
8(ŝjω̂j)

2
log (Mt)

∆2
j

+
T∑

t=u+1

t∑
Nt,j=u+1

t∑
Nt,j∗=1

[P {zt,j ≤ µj}+ P {zt,j∗ > µ∗}]

≤ 8(ŝjω̂j)
2

log (Mt)

∆2
j

+
T∑

t=u+1

t∑
Nt,j=u+1

t∑
Nt,j∗=1[

2 (Mt)
−4(ŝj ω̂j)2

]
6

8(ŝjω̂j)
2

log (Mt)

∆2
j

+ 2
∞∑
t=1

M−4t−4(ŝj ω̂j)2+2.

(36)
From the definition of ŝj and ω̂j in (12) and (13), we know

for sure that −4(ŝjω̂j)
2

+ 2 is always larger than 1. Therefore,
t−4(ŝj ω̂j)2+2 will converge to a finite value: O(1). Therefore, we
can show:

E (NT,j) 6
8(ŝjω̂j)

2
log (Mt)

∆2
j

+O(1). (37)

Finally, based on (18), we can find the upper bound of regret
as:

E (RT,j) =
K∑
j=1

E (Nt,j) ∆j

=
K∑
j=1

(
8(ŝjω̂j)

2
log (Mt)

∆j
+O(1)

)
.

(38)

Therefore, we prove an upper bound of the M-AUCB algorith-
m.

Yiming Miao received the B.Sc. degree in Col-
lege of Computer Science and Technology from
Qinghai Univerisity, Xining, China in 2016. Cur-
rently, she is a Ph.D candidate in School of
Computer Science and Technology at Huazhong
University of Science and Technology (HUST),
Wuhan, China. Her research interests include
edge computing, 5G mobile communication sys-
tem, Internet of Things, unmanned aerial ve-
hicle, robotics, blockchain and wireless sensor
network, etc.

Yixue Hao is an associate professor in the
School of Computer Science and Technology at
Huazhong University of Science and Technolo-
gy. He received the Ph.D degree in computer sci-
ence from Huazhong University of Science and
Technology (HUST), Wuhan, China, in 2017. His
current research interests include 5G network,
internet of things, edge computing, edge caching
and cognitive computing.

Hamid Gharavi Hamid Gharavi received the
Ph.D. degree from Loughborough University,
Loughborough, U.K., in 1980. He joined the
Visual Communication Research Department,
AT&T Bell Laboratories, Holmdel, NJ, USA, in
1982. He was then transferred to Bell Communi-
cations Research (Bellcore) after the AT&T-Bell
divestiture, where he became a Consultant on
video technology and a Distinguished Member
of Research Staff. In 1993, he joined Lough-
borough University as a Professor and Chair of

Communication Engineering. Since September 1998, he has been with
the National Institute of Standards and Technology, U.S. Department of
Commerce, Gaithersburg, MD, USA. He was a Core Member of Study
Group XV (Specialist Group on Coding for Visual Telephony) of the
International Communications Standardization Body CCITT (ITU-T) and
a member of the IEEE 2030 Standard Working Group. His research
interests include smart grid, wireless multimedia, mobile communica-
tions and wireless systems, mobile ad hoc networks, and visual com-
munications. He received the Charles Babbage Premium Award from
the Institute of Electronics and Radio Engineering in 1986, the IEEE
CAS Society Darlington Best Paper Award in 1989, the Washington
Academy of Science Distinguished Career in Science Award for 2017.
He was a Distinguished Lecturer of the IEEE Communication Society.
He has been a Guest Editor for a number of Special Issues of the
proceedings of the IEEE including Smart Grids, Sensor Networks & Ap-
plications, Wireless Multimedia Communications, Advanced Automobile
Technologies, and Grid Resilience. He was a TPC Co-Chair for IEEE
SmartGridComm in 2010 and 2012. He was a member of the Editorial
Board of proceedings of the IEEE from January 2003 to December
2008. He was Editor-in-Chief of IEEE TRANSACTIONS ON CIRCUITS
AND SYSTEMS FOR VIDEO TECHNOLOGY and IEEE WIRELESS
COMMUNICATIONS.

Min Chen is a full professor in School of Com-
puter Science and Technology at Huazhong Uni-
versity of Science and Technology (HUST) since
Feb. 2012. He is the director of Embedded and
Pervasive Computing (EPIC) Lab, and the direc-
tor of Data Engieering Institute at HUST. He is
the founding Chair of IEEE Computer Society (C-
S) Special Technical Communities (STC) on Big
Data. He was an assistant professor in School
of Computer Science and Engineering at Seoul
National University (SNU). He worked as a Post-

Doctoral Fellow in Department of Electrical and Computer Engineering
at University of British Columbia (UBC) for three years. Before joining
UBC, he was a Post-Doctoral Fellow at SNU for one and half years. He
received Best Paper Award from QShine 2008, IEEE ICC 2012, ICST
IndustrialIoT 2016, and IEEE IWCMC 2016. He serves as associate
editor for IEEE Transactions on Big Data, IEEE Network, and IEEE
Trans. on Cognitive Communications and Networking, etc. He was a
Series Editor for IEEE Journal on Selected Areas in Communications.
He is Co-Chair of IEEE ICC 2012-Communications Theory Symposium,
and Co-Chair of IEEE ICC 2013-Wireless Networks Symposium. He
is General Co-Chair for IEEE CIT-2012, Tridentcom 2014, Mobimedia
2015, and Tridentcom 2017. He has 300+ publications, including 200+
SCI papers, 100+ IEEE Trans./Journal papers, 34 ESI highly cited
papers and 12 ESI hot papers. He has published 12 books, including
Cognitive Computing and Deep Learning (2018) with China Machine
Press and Big Data Analytics for Cloud/IoT and Cognitive Computing
(2017) with Wiley. His Google Scholar Citations reached 25,280+ with an
h-index of 79 and i10-index of 240. His top paper was cited 3000+ times.
He is an IEEE Senior Member since 2009. He was selected as Highly
Cited Research at 2018. He got IEEE Communications Society Fred W.
Ellersick Prize in 2017, and the IEEE Jack Neubauer Memorial Award
in 2019. His research focuses on cognitive computing, 5G Networks,
wearable computing, big data analytics, robotics, machine learning,
deep learning, emotion detection, and mobile edge computing, etc. Min
Chen is a Fellow of IEEE.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on December 27,2020 at 02:41:41 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2020.3047417, IEEE
Transactions on Network Science and Engineering

13

Kai Hwang is a Professor of Electrical Engineer-
ing and Computer Science, University of South-
ern California (USC). He received the Ph.D. from
the University of California, Berkeley in 1972.
Prior to joining USC in 1986, he has taught at
Purdue University for 11 years. He has served
as the founding Editor-in-Chief of the Journal of
Parallel and Distributed Computing from 1983 to
2011. Dr. Hwang has published 8 books and 250
scientific papers. According to Google Scholars,
his work was cited over 15,000 times with an h-

index of 52. His most cited book on Computer Architecture and Parallel
Processing was cited more than 2,300 times and his PowerTrust (IEEE-
TPDS, April 2007) paper was cited over 540 times. An IEEE Life Fellow,
Hwang received Lifetime Achievement Award from IEEE Cloudcom-
2012 for his pioneering contributions in the field of computer architec-
ture, parallel, distributed and cloud computing, and cyber security.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on December 27,2020 at 02:41:41 UTC from IEEE Xplore. Restrictions apply.

