
ACCEPTED FOR PUBLICATION: IEEE NETWORK 1

DeepNetQoE: Self-adaptive QoE Optimization
Framework of Deep Networks

Rui Wang, Min ChenB, Nadra Guizani, Yong Li, Hamid Gharavi, Kai Hwang

Abstract—Future advances in deep learning and its impact on
the development of artificial intelligence (AI) in all fields depends
heavily on data size and computational power. Sacrificing massive
computing resources in exchange for better precision rates of
the network model is recognized by many researchers. This
leads to huge computing consumption and satisfactory results
are not always expected when computing resources are limited.
Therefore, it is necessary to find a balance between resources and
model performance to achieve satisfactory results. This article
proposes a self-adaptive quality of experience (QoE) framework,
DeepNetQoE, to guide the training of deep networks. A self-
adaptive QoE model is set up that relates the model’s accuracy
with the computing resources required for training which will
allow the experience value of the model to improve. To maximize
the experience value when computer resources are limited, a
resource allocation model and solutions need to be established.
In addition, we carry out experiments based on four network
models to analyze the experience values with respect to the crowd
counting example. Experimental results show that the proposed
DeepNetQoE is capable of adaptively obtaining a high experience
value according to user needs and therefore guiding users to
determine the computational resources allocated to the network
models.

Index Terms—Deep Networks; QoE; Deep Learning; Artificial
Intelligence.

I. INTRODUCTION

In recent years, the rapid growth of data volume and the
significant improvement of computing chips technology have
greatly promoted the development of deep networks and the
further impact of artificial intelligence (AI). At the same
time, deep learning techniques have been widely used in
many scenarios. From computer vision to natural language
processing, speech recognition to emotion recognition, deep
learning has demonstrated its influence even in areas such
as autonomous driving and virtual assistants. With the huge
non-linear fitting capacity of deep networks being potentially
stronger than human beings, it makes it a hotspot in many
fields of research [1].

R. Wang is with School of Computer Science and Technology, Huazhong
University of Science and Technology, China. (ruiwang2018@hust.edu.cn)

M. Chen is with School of Computer Science and Technology and Wuhan
National Laboratory for OptoelectronicsHuazhong University of Science and
Technology. (minchen2012@hust.edu.cn)

N. Guizani is with Department of Electrical and Computer Engineering,
University of Idaho, USA. (nguizani@ieee.org)

Y. Li is with the Tsinghua National Laboratory for Information Science
and Technology, Department of Electronic Engineering, Tsinghua University,
China. (liyong07@tsinghua.edu.cn)

H. Gharavi is with National Institute of Standards and Technology (NIST),
Gaithersburg, USA. (hamid.gharavi@nist.gov)

K. Hwang is with The Chinese University of Hong Kong, Shenzhen, China.
(hwangkai@cuhk.edu.cn)

B Corresponding author.

Nevertheless, a deep neural network is a complicated pro-
cess that requires extensive training data and strong computing
capacity. In a deep neural network, there exists many neurons
and the connections among them are huge. Moreover, the foun-
dation of a deep network obtained through iterative training
of a dataset and continuously optimizing all parameters until
the optimal model (e.g., meeting the needs of the scene) is
obtained requires a great deal of investment in computational
power. In other words, the stronger the computing power, the
faster to obtain optimal values of the deep learning model.
Qinrang et al. [2] propose an implementation method of an
FPGA-based convolutional neural network accelerator. The
authors proposed approach is aimed at overcoming real-time
limitations of the convolutional neural network (CNN) in the
embedded field and the sparseness of convolutional calculation
of CNN to increase the calculation speed. Vivienne et al. [3]
offers reducing the computational cost of deep neural networks
by combining hardware design and deep neural network algo-
rithms. Google [4] proposes a Tensor Processing Unit (TPU)
based architecture, which accelerates the inference phase of the
neural network. Many researchers are committed to improving
the hardware computing power used for deep network training.

However, the computing resources required during the train-
ing process cannot be accurately estimated. This article takes
crowd counting as an example, as shown in Figure 1. In the
crowd counting task, different networks have been trained at
1000 epochs to obtain training time, model size, and an opti-
mal model iteration number in the same dataset. The degree
of investment in computing resources is replaced by training
time. As shown in Figure 1, the size of the SANet [5] model
size is only 5.3 Mbyte (MB), which requires 85.51 hours (h) of
training time. For the Bayesian Loss (BL) [6], training time is
only 14 h, but the model size is 82.0 MB. The weak correlation
between training time and network parameters adds to the
difficulty of predicting the computational power investment
during model training. At the same time, to improve the
performance of deep networks, researchers often increase the
number of training iterations in exchange for higher accuracy,
which leads to the consumption of more computing resources.
For some models, performance will be further improved as
the number of iterations increase, hence making investment of
computing power worthwhile. However, this method will fail
on some models. As shown in Figure 1 we notice that VGG16,
VGG16 Decoder, and Res101 [7] follow-up training is mean-
ingless. On the other hand, the performances of BL, SANet,
CSRNet [8] and MCNN [9] models continue to improve as
iterations increase, and the investment of computing power

ar
X

iv
:2

00
7.

10
87

8v
1 

 [
cs

.L
G

] 
 1

7 
Ju

l 2
02

0



ACCEPTED FOR PUBLICATION: IEEE NETWORK 2

AlexNet VGG16 VGG16Decoder BL SANet CSRNet Res101 Res50 MCNN
0

20

40

60

80

100

120
T
ra
in
in
g
 t
im
e
/h
 &
 M
o
d
e
l 
si
ze
/M
B

72.6

31.0
35.0

14.0

85.5

33.7

58.2

26.2
30.0

9.6

29.4
32.0

82.0

5.3

62.0

105.0

33.3

0.5
100

200

300

400

500

600

700

800

900

1000

E
p
o
ch

Training time
Model size
Best epoch

Fig. 1. The training time and model size of the crowd counting model, and best epoch where the optimal parameters appear.

has achieved an extremely high cost performance. Therefore,
in the case of limited computing resources, it is necessary
to consider adaptive training methods for performance and
resource optimization. In this way, we can accommodate as
many calculations and services as possible while improving
model training efficiency.

To achieve a balance between the consumption of comput-
ing resources and the performance of the model, it is necessary
to find an optimal model with a reasonable consumption
of resources. For example, in the design of an autonomous
mobile robot, Lahijianian et al. [10] argue that reducing the
consumption of computational resources does not seriously
impact the autonomous ability of the robot. This clearly indi-
cates that there is a reasonable tradeoff between resources and
performance. Zhang et al. [11] develop a robust and effective
proactive content caching strategy based on deep learning
for improving user experience and reducing network load.
Though it could not provide optimal results in consumption, it
definitely has practical value for raising the networking service
quality. Moreover, there are a few researchers focusing on the
allocation of the user’s resource request when several different
types of resources coexist [12]. In fine-grained tasks referring
to specific networks to be trained toward GPU resources
allocation, related problems and corresponding solutions are
in short supply. There are two solutions that can reduce
computing resources effectively without impairing the model
performance: one is to reduce the running time by modifying
parameters in the process of model training and the second,
is to provide a resource allocation plan that satisfies the
user’s quality of experience (QoE) self-adaptively. The latter
is based on indexes generated in the model training process,
the users’ expected model precision, and authorized comput-
ing resources [13]. The dynamic management of computing
resources is particularly important and needs to adapt to the
changing service demand over time. However, the following
research challenges still exist:

• Lack of processing flow for deep network model
training process optimization. Due to uncertainty of
the deep network training process, there are currently

no thorough procedures for optimizing a deep network
training process. This produces an inaccuracy in guiding
computing resource investments in model training.

• Lack of fine-grained allocation of computing resources
for deep models. No fine-grained model schemes are
currently available in terms of computing resources and
computing tasks. Therefore, there are still issues such
as unclear indexes and parameters in the actual model
allocation plan, which brings more uncertainty to the
decision-making plan.

• Failure to consider users’ expectation on performance
and resource conditions in the training process. It
is necessary to allocate resources reasonably based on
the user’s expectation of the performance and computing
resources possessed by the user. Nonetheless, the existing
research fails to consider the user’s needs to achieve the
self-adaptivity of QoE.

Based on the shortcomings in current research, this arti-
cle proposes DeepNetQoE, a self-adaptive QoE optimization
framework for deep networks. It combines DeepNetQoE with
specific applications to verify its performance in the training
of crowd counting models. Driven by the prediction on model
performance, the fine-grained computing resources allocation
plan of deep model is presented, all while ensuring user
needs are satisfied. Therefore, the article has the following
contributions:

• Presents a self-adaptive QoE optimization framework
for deep network model training. In view of the
huge consumption of computing resources in the process
of deep network training, we propose a DeepNetQoE
framework capable of effectively guiding the training
process with limited computing resources.

• Builds the user’s experience model. By analyzing
factors influencing the model training and quality of
experience, a user’s experience model is built to evaluate
the experience value of different models to help the user
choose model training.

• Constructs the optimization of resources under multi-
ple deep learning tasks. The article proposes a resource



ACCEPTED FOR PUBLICATION: IEEE NETWORK 3

...

...

... ...
Best model

Loss value

Evaluation value

Data & Code

Loss value

Evaluation value
x1 x3x2 xt

Predicted loss 

value

Predicted 

evaluation value

A A A A

h1 h3h2 ht

Self-adaptive QoE 

model

Estimated best 

training epoch

Estimated best 

performance

Estimated best 

experience value

Self-

adaptive 

QoE model

Estimated training, testing 

and loading time

Expected weight 

parameter

Model 

performance

Computing 

resource cost

Expected weight 

parameter

Training layer

Prediction layer

QoE model layer Estimation layer

Prediction 

network

Predicted 

result

Training 

resultUpload

Storage resource 

cost

GPU

Input Output

Cloud server

...

Hidden

Fig. 2. The architecture of DeepNetQoE.

optimization plan for multi-model training applications
based on the QoE model and presents solutions.

• Verifies the effectiveness of DeepNetQoE based on the
crowd counting model. The article verifies the feasibility
and effectiveness of the proposed plan based on the crowd
counting model.

The remainder of this article is organized as follows. Section
II builds the DeepNetQoE architecture and illustrates it in a
typical application. Section III discusses metrics to evaluate
the performance of the DeepNetQoE. Section IV builds a QoE
model based on the DeepNetQoE and conducts evaluation
experiments and Section V concludes the article.

II. DEEPNETQOE ARCHITECTURE AND TYPICAL
APPLICATION SCENARIO

This section builds the DeepNetQoE framework for training
in a deep network model to guide users to make effective deci-
sions. It is based on investing reasonable computing resources
during training to gain a better training experience. In addition,
the article introduces a typical scenario to which DeepNetQoE
can be applied.

A. DeepNetQoE Architecture

Figure 2 shows a DeepNetQoE framework oriented on a
deep network model. The framework consists of four layers:
training layer, prediction layer, QoE model layer, and estima-
tion layer.

1) Training layer: The transfer and interaction of infor-
mation among different layers of DeepNetQoE is realized on
the premise that the deep learning model has gone through a
period of training. At the training layer, data and codes are
uploaded to the server through a communication network and
are trained on the GPU. With the increase of iterations, optimal
models are generated constantly, and loss and evaluation
values are generated in each epoch round at the same time. The
change in loss indicates the degree of the models convergence,
while the evaluation value presents the model’s performance.
After a certain epoch is reached, this data is sent to the
prediction layer.

2) Prediction layer: After receiving the losses and evalua-
tion values in a time series, the prediction layer will predict
loss and the evaluation value for future epochs. This is done
through the use of the deep network’s sequential data model-
ing. The predicted loss value and evaluation value will reflect
the convergence and performance of the later training model.
We predict the model performance under a time series by using
the Long Short-Term Memory (LSTM) network due to its
good sequence modeling performance and use the predicted
losses to guarantee model convergence. The evaluation result
is transmitted to the estimation layer as the input to the self-
adaptive QoE model.

3) QoE Model layer: DeepNetQoE focuses on the user’s
different requirements in the process of training and use of the
deep learning model. Thus, the QoE model layer aims to build
a self-adaptive QoE model based on different model and user
conditions. Variants used to build the self-adaptive QoE model
are associated with multiple factors and depend mainly on



ACCEPTED FOR PUBLICATION: IEEE NETWORK 4

users needs to realize self-adaption. The most important factor
for all users is performance, which directly decides the QoE of
the model. Another is that optimization of computing resources
is critical but can be different dependent on availability. Other
factors include space complexity and testing time, etc. The
self-adaptive QoE model will generate metrics to measure
the experience value toward a deep learning model under
the influence of multiple factors. It should be noted that the
experience value is the result of the QoE model. In return,
the user may set an expected weight parameter to solve the
optimal estimation of computing resource consumption and
space complexity among other metrics.

4) Estimation layer: The results generated by the estima-
tion layer have an important link to the DeepNetQoE, which
are used to guide the model training. Optimal times of epoch
and experience values under certain restrictions are obtained
from the data delivered by the prediction layer and the model
built by the QoE model layer. The training iteration time
when the experience value reaches the higher, along with the
increase of iterations and the changes in QoE in the future,
are obtained. This is based on the computing resources and
the expected experience value of the user. Finally, the result
will be reported to the training layer to effectively regulate the
training of the deep model.

DeepNetQoE is a loop-locked dynamic interaction system.
In the process of deep model training, the four layers interact
with each other constantly and adjust training strategies cease-
lessly. The strategy to obtain the maximum experience value
is adopted on the basis of satisfying the personalized needs of
each user, and finally the adaptive optimal network model is
acquired.

B. Application of DeepNetQoE on Crowd Counting

DeepNetQoE can be used in most of the deep network
models to guide model training. The article will take the crowd
counting model as an example to study the self-adaptive QoE
model in deep networks. Crowd counting has a wide range
of applications, such as estimating the number of participants
in social and sports events. The common method for crowd
counting is a deep network that processes the image to a
density map. The crowd counting will be then estimated by
a summation over the predicted density map. In addition,
there are some typical models with better performance on
a large-scale crowd dataset. For instance, a Multi-Column
Convolutional neural network (MCNN) is used to extract
head features of different scales [9]. Other models such as
CSRNet [8] and SANet [5] have similar network structures
to acquire crowd counting. It is worth noting that Ma et
al. [6] propose Bayesian Loss, a novel loss function, which
constructs a density contribution probability model from the
point annotations. In addition, there are also some pre-trained
models, such as VGG, Alexnet and Res50 [7] which can
also be used for computational tasks. We will select some
of the representative models to evaluate the performance of
the curve prediction and the verification of resource allocation
algorithms over time.

III. PERFORMANCE METRICS OF DEEPNETQOE

In this section, key factors influencing QoE are described
and the performance prediction plan for a specific model under
time series is then illustrated simultaneously. DeepNetQoE
will compute effective optimization and allocation of resources
based on these factors and plans.

A. Illustrations of DeepNetQoE Performance Metrics

When training a deep network model on a GPU server, it is
assumed that the trained model possesses full authority over
the GPU’s computing resources. Moreover, the GPU will not
load any other computational task during the training process.
The article considers that the user’s expectation on the model is
influenced by multiple factors, as shown in Table I. A detailed
introduction will be described next.

The main objective of the iterative training of a deep
network on a dataset is to optimize the weighting parameters
of the neuron to make it constantly fit the features of the
dataset and entail brings a high precision rate on the testing
dataset. Therefore, a top factor influencing the experience
value of the network model is the precision rate of the model.
Different network models and tasks adopt different evaluation
methods. Evaluation methods used for regression tasks and
crowd counting include mean absolute error (MAE) and the
mean squared error (MSE). The QoE model associated with
the performance of these two indicators for measuring the
performance of the mode is expressed as emae and emse

respectively.
In addition to the performance of the model, another factor

influencing experience value is the consumption of resources.
Full occupation over the GPU is assumed in a single-model
training process. Thus, this article takes the training time to
indicate the consumption of resources. Here, there are three
types of time-scales considered including the training time,
loading time, and testing time of the model, expressed as
ttrain, tload and ttest, and the QoE model associated with them
are expressed as etrain, eload and etest, respectively. Models
are constructed based on the user’s expectation of these times.
According to QoE analysis, among the acceptability of ttrain,
tload and ttest, the latter directly influences the real-time
response performance of the model through an end-to-end
test, which is critically important as an oversized ttest leads
to an undersized QoE. tload is used for the time spent on
loading the model and thus, has loose requirements. The ttrain,
required for model training is great in most cases. However,
if the desired optimal model requires a huge consumption of
computing resources, the user’s tolerance will approach a limit
and the experience value will decrease. Models for etrain,
eload and etest are built based on the influence of different
factors on QoE.

B. Early Prediction of DeepNetQoE Performance via LSTM

To obtain the total experience value Eall, individuals expe-
rience values of emae, emse, etrain, eload and etest need to be
clearly defined. Factors influencing experience values are re-
lated performance and time, which can only be obtained during



ACCEPTED FOR PUBLICATION: IEEE NETWORK 5

TABLE I
DEFINITION OF DEEPNETQOE PERFORMANCE METRICS

Performance Metrics Definition
emae An important network performance metrics influencing the user’s experience value in regression task

associated with MAE, which is defined by natural index exp and normalized parameters.
emse An important network performance metrics influencing the user’s experience value in regression task

associated with MSE, which is defined by natural index exp and normalized parameters.
etrain A critical metrics to be considered when computing resources are limited, which occupies most of

computing resources and influences the experience value of model training directly, associated with the network
model training time ttrain.

eload A metrics influencing the user’s experience value, a tiny influencing factor, which occupies instant
computing resources, associated with the loading time tload of the network model.

etest A metrics influencing user’s experience value when deploying and using the network model, which occupies
real-time computing resources, and shows different influence for different tasks, associated with the test time
ttest of the network model.

500 600 700 800 900 1000

Epoch

11.5

12.0

12.5

13.0

13.5

14.0

14.5

15.0

15.5

16.0

Lo
ss

Loss truth
Loss prediction

500 600 700 800 900 1000

Epoch

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Lo
ss

 E
rr

o
r

(a) Loss prediction and Error

500 600 700 800 900 1000

Epoch

85

90

95

100

105

110

115

M
A
E

MAE truth
MAE prediction

500 600 700 800 900 1000

Epoch

0

5

10

15

20

25

30

35

M
A
E
 E
rr
o
r

(b) MAE prediction and Error

Fig. 3. Some experiment results from LSTM network to predict performance
in time series.

the training process. Since the training process of the model is
changeable dynamically, performance and convergence degree
of models in the future are full of uncertainties. To obtain
experience values, it is necessary to predict curve dynamics
based on the data generated in the training process. Therefore,
it is important to accurately predict the curve of performance
changing with the time. During the model’s training process,
a new round of training is conducted with an epoch as the
node. Therefore, the number of epochs is used to replace the
training time ttrain. To a certain degree, the number of epochs
can be mapped as ttrain. Moreover, for a specific model, the
values of ttest and tload are confirmed and will be imported
directly without prediction.

The network structure used in this article is a two-layer
LSTM network, the ReLU activation function is used for
de-linearization and dropout is used for de-overfitting [14].
Generally, the epoch of the crowd counting model is 1,000,
so it will produce 1,000 performance index results and loss
values. We use the data from the first 500 epochs as the
training dataset, and the data from the last 500 epochs as
the test dataset. Figure 3 shows the experimental results of
the LSTM model on the Bayesian Loss model. Figure 3 (a)
displays predicted and real losses while Figure 3 (b) shows
MAE and the difference between the predicted value and the
real value. The experimental results prove that LSTM model
has high prediction accuracy performance and the predicted

results can be used for experience value analysis.

IV. DEEPNETQOE MODEL AND PERFORMANCE
EVALUATION

Combining the previously mentioned factors influencing
the QoE model and the performance prediction under a time
series model, a QoE model is established. Then, the problems
concerning the allocation of resources under multiple deep
model training tasks are proposed. Based on the deep learning
model for crowd counting, related experiments are subse-
quently conducted to verify the effectiveness and necessity
of the proposed scheme.

A. DeepNetQoE Model and Self-adaptive QoE Optimization

Based on the performance evaluation metrics of Deep-
NetQoE, a complete QoE model based on the deep learning
model can be obtained as:

Eall(emae, emse, etrain, eload, etest) =

M=5,E∑
i=1,j

ωi · ej (1)

where E = {emae, emse, etrain, eload, etest}, ej ∈ E,
M represents these five factors, ωi means the user’s ex-
pected weight on the ith factor and the expected weight
will be determined in view of the personal experience
and conditions of the user. When modeling each factor,
the experience value of each factor will be limited (0, 1].
Eall(emae, emse, etrain, eload, etest) ∈ (0, 1] can be obtained
based on the features of emae, emse, etrain, eload and etest.
Therefore, with the QoE of a single network model, each
user by setting Eall and and expected weight, can get the
corresponding emae, emse, etrain, eload, and etest in order to
produce individualized requirements.

Allocation of resources for multi-network models aims to
improve the total experience of a user engaged in joint training
of multiple models. The user has different experience values
for different models at the time of model series training, thus
optimization problems of the total experience value (Esum

all )
can be obtained. The purpose is to maximize Esum

all via the



ACCEPTED FOR PUBLICATION: IEEE NETWORK 6

allocation of computing resources according to the following
definition:

argmax
eupref ,e

u
train,e

u
load,e

u
test

R∑
u

Eu
all

s.t. eumae, e
u
mse = f(tutrain),t

u
train ∈ eutrain∑R

u tutrain ≤ T ,tutrain ∈ eutrain

(2)

Where Eu
all refers to the experience value of the uth network

model. Similarly, the influencing factor of the uth model is
eumae, eumse, eutrain, euload, and eutest. R refers to the network
model set to be trained, whereas eumae and eumse represents the
performance of the uth model. tutrain corresponds to the train-
ing time of the uth model. Bear in mind that eumae and eumse

are determined by the epoch of training, while the epoch can
be mapped as a function of time. f(·) represents the mapping
relation from tutrain to eumae and eumse. As described in Section
III, we can then obtain the predicted epoch-performance curve.
T refers to the total training time possessed by a user and the
training time is regarded as a computing resource. The value
of tuload and tutest of each model is fixed, hence can be directly
imported. Furthermore, loading and testing time occupy little
computing resources when compared to the training time and
therefore are excluded from the total training time T .

According to the resource allocation and optimization model
established above, the problem needs to be solved to maximize
the user experience value under limited computing resources.
First, an LSTM-based model is used to predict performance.
This is based on the historical calculation results of the model
to obtain the performance value of the subsequent epoch.
The experience value of each model, under the corresponding
epoch and required training time, are calculated. We solve
the problem of computing resource allocation for the model
based on a genetic algorithm. The genetic algorithm is utilized
to generate the epoch of each model that needs to be trained.
This includes conversion into a binary string, and then through
cycles of individual elimination, selection, hybridization, and
mutation several times to obtain all the results satisfying
restrictions. Finally, under the limitation of the total training
time T , the total experience value, Esum

all , is obtained and the
training epoch of each network model is used to guide the
user’s resource allocation.

B. DeepNetQoE Performance Evaluation

By combining the user’s QoE model and the computing
resources allocation algorithm, we carry out experiments. We
analyze the results to verify the effectiveness of the model. In
setting up these experiments, only one network model is used
during training and there are no other unnecessary processes
on the server. Under these conditions, the utilization rate of
the network model to the server is above 85%.

Four networks, including Bayesian loss, MCNN, SANet,
and VGG16 Decoder, show good performance in the crowd
counting task. These models have been trained through 1,000
iterations on the GPU of Navida V100 Group. The video
memory size is 32 Gigabyte(GB) while the internal memory
is 128 GB. The data set used for the model training is UCF-
QNRF with massive crowd. Parameters associated with the

network model are shown in Table II. In this table MAE and
MSE are evaluation metrics of the optimal model to help each
user to decide the final experience value.

TABLE II
THE PARAMETERS OF CROWD COUNTING MODEL

Method MAE MSE TrainT TestT LoadT
BL [6] 89.38 161.67 14 h 0.2335 s 15 s
MCNN [9] 185.86 287.15 30 h 0.3353 s 17 s
SANet [5] 129.91 217.39 50 h 0.8294 s 16 s
VGG16 Decoder [7] 145.97 247.94 35 h 0.6647 s 18 s

Furthermore, when assessing the user’s experience value, it
is necessary to determine parameters of the model according
to the training parameters of the network itself to realize
normalized processing on the QoE models. In the experiment
of crowd counting described earlier, QoE model parameters are
obtained from the constant debugging of the actual parameters
of the network model. It should be noted that parameter,
omega, is the expected weight of the user, which is determined
by the user’s personal needs.

Based on the experience value model, two aspects of
experiments were carried out. Figure 4(a) shows the im-
pact of different expected weights, w, on the QoE model
based on the Bayesian loss model. Among them, w1 =
[0.1, 0.1, 0.5, 0.05, 0.25], w2 = [0.4, 0.4, 0.05, 0.03, 0.12],
w3 = [0.3, 0.4, 0.01, 0.2, 0.09]. On the other hand, with the
goal of optimizing Equation (2), the total experience value
when multiple models coexist is solved. Figure 4 uses four
algorithms to perform resource allocation tasks. The allocation
of computing resources is based on 500 basic iterations of
each model. Note that the GA method is based on the genetic
algorithm in [15]. Random method allocates the remaining
resources to each network model after allocating the basic re-
sources, and then randomly allocates them. The FCFS method
uses the concept of first-come-first-served. After the basic
resources have been allocated, the remaining resources are
used allocated in the order of Bayesian loss, MCNN, SANet,
and VGG16 Decoder. Each model stops training after reaching
the maximum number of iterations of 1000 times. Average
method is to distribute resources equally to each network
model. From Figure 4(b), we can see that the GA method
shows the best performance, and the total experience value
of the allocation scheme is maintained above 2.94 under dif-
ferent total computing resource settings. The Random method
shows a good performance on some computing resources. The
performance of the FCFS method is relatively poor. Figure 4
(c) displays the experience value generated by the GA method
for the four models on different total computing resources. It
indicates that the Bayesian loss and VGG16 decoder have the
highest experience value.

V. CONCLUSION

The deep network model training process consumes a lot of
computing resources and has unknown situations, this article
proposes a self-adaptive QoE optimization framework of deep
networks. It also builds a computing resource optimization



ACCEPTED FOR PUBLICATION: IEEE NETWORK 7

500 600 700 800 900 1000

Epoch

0.65

0.70

0.75

0.80

0.85

E
x
p
e
ri
e
n
ce

 v
a
lu
e

w1
w2
w3

(a) Total experience value from different w.

80 90 100 110 120 130 140 150 160 170

T/hour

2.84

2.86

2.88

2.90

2.92

2.94

2.96

T
o
ta

l 
e
x
p
e
ri
e
n
ce

 v
a
lu

e

GA
Random
FCFS
Average

(b) Total experience value from different algo-
rithms.

80 90 100 110 120 130 140 150 160 170

T/hour

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

M
o
d
e
l 
e
x
p
e
ri
e
n
ce
 v
a
lu
e

Bayesian Loss
MCNN
SANet
VGG16 Decoder

(c) Different model experience value from GA.

Fig. 4. Results of self-adaptive experience value and optimization.

scheme based on user requirements and total computing re-
sources. A DeepNetQoE framework for deep network model
training is constructed to guide users to make effective deci-
sions during the training process. Later, five evaluation factors
of DeepNetQoE which influence the QoE model are described.
Based on a genetic algorithm and targeted at maximizing the
total experience value, we allocated limited resources to the
training of each network model. By taking the four models
in the crowd counting network as an example, we conducted
several experiments. The results prove the advancement and
strong adaptivity of DeepNetQoE in the training of deep
learning networks.

ACKNOWLEDGMENT

This work is supported by the National Key R&D Program
of China (2017YFE0123600), and Shenzhen Institute of Arti-
ficial Intelligence and Robotics for Society (AIRS).

REFERENCES

[1] W. Liu et al., ”A survey of deep neural network architectures and their
applications,” Neurocomputing, vol. 234, no. 234, 2017, pp. 11-26.

[2] L. Qinrang et al., ”Calculation Optimization for Convolutional Neural
Networks and FPGA-based Accelerator Design Using the Parameters
Sparsity,” Journal of Electronics & Information Technology, 2018.

[3] V. Sze et al., ”Efficient Processing of Deep Neural Networks: A Tutorial
and Survey,” Proceedings of the IEEE, vol. 105, no. 12, Dec. 2017, pp.
2295-2329.

[4] N.P. Jouppi et al., ”In-Datacenter Performance Analysis of a Tensor
Processing Unit,” International symposium on computer architecture,
vol. 45, no. 2, 2017, pp. 1-12.

[5] H. Fan et al., ”SANet: Structure-Aware Network for Visual Tracking,”
Computer vision and pattern recognition, 2017, pp. 2217-2224.

[6] Z. Ma et al., ”Bayesian Loss for Crowd Count Estimation With Point Su-
pervision,” International conference on computer vision, 2019, pp.6142-
6151.

[7] J. Gao et al., ”C3 Framework: An Open-source PyTorch Code for Crowd
Counting,” 2019.

[8] Y. Li et al., ”CSRNet: Dilated Convolutional Neural Networks for
Understanding the Highly Congested Scenes,” Computer vision and
pattern recognition, 2018, pp. 1091-1100.

[9] Y. Zhang et al., ”Single-Image Crowd Counting via Multi-Column Con-
volutional Neural Network,” Computer vision and pattern recognition,
2016, pp. 589-597.

[10] M. Lahijanian et al., ”Resource-Performance Tradeoff Analysis for
Mobile Robots,” IEEE Robotics and Automation Letters, vol. 3, no. 3,
July 2018, pp. 1840-1847,

[11] Y. Zhang, et al., ”PSAC: Proactive Sequence-aware Content Caching via
Deep Learning at the Network Edge,” IEEE Transactions on Network
Science and Engineering, doi: 10.1109/TNSE.2020.2990963, 2020.

[12] D. Bega et al., ”DeepCog: Optimizing Resource Provisioning in Network
Slicing With AI-Based Capacity Forecasting,” IEEE Journal on Selected
Areas in Communications,vol. 38, no. 2, 2020, pp. 361-376.

[13] A. Marathe et al., ”Performance modeling under resource constraints
using deep transfer learning,” IEEE international conference on high
performance computing data and analytics, 2017.

[14] L. Xu et al., ”FLSTM: Feature Pattern-Based LSTM for Imbalanced
Big Data Analysis,” Cyberspace Data and Intelligence, and Cyber-
Living, Syndrome, and Health, International 2019 Cyberspace Congress,
CyberDI and CyberLife, Beijing, China, December 16C18, 2019.

[15] M. Koopialipoor et al., ”Applying various hybrid intelligent systems to
evaluate and predict slope stability under static and dynamic conditions,”
Soft computing, vol. 23, no. 14, 2019, pp. 5913-5929.


	I Introduction
	II DeepNetQoE Architecture and Typical Application Scenario
	II-A DeepNetQoE Architecture
	II-A1 Training layer
	II-A2 Prediction layer
	II-A3 QoE Model layer
	II-A4 Estimation layer

	II-B Application of DeepNetQoE on Crowd Counting

	III Performance Metrics of DeepNetQoE
	III-A Illustrations of DeepNetQoE Performance Metrics
	III-B Early Prediction of DeepNetQoE Performance via LSTM

	IV DeepNetQoE Model and Performance Evaluation
	IV-A DeepNetQoE Model and Self-adaptive QoE Optimization
	IV-B DeepNetQoE Performance Evaluation

	V Conclusion
	References

