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Placement in Softwarized Industrial Cyber-Physical

System
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Abstract—Future industrial cyber-physical system (CPS) de-
vices are expected to request a large amount of delay-sensitive
services that need to be processed at the edge of a network. Due to
limited resources, service placement at the edge of the cloud has
attracted significant attention. Although there are many methods
of design schemes, the service placement problem in industrial
CPS has not been well studied. Furthermore, none of existing
schemes can optimize service placement, workload scheduling
and resource allocation under uncertain service demands. To
address these issues, we first formulate a joint optimization
problem of service placement, workload scheduling, and resource
allocation in order to minimize service response delay. We then
propose an improved deep Q-network (DQN) based service
placement (DSP) algorithm. The proposed algorithm can achieve
an optimal resource allocation by means of convex optimization
where the service placement and workload scheduling decisions
are assisted by means of DQN technology. The experimental re-
sults verify that the proposed algorithm, compared with existing
algorithms, can reduce the average service response time by 8%-
10%.

Index Terms—Industrial Cyber-Physical system, Service place-
ment, Edge cloud, Deep reinforcement learning

I. INTRODUCTION

The industrial cyber-physical system (CPS) technology
promises to ensure seamless connectivity of industrial physical
and cyber worlds [1]. With the growing number of wireless
sensor devices, CPS will continue to play a crucial role in the
integration of complex sensing, including delay sensitive and
computationally intensive services such as real-time communi-
cation monitoring and control. As data generated by wireless
sensor devices continues to expand, offloading them to the
cloud for processing not only causes a long delay, but can
also lead to network congestion [2].

To address this, it is essential to enhance the computing
capability at the edge of network where servers are deployed
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close to sources. Using edge cloud, not only rapid processing
and analyzing for sensor data can be realized, but the load of
the backhaul link can also be reduced [3], [4]. Furthermore,
security and privacy requirements of the industrial CPS are
also important that need to be addressed. For example, data
generated by wireless devices are private and should be
handled with a high degree of confidentiality at the edge of
the network [5].

In practice, however, due to limited computing and storage
resources that would require processing a massive amount of
data, the entire operation of the industrial CPS at the edge
cloud requires the adoption of an efficient service placemen-
t [6], [7]. To address these challenges, Chen et al. in [8]
proposed fog configuration to minimize delay and energy
consumption in the industrial internet of things. In [9], Wang
et al. designed a deployment of service entity with the lowest
power consumption. Zhang et al. in [10] proposed an efficient
service placement scheduling using distributed clouds. Howev-
er, none of these works take into account the impact caused by
heterogeneity in service requests among multiple edge clouds
(i.e., service requests on edge clouds are unbalanced in spatial
and temporal).

In view of the imbalances in service requests and to reduce
service delay, a joint optimization of service placement and
workload scheduling problems has been investigated by a
number of authors. For instance, in [11], Poularakis et al.
designed a service placement and request scheduling scheme
in cases where there are insufficient communication, comput-
ing, and storage resources on the edge cloud. With regards
to delay-sensitive tasks, Ma et al. [12] proposed cooperative
service placement and workload scheduling scheme to mini-
mize the service response time and overall outsourcing traffic
to the cloud. Farhadi et al. in [13] proposed a submodular-
based optimization scheme for service placement and request
scheduling for data-intensive applications in edge clouds. In
all these joint optimization schemes, it is assumed that the
service demand is known, i.e., uncertain service demand has
not been taken into consideration in these joint optimization
schemes.

In this paper, we focus on the service placement and work-
load scheduling problem in industrial CPS applications. We
propose a deep Q-network (DQN) based algorithm to tackle
the uncertain service demands of the edge cloud. This is indeed
a challenging problem [14], because when a service placement
task is carried out, the service request at the time is unknown,
which will lead to unreasonable placement and consequently
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cause greater delay in the service requests of wireless sensor
devices. In addition to service placement and scheduling, we
also need to consider the allocation of computing resources as
the edge cloud needs to decide how much computing resources
should be allocated to execute the service. Thus, for the first
time, we analyze the joint optimization problem of service
placement, workload scheduling and resource allocation under
the demand uncertainties.

To achieve this, we first design a softwarized-based industri-
al CPS, and realize information exchange between edge clouds
through centralized software-defined network (SDN) [15] con-
trollers. Then, we formulate the joint optimization problem of
service placement, workload scheduling and resource alloca-
tion to minimize service response time. Since this problem
is a nonlinear mixture of integer optimization, solving it is
a difficult task. Although we have adopted a DQN-based
approach to solve this challenging problem, we should point
out traditional DQN network is not suitable for the edge node
due to the high computational complexity caused by too many
much states and action spaces. Thus, in our approach we
propose to reduce the computational complexity by setting
offline training of the Q-network and online decision making
for service placement and workload scheduling. In addition,
we evaluate the convergence of the DSP algorithm.

In summary, the main contributions of this paper include:
• Service Placement in the Industrial CPS: To find out

which services should be placed on which edge node
to minimize service response time, we propose a joint
optimization approach that incorporates service place-
ment, workload scheduling and resource allocation under
service demand uncertainty.

• DQN-based Service Placement Algorithm: To solve the
optimization problem, we divide it into two subproblems:
i) resource allocation of each edge cloud and ii) service
placement and workload scheduling. For the former, we
adopt convex optimization to give the optimal allocation
scheme, whereas in the latter, we adopt DQN to solve
the problem through learning service requests.

• Performance Evaluation: We conduct comprehensive
simulation experiments to verify the effectiveness of the
proposed DSP algorithm. The experiment results show
that, compared with traditional edge service placement
schemes, the DSP service placement strategy can mini-
mize latency during service acquisition. For instance, in
a scenario of 30 services, compared to other algorithms,
our propose algorithm can reduce the average latency by
8%-10%

The remainder of the paper is organized as follows. In
Section II, we give a review of related work and present
the system model and problem formulation in Section III. In
Section IV, we present our algorithm to solve the problem.
The simulation results and discussions are given in Section V.
Finally, Section VI concludes this paper.

II. RELATED WORK

The industrial CPS generally includes a large number of
wireless sensor devices, which can generate and collect a

large amount of data. However, offloading them to a remote
cloud for further processing may lead to long delays [16]–
[18]. Currently, edge computing can provide high-reliability,
high-bandwidth, and low-delay computing services for sensor
devices by deploying servers at network edges (including
wireless access points, base stations, routers, etc.) [3], [19].
This is because the edge server is closer to the mobile
device, which can be directly connected to edge cloud through
a wireless network, hence greatly reducing communication
latency.

Currently, most investigations have concentrated on how
to offload data generated by wireless sensor devices onto
the edge cloud. This not only reduces the data processing
delay, but also saves the energy consumption of wireless
sensor devices [14], [20]. For the edge cloud, according
to prior knowledge of where there is global information in
the system, existing task offloading schemes can be divided
into centralized task offloading [18] and the distributed task
offloading algorithm [14], [16]. These works show that the
delay and energy consumption can be reduced by designing
a reasonable task offloading strategy. However, these works
assume that all services requested by wireless sensor devices
can be handled by the edge cloud.

In reality, however, the edge cloud has limited storage and
computing capacity and cannot support the operation of all
types of services. Thus, which services are to be placed on
the edge cloud (i.e., service placement) should be taken into
consideration [6]. To address this challenge, some existing
works have proposed service placement algorithms. For delay-
sensitive services, such as augmented reality (AR), many dif-
ferent service placement strategies are proposed by researchers
to reduce the delay. For example, cost-aware service placement
have been proposed in [19]. Since different edge clouds have
different service requests, service placement and workload
scheduling can be jointly optimized to further improve network
performance.

In [21] and [11], a joint optimization problem for service
placement and request routing is designed using submodular
optimization. These joint optimization schemes are based on
prior knowledge with service requests and without incorporat-
ing resource allocation in order to further improve utilization
of resources. Thus, in contrast with existing works, we study
the optimization of service placement, workload scheduling
and resource allocation in the softwarized-based industrial
CPS under demand uncertainty, aiming to minimize service
response time.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the system model and problem
formulation. Our goal is to minimize the delay when wireless
devices in industrial CPS obtain services.

A. System Architecture

In our investigation, we consider an industrial CPS ecosys-
tem scenario, which includes a mass of wireless sensors
devices, multiple edge clouds, and a remote cloud. In this sce-
nario, wireless sensor devices communicate with edge clouds
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Fig. 1. System architecture of softwarized-based industrial CPS.

through wireless channels, while edge clouds are connected
to the remote cloud through wired link. Moreover, we adopt
SDN in order to realize the distributed management of the edge
cloud according to the system architecture shown in Fig. 1.

Specifically, the softwarized-based industrial CPS includes
the wireless sensors devices plane, the data plane, and the
centralized control plane. The devices plane is composed of
wireless sensor devices in industrial CPS, which is responsible
for data collection. The data plane consists of access points
and their corresponding edge clouds, and is responsible for
processing the data services collected by the sensors. The
interconnection among multiple edge clouds is based on the
centralized control plane. Moreover, the centralized control
plane can realize service placement and workload scheduling
on edge clouds. Thus, with the SDN technology, a centralized
control of industrial CPS on distributed edge clouds can be
realized.

Let us consider a softwarized industrial CPS system that
consists of N edge clouds where each can provide data
analysis and processing services for wireless sensor devices.
We denote a set of edge clouds by N = {1, 2, · · · , N}. Also,
let F edge

i and Medge
i be the computation capacity and storage

capacity of edge cloud i, respectively. Compared with limited
storage and computing resources on the edge cloud, as in [19],
we consider the remote cloud has sufficient computing and
storage capacities and has all the service requests in industrial
CPS.

Moreover, we consider the service placement operates in
discrete time slots T = {1, 2, · · · , T}, where T denotes the
finite time horizon and each time slot has a duration. In each
duration, the SDN controller needs to place services, schedule
workload, and to do resource allocation. In the following, we
present our proposed service placement, workload scheduling,
and resource allocation model. For the sake of clarity, the main
notations used in this paper are shown in Table. I.

B. Service Placement

Since industrial wireless node may collect wide ranging
data, different data processing and analysis should be carried
out for different services. We assume that there are K services
in industrial CPS, indexed by K = {1, 2, · · · ,K}. Moreover,
the edge cloud consumes computing and storage resources to
handle requests of wireless sensor devices. As in [11], we

TABLE I
THE SUMMARY TABLE OF IMPORTATION NOTATIONS

Notation Meaning
N set of edge clouds.
N number of edge clouds.
K set of services.
K number of services.
ωk computing resource for processing service k.
sk storage capacity required to cache service k.
xi,k(t) indicator of whether the service k is placed on the edge cloud

i or not at time slot t.
yi,k(t) fraction of computing capacity for service k allocated by

edge cloud i at time slot t .
pi,k(t) workload ratio where service k is operated on edge cloud i

at time slot t.
λt
i,k the number of request for service k on edge cloud i at time

slot t.
F edge
i the computing capacity of edge cloud i.

Medge
i the storage capacity of edge cloud i.

redge(t) the transmission rate between edge clouds.
rk(t) the transmission rate of core network when service k is

transmitted.

assume that ωk (in CPU cycle) is the computing resource
required for processing service k, and sk (in bits) is the storage
capacity required to cache service k. Considering that an
edge cloud has limited computing and storage resources, only
finite services can be placed upon it. So, the issue is to find
the best possible service to utilize the edge cloud resources.
To address this challenge, we analyze service placement,
workload scheduling, and resource allocation problem in edge
clouds.

First, for service placement problem on edge cloud, let bina-
ry variable xi,k(t) ∈ {0, 1} denote whether service k is placed
on the edge cloud i at time slot t. We set xi,k(t) = 1 (or 0) if
the service is placed on the edge cloud i (or not). Accordingly,
we define X (t) = {xi,k(t)|i ∈ N , k ∈ K, xi,k(t) = 1}
to represent the service placement decision. Furthermore, we
assume that the storage capacity on the edge cloud is limited,
thus, in any time slot t, the size of services placed on the edge
cloud i cannot be larger than the storage capacity of the edge
cloud, i.e.,

K∑
k=1

xi,k(t)sk ≤ Medge
i , ∀t. (1)

As for the resource allocation problem of the edge cloud
and in consideration of heterogeneity in computing resources
on it, we know that the computing capacity of edge cloud i is
F edge
i . Lets denote yi,k(t) ∈ [0, 1] as the fraction of computing

capacity F edge
i allocated to the service k. When yi,k(t) is equal

to 0, it means that the service k is not placed on the edge
cloud, so the computing resources allocated at this time are 0.
Accordingly, we define Y(t) = {yi,k(t)|i ∈ N , k ∈ K} as all
resource allocation decisions.

Since the computing capacity on the edge cloud is limited,
the size of computing resources allocated for service k cannot
exceed its maximum computing resources, i.e.,

K∑
k=1

yi,k(t) ≤ 1, ∀t. (2)
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In addition to edge cloud, the computing capacity of remote
cloud is much larger than that of the edge cloud.

C. Service Response Time

To analyse service response time, we assume that at time
slot t, the number of request for service k on edge cloud i by
wireless sensor devices are λi,k(t). Due to the heterogeneity
of data collected by wireless sensor devices and the dynamic
nature of the service requested, λi,k(t) changes dynamically. It
should be noted that when the requested service is not placed
on this edge cloud, the service can be operated on a cloud or
on another edge cloud if the service is placed through schedul-
ing. Therefore, we give the workload scheduling scheme for
services. Let pi,k(t) ∈ [0, 1] denote the workload ratio where
service k is operated on edge node i. Accordingly, we can
define P(t) = {pi,k(t)|i ∈ N ∪ {o}, k ∈ K} as all service
scheduling decisions, and po,k(t) represents the proportion
where service k is operated on the cloud. We assume that
each requested service needs to be executed, i.e.,∑

i∈N∪{o}

pi,k(t) = 1, ∀t. (3)

Moreover, the total number of request for service k in indus-
trial CPS at time slot t can be obtained as: λk =

∑N
i=1 λi,k(t)

Thus, we can obtain the overall computation workload Wi,k(t)
and data size Si,k(t) required when service k is operated on
edge cloud i at time slot t as:

Wi,k(t) = pi,kωkλk(t),

Si,k(t) = pi,kskλk(t).

We note if Wi,k(t) ≤ ωkλi,k(t), the computation workload
required by services k is from edge cloud i; Otherwise, the
excessive workload (Wi,k(t) − ωkλi,k(t)) corresponds to the
nearby edge clouds.

Next, we analyze the specific service response time. For
instance, at the point where xi,k(t) = 1, the edge cloud
i should be able to handle service request k. Under these
conditions, we first obtain the computing delay when service
k is handled on edge cloud i as:

Dcomp
i,k (t) = xi,k(t)

Wi,k(t)

yi,k(t)F
edge
i

. (4)

In terms of transmission delay, since wireless sensor devices
are often very close to the access point, therefore, as in [11],
we ignore the transmission delay between these devices and
edge cloud. In addition, considering that neighboring edge
clouds are not far away from each other (similar to [13]),
by assuming that the transmission rate is redge(t), the trans-
mission delay of the edge cloud can be obtained as:

Dtran
i,k (t) = xi,k(t)

max{(pi,kskλk(t)− skλi,k(t)), 0}
redge(t)

. (5)

In the case where xi,k(t) = 0, outsourcing some services to
a remote cloud would be required. Based on [12], the service
response time is mainly from the transmission delay in the
core network. So, we assume that the rate of the core network
when service k is transmitted at time slot t is rk(t). Under

these condition, the processing delay of service k on the cloud
can be obtained as:

Dc,k(t) =
N∑
i=1

[
(1− xi,k(t))

p0,k(t)λk(t)sk
rk(t)

]
. (6)

Thus, we can obtain the average response time of service k
as the weighting of all edge clouds to computation delay and
transmission delay, as follows:

dk(t) =
N∑
i=1

(Dcomp
i,k (t) +Dtrans

i,k (t)) +Dc,k(t). (7)

Our goal is to reduce the outsourcing service to remote cloud
while minimize the service response time, as follows: Dk(t) =
dk(t) + p0,k(t)λk(t)sk.

D. Uncertain Service Demand
Existing service placement strategies are based on the

assumption that service requests on the edge cloud are known
or subject to a specific distribution (e.g., Poisson distribution).
More specifically, the service provider is aware of request-
ed services when making a service placement. However, in
practice, for industrial CPS each edge cloud covers different
regions where system environment changes dynamically. This
situation causes uncertainty in requesting services in each
region. Under these conditions, we need to design the algo-
rithm that can deal with time changing environments (such
as the arrival of a new service demand) and find an optimal
solution in which the service placement, resource allocation,
and workload scheduling under uncertain service demands can
be efficiently handled. Thus, we firs use the idea of software
definition to realize the centralized control of distributed edge
cloud. Then, we utilize deep reinforcement learning to learn
the service request.

E. Problem Formulation
In softwarized-based industrial CPS, our goal is to minimize

Dk(t) through service placement, resource allocation, and
workload scheduling under uncertain service demands. Thus,
the problem can be expressed as:

P1 : min
X ,Y,P

1

T

T∑
t=1

K∑
k=1

Dk(t), (8)

s.t. C1 :
K∑

k=1

xi,k(t)sk ≤ Medge
i , ∀t. (9)

C2 :
K∑

k=1

yi,k(t) ≤ 1, ∀t. (10)

C3 :
∑

i∈N∪{o}

pi,k(t) = 1, ∀t. (11)

C4 : xi,k(t) ∈ {0, 1}, k ∈ K, i ∈ N . (12)
C5 : yi,k(t) ∈ [0, 1], k ∈ K, i ∈ N . (13)
C6 : pi,k(t) ∈ [0, 1], k ∈ K, i ∈ N . (14)

In the above, the objective function (12) aims to compute
the minimal service response time. The first constraint con-
dition (C1) indicates that placed services cannot exceed the
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storage capacity of the edge cloud. Constraint (C2) ensures
that resource allocation on the edge cloud cannot exceed the
computing capacity of the edge cloud. Finally, the value of
variables are given in constraint (C3), (C4) and (C5).

For the optimization problem P1, we note that X is an
integer variable, Y and P are continuous variables, and the
objective function is nonlinear. Thus, the optimization problem
P1 is a mixed integer nonlinear programming, which is NP-
hard problem. In order to address this, we adopt DQN for
solving the problem where an optimal scheme will be can be
developed through a learning service demand.

IV. DQN-BASED SERVICE PLACEMENT ALGORITHM

Fig. 2 illustrates our proposed DQN-based service place-
ment method. Specifically, we adopt convex optimization and
DQN to solve the optimization problem P1. Considering that
resource allocation is processed on the edge node, whereas the
SDN controller handles the service placement and workload
scheduling, problem P1 can be divided into two subproblems:
1) resource allocation and 2) service placement and workload
scheduling.

A. Resource Allocation Problem

First, we assume that the optimal service placement X ∗(t)
and workload scheduling P∗(t) at time slot t have been han-
dled by a centralized SDN controller. Then the optimization
P1 is converted into the following optimization problem P2
with respect to yi,k：

P2 :min
Y

1

T

T∑
t=1

K∑
k=1

Dk(t), (15)

s.t. C1 :

K∑
k=1

yi,k(t) ≤ 1, ∀t. (16)

C2 : yi,k(t) ∈ [0, 1], k ∈ K, i ∈ N . (17)

By analyzing Dk(t), we conclude that given the optimal
x∗
i,k(t) and p∗i,k(t), there is only Dcomp

i,k (t) for the service re-
sponse time that relates to edge cloud i. As resource allocation
should be conducted at each edge cloud i within a time slot
t and in a distributed manner, the objective function can be
converted into:

f(Yi(t)) =
K∑

k=1

Dcomp
i,k (t). (18)

Therefore, we can obtain that the optimal resource allocation
scheme as shown in the following lemma:

Lemma 1: When the optimal service placement x∗
i,k(t) and

workload scheduling p∗i,k(t) are given, the optimal resource
allocation y∗i,k(t) can be obtained as:

y∗i,k(t) =

√
µi,k(t)∑N

i=1

√
µi,k(t)

. (19)

where µt
i,k = (x∗

i,k(t)Wi,k(t))/F
edge
i .

Proof: First, we can obtain the second-order derivative of
f(Yi(t)) as:

∂2f

∂yi,k(t)2
=

2µi,k(t)

yi,k(t)3
≥ 0. (20)

Considering that if a service is not placed on the edge cloud,
yi,k is equal to 0. So we can conclude that the Hessian matrix
of f(Yi(t)) is positive and f(Yi(t)) with respect to yi,k is
convex. Based on the karush-kuhn-tucker (KKT) condition
adopted in [22], the optimal resource allocation scheme yi,k(t)
can then be obtained.

B. Service Placement and Workload Scheduling Problem

According to the above analysis, we conclude that given the
service placement and workload scheduling scheme, optimal
resource allocation can be handled by each edge cloud i at time
slot t. Next, we introduce a solution for the service placement
and workload scheduling problem under uncertain service
demands. We design a service placement and scheduling
algorithm based on DQN [23], [24].

Specifically, DQN modeling is often conducted based on the
Markov Decision Processes (MDP), which includes intelligent
agent, environment, state, action and reward elements. The
basic idea is as follows: an intelligent agent observes the
environment at time slot t to obtain the current state. Then,
the agent makes a corresponding action as an observed state
and reward will be given after the action is accepted by
the environment before proceeding to the next state. An
intelligent agent finally maximizes the sum of its rewards
through continuous interactions with the environment.

Thus, we first need to describe the service placement and
workload scheduling optimization problem as an MDP. Bear
in mind that MDP consists of four components: state space S,
action space A, and reward function R. In order to apply this
to the edge computing scenario, we need to specifically design
different components of reinforcement learning as described
below.

State space: The SDN controller is responsible for ob-
serving the state of each edge cloud, which includes service
demand and the information of the edge cloud. Specifically,
the state of edge cloud i at time slot t can be obtained as:

si(t) = {λi,k(t),M
edge
i , F edge

i , y∗i,k(t)}. (21)

Thus, the state of edge cloud i can be obtained by the SDN
controller through local observation at the beginning of each
time slot t.

Action space: We begin with service placement xi,k(t),
by assuming that there are N edge clouds, K services, and
xi,k(t) ∈ {0, 1}. Thus, the action space of the service place-
ment is 2K×N . Then, we consider the workload scheduling
scheme. From the optimization problem P1, we can observe
that the workload scheduling scheme pi,k(t) is continuous. If
a modeling is conducted with usual continuous action space,
the action space would be too large, which is not suitable for
deployment on the edge node. To address this issue, we consid-
er that, in practice, workload scheduling is usually done with
blocks. Thus, we assumed that the minimum processing unit
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Fig. 2. An illustration of DQN-based service placement method.

is ∆pi,k(t). Therefore, the value of the workload scheduling
scheme can be obtained as:

pi,k(t) ∈ {∆pi,k(t), · · · ,m∆pi,k(t), · · · , 1} (22)

Thus, we can obtain the action space A(t) of edge cloud i at
time slot t as:

ai(t) = {xi,k(t),m∆pi,k(t), k ∈ K}. (23)

Reward: Bear in mind that our goal is to minimize service
response time through service placement, workload schedul-
ing, and resource allocation. According to the definition of
service response time, we can then obtain the reward function
as:

R(t) =

K∑
k=1

Dk(t) (24)

To minimize the reward function, we first define Q(s, a) as
the action-value. We can then show the expected total sum of
future rewards for T time steps, as:

Q(s, a) = E

(
T∑

t=1

γtRt|st = s, at = a

)
(25)

where γ ∈ [0, 1] is the discount factor and E[] is the expec-
tation with respect to the time-varying system environments.
Thus, we can express the original optimization problem P1 as
finding the optimal service placement and scheduling strategy
a∗ to minimize the action-value Q(s, a).

a∗ = argmina∈AQ(s, a) (26)

where A is the action space.

C. Deep Q-network based Service Placement and Workload
Scheduling Algorithm

Based on the components defined above, our goal is to
design the optimal service placement decision X and work-
load scheduling P according to the request of the service.
Our algorithm architecture is shown in Fig. 3. Specifically,
considering the limited computing and storage capacity of
the edge cloud, we adopt the strategy, which is based on
offline training of Q-network parameter θ and online service
placement and workload scheduling decision at. The offline
training refers to the Q network parameter θ, where the
θ = (W1,W2), describes the non-linear relationship among

.
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Fig. 3. Deep reinforcement learning based service placement and workload
scheduling scheme.

service request information and the reward of Q-network. The
online decision making refers to the service placement and
workload scheduling strategy at. Moreover, the DSP algorithm
is shown in Algorithm 1 with the following specifications.

Let us denote E as the epoch of this algorithm where in each
epoch, as shown in line 4, we choose an action at. Specifically,
in this paper, we adopt the ε-greedy search strategy where an
action with possible probability ε (with uniform distribution)
is selected among all possible actions. For the purpose of
exploitation, the known best action can be selected by the
probability of 1 − ε to be utilize. Subsequently, in line 5,
we execute the service placement and workload scheduling
strategy of at to obtain the corresponding reward Rt, and to
change the state space from st to st+1. We store the transitions
(st, at, Rt, st+1) in the reply memory D, as shown in line 6.
Then, we use the data stored in the reply memory to train the
parameters θt in the Q-network, where we select |D̃| data as
a mini-batch from the reply memory, and train the network
based on the following loss function:

L(θt) =
1

|D̃|

|D̃|∑
j=1

(
Rj + γmin

a′
Q(si+1, a

′; θ̄)−Q(si, ai; θt)
)2

(27)
The parameter θt can be solved by the gradient descent method
as:

θt+1 = θt − η∇L(θt) (28)

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on December 27,2020 at 03:12:19 UTC from IEEE Xplore.  Restrictions apply. 



1551-3203 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.3041713, IEEE
Transactions on Industrial Informatics

7

where η is the learning rate. After the C step, we reset the θ.
Through the above steps, we can get the parameter θ in the Q-
network. Based on the above training model, we propose the
online service placement and scheduling strategy as shown in
lines 13-15.

Algorithm 1 DQN based service placement and workload
scheduling algorithm.
Input:

State of edge system in industrial CPS;
Random initialization parameters;

Output:
Service placement decision and workload scheduling
scheme.
Offline training the Q-network

1: for epoch=1:E do
2: Obtain the initial state st.
3: for time slot t=1:T do
4: select an action at based on ε-greedy policy;
5: Deploy at, observe the reward Rt and obtain the new

state st+1;
6: Store transition (st, at, Rt, st+1) into replay memory

D;
7: Sample a mini-batch of transitions D̃ =

(st, at, Rt, st+1)
|D̃|
t=1 from replay memory;

8: Calculate the gradient L(θt) according to (27);
9: Update the parameters according to (28);

10: Every C steps, reset θ̄ = θ.
11: end for
12: end for

Online making service placement and scheduling de-
cision according to the service demand

13: Load the parameters θ;
14: Calculate action-value Q(st, a; θ);
15: Output at = argminQ(st, a; θ)

D. Convergence Analysis

According to [24], when the system satisfies Markov prop-
erty and the learning rate is small enough, DQN method can
gradually converge to the optimal decision-making strategy.
According to the above analysis, out algorithm satisfies this
condition. Thus, the DSP algorithm proposed by us finally
converges to the optimal strategy.

V. PERFORMANCE ANALYSIS

In this section, we evaluate the DSP algorithm to verify the
effectiveness of our algorithm.

A. Experiment Setting

In this paper, we assume the edge clouds are deployed near
the access point. Industrial CPS devices can be connected to
edge cloud via an access point. We consider the industrial CPS
includes 10 edge clouds and 15 services. According to [12],
we assume that the storage of each service required follows
a uniform distribution with a mean of [20, 80] GB, and the

amount of computation required for each service follows a
uniform distribution with a mean of [10, 50] gigacyles. Con-
sidering the heterogeneity of storage and computing capacity
of the edge cloud, we assume that the storage capacity of
the edge cloud is randomly selected from [100, 200] GB, and
the computing capacity is randomly selected from [50, 100]
GHZ. For edge cloud network transmission, we assume that
the transmission rate between edge clouds is [20, 40] Mbps.
As for service request demand, we use real data sets in [8].

For DQN algorithm, the network is realized through Ten-
sorflow, whose network structure is a fully connected three-
layer network with a single hidden layer, and the number of
nodes in the hidden layer is set as 50. For the experience pool,
circular queue is adopted for implementation, and the size of
the experience pool is 2000. Moreover, we adopt ε-greedy
strategy for the action selection strategy, where ε = 0.9. In the
early stages of network training and to encourage exploratory
behavior, we set ε to start from 0, and increment as 0.0005.
As for the batch-size, after many tests, the optimal batch-size
is chosen as 64. The learning rate of the algorithm is set as
η = 0.0001, and the discount factor is set as γ = 0.9.

B. Comparison Algorithms

The DSP algorithm proposed in this paper will be compared
with the following algorithms:

• Random service placement algorithm: In this algorith-
m, services are placed on the edge cloud randomly. As
for workload scheduling and resource allocation, optimal
scheduling and resource allocation is conducted.

• Independent service placement (ISP) algorithm: In this
algorithm, each the edge cloud carries out independent
service placement, and the workload of each edge cloud is
processed either locally or offloaded to the remote cloud.
For the edge cloud computing resources, optimal resource
allocation is carried out according to the placed service
and workload.

• Popular service placement algorithm [11]: In this
algorithm, we perform service placement according to the
number of requests, i.e., the services with more requests
are placed on each edge cloud. According to the services
placed on the edge cloud, optimal workload scheduling
and resource allocation is conducted.

C. Performance Evaluation

In order to avoid the noise data caused by exploration
in the experiment results, in our experiments averaging is
conducted to return values every 10 rounds. Furthermore, in
the experiment, we normalize the service response time.

Edge cloud storage capacity: We first analyze the impact
of edge cloud storage capacity on the service response time.
The edge cloud storage capacity varies from 50GB to 250GB.
From the Fig. 4, we can obtain that when the edge cloud
storage capacity increase, the service response time decreases.
This can be explained as a larger edge cloud storage capacity
would allow more services to be placed in edge cloud causing
a reduction in the service response time.
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Fig. 5. Performance evaluation among random service placement algorithm, independent service placement (ISP) algorithm, popular service placement
algorithm and DSP algorithm: (a) The impact of the number of service requests for different service placement schemes; (b) The impact of the number of
service for different service placement schemes; (c) The impact of the edge cloud computing capacity for different service placement schemes.

Fig. 4. The impact of the edge cloud storage capacity for different service
placement schemes.

Number of service requests: Fig. 5(a) shows that as the
number of service requests increases, the service response time
increases. This is because a larger service request implies a
heavier workload on the edge cloud. In Fig. 5(a), we find that
when the number of service requests increase from 15 to 25,
the service response time of the DSP algorithm increase by
12.3 %, while the other algorithms increase by at least 18.2 %.
This shows that our proposed DSP algorithm is more suitable
for uncertain service demands. Moreover, with the increase of
service requests, the DSP algorithm keeps the lowest service
response time when compared with other algorithms.

Number of services: From Fig. 5(b), we can see that when
the number of services increases, the service response time
increase of each algorithm. This is because with an increase
of services, the computing and storage capacity of the edge
cloud is limited, so more services are processed in the cloud,
thus creating more delays. Furthermore, when the number of
services increases to 30, compared with other algorithms, the
DSP algorithm can reduce the service response time by 8% -
10%.

Computing capacity of edge cloud: We have discussed
the impact of the computing capacity of the edge cloud on
service response time. From the Fig. 5(c), we can conclude
that, with the growth of the computing capacity of each edge
cloud, service response times of each algorithm decrease. This
is because more industrial services can be executed on the
edge cloud. Furthermore, we can also see from the figure that,
compared with other service placement schemes, our proposed

DSP scheme has less service response time, especially when
the computing capacity of the edge cloud is weak.

VI. CONCLUSION

In this paper, we first propose softwarized industrial CPS,
and analyze the problem of service placement in this scenario.
Then, in consideration of uncertain service demand, we for-
mulate the joint optimization problem of service placement,
workload scheduling and resource allocation to minimize
latency in service acquisition. To the best of our knowledge,
this is the first study of joint service placement, workload
scheduling and resource allocation under uncertain demands.
Simulation results have shown that our proposed DSP scheme
is more efficient compared to the existing schemes.
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